
High Speed SDRAM Controller With Adaptive Bank
Management and Command Pipeline

IP Core Design Document

Author: Denis Shekhalev

des00@opencores.org

Rev. 0.1

06.03.08 HSSDRC IP Core Design Document

 1 Introduction

 1.1 HSSDRC IP Core Introduction

HSSDRC IP Core is the configurable universal SDRAM controller with adaptive bank
control and adaptive command pipeline.

 1.2 HSSDRC IP Core Features

The main features of HSSDRC IP core are:

• Adaptive SDRAM bank control: command sequence is depending upon previous
acessess to the RAM

• Adaptive command pipeline control: bank control commands for following memory
access commands are interleaved with previous memory access command chain
whenever possible.

• Controller structure is adapted to SDRAM parameters referenced by static timings
as parameters

• Configurable time interval for bus turnaround (BTA)

• Overlapping of command and data processing

• Variable transaction burst length from 1 to 16

• Full SDRAM bandwidth usage for linear sequential access without bus turnaround,
bank or row change

• Interfaces configurable via parameters

• Registered input and output control signals except command response line

• Registered data control signals

• Internal timer for auto-refresh process

• Two configurable auto-refresh windows

• Internal logic for transaction ordering ID tags

• Flexible choose of trade-offs between bandwidth/frequency/resources

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 1.3 HSSDRC IP Core file hierarchy

include/
hssdrc_timescale.vh - simulation timing settings

hssdrc_define.vh - IP Core interface parameters and synthesis macros

hssdrc_timing.vh - IP Core and SDRAM timing settings

hssdrc_tb_sys_if.vh - external Core interface for verification

tb_define.svh - verification settings

core/
mt48lc2m32b2.v - SDRAM memory model used for verification

rtl/
hssdrc_top.v - Core top-level

hssdrc_addr_path.v
hssdrc_addr_path_p1.v

- address path modules

hssdrc_data_path.v
hssdrc_data_path_p1.v

- data path modules

hssdrc_mux.v - logical command multiplex module

hssdrc_refr_counter.v - refresh window generator module

hssdrc_init_state.v - SDRAM initialization FSM module

hssdrc_access_manager.v - SDRAM command pipeline access manager module

hssdrc_arbiter_in.v - input arbiter module

hssdrc_arbiter_out.v - output arbiter module

hssdrc_decoder.v - SDRAM command sequence decoders module

hssdrc_decoder_state.v - SDRAM command sequence decoder FSM module

hssdrc_ba_map.v - SDRAM memory bank using map module

testbench/
hssdrc_driver_class.sv - memory controller driver class

hssrdc_driver_cbs_class.sv - abstract call-back class for driver

hssrdc_bandwidth_monitor_class.sv - bandwidth measurement class

hssrdc_scoreboard_class.sv - error detecting class

message_class.sv - messaging class

sdram_transaction_class.sv - transaction class

sdram_agent_class.sv - transacation management agent

sdram_tread_class.sv - multiple transactions thread controller

sdram_interpretator.sv - SDRAM command interpretator for controller debug

tb_prog.sv - controller testbench program

tb_top.sv - testbench top-level

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

sim/
compile.do - ModelSim compilation script

sim.do - ModelSim simulation script

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 2 HSSDRC IP Core

 2.1 Overview

HSSDRC IP Core consists of following modules described below:

Attention: Controller is fully configurable, BUT all parameters are static, and are
determined during synthesis. No dynamic parameter changes are implemented in this
version.

 2.2 Description of core modules and files

 2.2.1 Core parameters and synthesis macros

Controller interface parameters, internal data types and synthesis macros are
defined in hssdrc_define.vh. Do not change SDRAM mode parameters it will
lead to incorrect operation of the controller.

 2.2.2 Core and SDRAM Timing settings file

Controller clock frequency and SDRAM chip timing parameters are defined in
hssdrc_timing.vh. Inconsistent clock frequency setting may lead to SDRAM
timings violations and overall controller instabilities.

 2.2.3 Refresh window generator module

This module is in the file hssdrc_refr_counter.v and contains the counter of
refresh interval (which defaults to pRefr_time = 15.625μs) and two
comparators driving low- and high-priority memory refresh requests accordingly.

 2.2.4 Input arbiter module

This module is in the file hssdrc_arbiter_in.v and contains round-robin arbiter
for three independent SDRAM command decoders.

 2.2.5 SDRAM memory bank using map module

This module is in the file hssdrc_ba_map.v and contains memory for storage of
the open bank and row indexes. This memory state is changed by SDRAM
command decoders.

.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 2.2.6 SDRAM command sequence decoders module

This module consists of two files hssdrc_decoder.v and
hssdrc_decoder_state.v and contains three independent SDRAM command
sequence decoders. The proper SDRAM command sequence is chosen
depending upon information from memory bank usage map.

 2.2.7 Output arbiter module

This module is in the file hssdrc_arbiter_out.v. Module contains round-robin
arbiter and adaptive access to SDRAM command pipeline logic, analyzing
decoded commands and SDRAM banks state taken from access manager.

 2.2.8 SDRAM command pipeline access manager module

This module is in the file hssdrc_access_manager.v and contains FSMs for
each memory bank. Module permits or inhibits access to given SDRAM bank.

 2.2.9 SDRAM initialization module

This module is in the file hssdrc_init_state.v and contains counter-based FSM
creating necessary command chain for SDRAM initialization.

 2.2.10 Logical command multiplex module

This module is in the file hssdrc_mux.v and contains simple command
multiplexer for mixing outputs of output arbiter and initialization module.

Because of controller being passive during initialization routine due to internal
synchronous reset of all decoders and arbiters, multiplexing is substituted with
logical OR.

 2.2.11 Data-path module

This module consists of two files hssdrc_data_path.v and
hssdrc_data_path_p1.v and contains FSM for access to read/write data and
SDRAM masking logic.

 2.2.12 Address-path module

This module consists of two files hssdrc_addr_path.v and
hssdrc_addr_path_p1.v and contains simple converter of logic commands to
SDRAM commands.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 2.3 Description of core algorithms used for SDRAM access

SDRAM is a 4-bank synchronous block DRAM. Each of the banks is organized as rows
and columns of bit words.

Prior to normal operation, the SDRAM must be initialized by setting proper values in the
SDRAM mode register.

The main SDRAM mode parameters are:

• CAS Latency(CL) – is the delay, in clock cycles, between the READ command and
the availability of the first block of output data.

• Burst Length – is the minimum data amount for write and read transactions.

The bank must be opened (activated) for access with an ACTIVE command, The ACTIVE
command selects the bank and the row to be accessed. Only one row of the given bank
can be activated at same time.

The bank must be closed with the PRECHARGE command and activated again to change
the row in the given bank.

All banks must be closed before automatic refresh. One PRECHARGE command can be
used to close all active banks. Automatic refresh is performed with an AUTO REFRESH
command.

READ and WRITE commands are used to read (or write) burst data. Data access is
started at a selected location and continues for a programmed Burst Length. The address
bits in the READ or WRITE command are used to select the bank and starting column for
the burst access.

Minimal time intervals between all these commands are limited with SDRAM timings.

Table 2.2 - mt48lc2 memory SDRAM timings for frequency 133MHz used for HSSDRC IP
Core

Timing t, ns t/Tclk Tck
Trcd - ACTIVE to READ or WRITE delay 18 2.4 3
Tras - ACTIVE to PRECHARGE command 42 5.6 6
Twr - Write recovery time 12 1.6 2
Trp - PRECHARGE command period 18 2.4 3
Trrd - ACTIVE bank A to ACTIVE bank B command 12 1.6 2
Trfrc - AUTO REFRESH period 60 8 8

Attention: Every bank should not be held open continuously. The maximum time to keep
the bank open is defined by maximum value of Tras parameter. For mt48lc2 memory this
time is 120µs. HSSDRC IP Core cannot monitor this parameter. Failure to comply with this
requirement will result in loss of data.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

Consider SDRAM command sequence for block writing with Burst Length equal to 4.

Non-adaptive controller opens and closes banks for each transaction. SDRAM command
time sequence for two sequential block writing to the same bank and same row will look
like:

1 2 3 4 5 6 7 8 9 10 11
Tras
Trcd a0 a1 a2 a3 Twr Trp
act a nop nop write a nop nop nop nop pre a nop nop

12 13 14 15 16 17 18 19
Trcd a4 a5 a6 a7 Twr
act a nop nop write a nop nop nop nop

These two write transactions will consume 19 clock ticks.

HSSDRC IP Core keeps all banks open and closes them only to change row or for
memory refresh and SDRAM command sequence for two sequential block writing will be :

1 2 3 4 5 6 7 8 9 10 11
a0 a1 a2 a3 a4 a5 a6 a7

act a nop nop write a nop nop nop write a nop nop nop

These two write transaction will consume 11 clock ticks. It gives a benefit of 8 clock ticks or
42 % of a memory write bandwith.

This bank access algorithm is called here as “Adaptive SDRAM bank control“.

Command NOP is a mandatory pause in operation of the SDRAM command pipeline in
the above sequences.

Consider SDRAM command sequence for block writing with Burst Length equal to 4 to
closed bank a and to the row 1 of bank b with opened row 0.

Assume, that the non-adaptive controller keeps these banks open also. Then the
sequence for non-adaptive controller will be the following:

1 2 3 4 5 6 7 8 9 10 11
Trcd a0 a1 a2 a3 Twr Trp
act a nop nop write a nop nop nop nop pre b nop nop

12 13 14 15 16 17 18 19
Trcd b0 b1 b2 b3 Twr
act b nop nop write b nop nop nop nop

These two write transactions will consume 19 clock ticks.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

HSSDRC IP Core bank control commands for next memory access are inserted in place of
these mandatory pauses whenever possible. Then the command sequence will be the
following (best case is shown):

1 2 3 4 5 6 7 8 9 10 11
a0 a1 a2 a3 b0 B1 b2 b3

act a pre b nop write a act b nop nop write b nop nop nop

These two write transactions will consume 11 clock ticks. It gives a benefit of 8 clock tick or
42 % of a memory write bandwith again.

SDRAM command sequence for HSSDRC IP core do not have Twr time interval because
this sequence does not need it in the example above.

This algorithm for filling of mandatory NOP pauses with meaningful commands in the
SDRAM command pipeline is called here as “Adaptive command pipeline control“.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 3 HSSDRC IP Core Verification Environment

 3.1 Overview

Verification environment is based upon Verilog model of Micron SDRAM mt48lc2
(http://www.micron.com) with 32bit data bus and 11bit address bus width.

Verification environment has been developed with System Verilog HVDL.

Verification components were written with usage of Object-Oriented Programming and
System Verilog constraints driven random approach was used when implementing random
data sets

 3.2 Verification test cases

 3.2.1 Correctness check of linear access to the memory

This test case performs sequential linear write and read transactions to the
controller. Amount of transactions, time delay between sequential transactions,
transaction burst and transaction data value are randomly assigned.

 3.2.2 Correctness check of random access to the memory

This test case performs sequential random write and read transactions to the
controller. Amount of transactions, time delay between sequential transactions,
bank, row and column address, transaction burst and transaction data value are
randomly assigned.

 3.2.3 Memory bandwidth measurement

This test measures a data amount transferred in unit of time for following
transaction types:

• Access within one bank and one bank row
• Access within one bank and any bank row
• Access within all of four banks and one row of each bank
• Access within all of four banks and any row of each bank

This test case does not check correctness of accessed data.

Passive monitors, based upon callback functions for API driver are used as scoreboard
and bandwidth measurement unit.

http://www.opencores.org Rev 0.1 Preliminary

http://www.micron.com/
http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 4 HSSDRC IP Core Application Information

 4.1 Core interfaces

HSSDRC IP Core have 2 interfaces:

• System interface
• SDRAM memory chip interface

Table 4.1.1 HSSDRC IP Core system interface

Name Direction Width Note

clk input 1 bit

reset input 1 bit

sclr input 1 bit

sys_rowa input pRowaBits

sys_cola input pColaBits address LSB position is defined by data bus
width

sys_ba input 2bit

sys_burst input 4bit burst length is sys_burst+1

sys_write input 1 bit

sys_read input 1 bit

sys_refr input 1 bit

one-hot coded command request

sys_ready output 1 bit command response

sys_chid_i input pChIdBits input read transaction ordering ID tag

sys_chid_o output pChIdBits output read transaction ordering ID tags

sys_wdata input pDataBits

sys_wdatam input pDatamBits write data mask

sys_rdata output pDataBits

sys_use_wdata output 1 bit “request data for memory write” signal

sys_vld_rdata output 1 bit “read data are valid” signal

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

Table 4.1.2 HSSDRC IP Core SDRAM memory chip interface

Name Direction Width Note

dq output pDataBits

dqm output pDatamBits

addr output pAddrBits

ba output 2 bit

cke_n output 1 bit

cs_n output 1 bit

ras_n output 1 bit

cas_n output 1 bit

we_n output 1 bit

Attention: there is no clock signal for SDRAM chip in IP Core interface. These signals
and their phase alignment with others SDRAM signals are the responsibility of the top-
level module of the project.

The interface is synchronous with an positive edge of system clock. All signals have
positive polarity.

All command interface requests use simple handshake protocol between system and IP
Core. System assert one of request signals sys_write/sys_read/sys_refr, Request remains
asserted until IP Core asserts request response signal sys_ready. The similar handshake
protocols are used in Wishbone and AMBA AXI buses.

IP Core asserts sys_use_wdata signal to request data for memory write and asserts
sys_vld_rdata to indicate that read data is valid.

Request signals sys_write/sys_read/sys_refr must be one-hot coded vector. Otherwise
request will be decoded incorrectly and data in SDRAM may be corrupted.

All unused input signals must be connected to logical zero.

All SDRAM data mask signals must always be connected.

Using the HSSDRC IP Core be advised that write/read latency for given memory access
can widely vary. It depends on a sequence of the previous requests to the controller.

Write latency is the delay, in clock cycles, between the issuing the WRITE command to the
controller and the controller request of the first data word. It can be any value between:

• 3 clock ticks in the best case when request queue is empty and requested SDRAM
bank have been already opened for access.

• 44 clock ticks in the worst case when request queue have two active requests to the
different rows of same bank with burst length equal to 16.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

Read latency is the delay, in clock cycles, between the issuing the READ command to the
controller and the availability of the first output data. It can be any value between:

• 4(5) + CL(Cas Latency) clock ticks in the best case when request queue is empty
and requested SDRAM bank have been already opened for access.

• 44 + 4(5) + CL(Cas Latency) clock ticks in the worst case when request queue
have two active requests to the different rows of same bank with burst length equal
to 16.

Note: Worst case latencies were calculated assuming 133MHz clock frequency. Latency
value for synthesis macros HSSDRC_DQ_PIPELINE switched on is in the brackets, see
paragraph 4.2 for details.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 4.2 Core architecture constraining

HSSDRC IP Core can be fine tuned for given application with usage of following synthesis
macros:

• HSSDRC_DQ_PIPELINE - switch on to use additional registers on the SDRAM
memory interface

• HSSDRC_REFR_HI_DISABLE – switch on to disable high priority memory refresh
requests

• HSSDRC_REFR_LOW_DISABLE - switch on to disable low priority memory refresh
requests

• HSSDRC_COMBINATORY_USE_WDATA – switch on to supply a sys_use_wdata
signal on 1 clock tick earlier. See paragraph 4.3 for details.

• HSSDRC_NOT_SHARE_ACT_COMMAND – switch on to remove ACTIVATE
command from “Adaptive command pipeline control“ algorithm.

• HSSDRC_SHARE_ONE_DECODER - switch on to permit to use only one set of
prefetched commands in “Adaptive command pipeline control“ algorithm.

• HSSDRC_SHARE_NONE_DECODER - switch on to prohibit usage of prefetched

commands in “Adaptive command pipeline control“ algorithm.

See paragraph 4.5 for details for usage of HSSDRC_NOT_SHARE_ACT_COMMAND,
HSSDRC_SHARE_ONE_DECODER and HSSDRC_SHARE_NONE_DECODER
synthesis macros.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 4.3 System data-path architecture

HSSDRC IP Core provides maximum performance only when it can use overlapping
command and data processing. FIFO should be used to make it possible.

It is recommended to use the First Word Pass Through (FWPT) FIFO because of
HSSDRC IP Core data path implementation features. FWPT FIFO is the FIFO which have
valid output data before request for read data is set.

If there is no FWPT FIFO usual FIFO can be used and synthesis macros
HSSDRC_COMBINATORY_USE_WDATA must be switched on.

IP Core can supply a request signal sys_use_wdata to read to FIFO 1 clock tick earlier
when synthesis macros HSSDRC_COMBINATORY_USE_WDATA is switched on. But an
additional combinatorial logic is added to IP Core in FIFO signal processing in this case
and which can lead to performance decrease of IP Core.

IP Core data path architecture is dependent upon synthesis macros
HSSDRC_DQ_PIPELINE and HSSDRC_COMBINATORY_USE_WDATA and can be the
following:

FWPT FIFO

Any FIFO

sys_use_wdata

sys_wdatam

sys_wdata

sys_rdata

sys_vld_rdata

dq

dqm

Figure 4.3.1 – Data path architecture when both synthesis macros
HSSDRC_DQ_PIPELINE and HSSDRC_COMBINATORY_USE_WDATA are switched off

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

FWPT FIFO

Any FIFO

sys_use_wdata

sys_wdatam

sys_wdata

sys_rdata

sys_vld_rdata

dq

dqm

Figure 4.3.2 – Data path architecture when synthesis macros HSSDRC_DQ_PIPELINE is
switched on and HSSDRC_COMBINATORY_USE_WDATA is switched off

Usual FIFO

Any FIFO

sys_use_wdata

sys_wdatam

sys_wdata

sys_rdata

sys_vld_rdata

dq

dqm

Figure 4.3.3 – Data path architecture when synthesis macros HSSDRC_DQ_PIPELINE is
switched off and HSSDRC_COMBINATORY_USE_WDATA is switched on

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

Usual FIFO

Any FIFO

sys_use_wdata

sys_wdatam

sys_wdata

sys_rdata

sys_vld_rdata

dq

dqm

Figure 4.3.4 – Data path architecture when both synthesis macros
HSSDRC_DQ_PIPELINE and HSSDRC_COMBINATORY_USE_WDATA are switched on

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 4.4 Address align recommendation

HSSDRC IP Core can work with any burst length from 1 to 16. But IP Core uses fixed
Burst Length equal to 4 to work with SDRAM memory chip.

HSSDRC IP Core does not use BURST TERMINATE command, it uses several
consecutive bursts with length 4 instead.

If burst cross 4 word boundaries (when burst length is not aligned with column address)
then data will be damaged.

HSSDRC IP Core determines this situation and breaks such busrt into 2 consecutive
bursts with correctly aligned column addresses. This procedure will consume additional
clock ticks. That is why, it is recommended to use the following burst lengths and column
address alignments to get maximum bandwidth performance.

Table 4.4.2 Optimal burst length and column address alignment

burst length column address alignment

1 no alignment

2 sys_cola[0] = 0; (sys_cola = 0,2,4,6,8,...)

4 sys_cola[1:0] = 0; (sys_cola = 0,4,8,12,16,...)

8 sys_cola[1:0] = 0; (sys_cola = 0,4,8,12,16,...)
sys_cola[2:0] = 0; (sys_cola = 0,8,16,...)

16 sys_cola[1:0] = 0; (sys_cola = 0,4,8,12,16,...)
sys_cola[2:0] = 0; (sys_cola = 0,8,16,...)
sys_cola[3:0] = 0; (sys_cola = 0,16,32,...)

Attention: HSSDRC IP Core cannot determine the bank row boundaries crossing. The
user should monitor and prevent this case.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 4.5 Performance measurement results

Measurement settings :
• measurement cycle duration: 200us

• memory refresh interval is 95% of refresh period in 15.625µs by default

• addition bus turnaround cycle is used

• transaction burst length is 1,2,4,8,16

• optimal address alignment is used

• Controller clock frequency is 133MHz

• Cas Latency is 3

Measurement results are represented in percentages of maximum memory bandwidth.

Table 4.5.1 Correspondence of the synthesis macros and configuration index of HSSDRC
IP Core, used for performance measurement

IP Core configuration index IP Core synthesis macros
0 default :

HSSDRC_SHARE_ONE_DECODER,
HSSDRC_SHARE_NONE_DECODER,
HSSDRC_NOT_SHARE_ACT_COMMAND are switched off

1 HSSDRC_NOT_SHARE_ACT_COMMAND is switched on
2 HSSDRC_SHARE_ONE_DECODER is switched on
3 HSSDRC_SHARE_NONE_DECODER is switched on

Standard memory test cases as sequential write, sequential read and sequential write/read
are used for measurement.

The different creation of address requests was used at measurement. See paragraph
3.2.3 for details.

See paragraph 4.5.4 for analysis of measurement results.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 4.5.1 Bandwidth measurement in sequential write mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
98

98.5

99

99.5

100

bw0

bw1

bw2

bw3

burst
Figure 4.5.1.1 Bandwidth measurement for the requests hitting within one bank
and one bank row.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

20

30

40

50

60

70

80

90

100

bw0

bw1

bw2

bw3

burst

Figure 4.5.1.2 Bandwidth measurement for the requests hitting within one bank
but any bank row.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
98

98.5

99

99.5

100

bw0

bw1

bw2

bw3

burst

 Figure 4.5.1.3 Bandwidth measurement for the requests hitting all banks and
one row in the each bank. Bank addresses of consecutive requests are different
and random.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

20

30

40

50

60

70

80

90

100

bw0

bw1

bw2

bw3

burst

Figure 4.5.1.4 Bandwidth measurement for the requests hitting all banks and all
rows in the each bank. Bank and row addresses of consecutive requests are
different and random.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

20

30

40

50

60

70

80

90

100

bw0

bw1

bw2

bw3

burst
Figure 4.5.1.5 Bandwidth measurement for the requests hitting all banks and all
rows in the each bank. Bank addresses of consecutive requests are
incrementing, row addresses in the given bank are different and random..

 4.5.2 Bandwidth measurement in sequential read mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
98

98.5

99

99.5

100

bw0

bw1

bw2

bw3

burst

 Figure 4.5.2.1 Bandwidth measurement for the requests hitting within one bank
and one bank row.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

20

30

40

50

60

70

80

90

100

bw0

bw1

bw2

bw3

burst

Figure 4.5.2.2 Bandwidth measurement for the requests hitting within one bank
but any bank row .
.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
98

98.5

99

99.5

100

bw0

bw1

bw2

bw3

burst

 Figure 4.5.2.3 Bandwidth measurement for the requests hitting all banks and
one row in the each bank. Bank addresses of consecutive requests are different
and random.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

20

30

40

50

60

70

80

90

100

bw0

bw1

bw2

bw3

burst

Figure 4.5.2.4 Bandwidth measurement for the requests hitting all banks and all
rows in the each bank. Bank and row addresses of consecutive requests are
different and random..

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

20

30

40

50

60

70

80

90

100

bw0

bw1

bw2

bw3

burst

Figure 4.5.2.5 Bandwidth measurement for the requests hitting all banks and all
rows in the each bank. Bank addresses of consecutive requests are
incrementing, row addresses in the given bank are different and random.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 4.5.3 Bandwidth measurement in sequential write-read mode

The lower graph corresponds to a bandwidth for write mode. Upper graph is
corresponds to a bandwidth for common write-read mode.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

20

30

40

50

60

70

80

90

100

bw0

bw1

bw2

bw3

bww0

bww1

bww2

bww3

burst

 Figure 4.5.3.1 Bandwidth measurement if all requests hitting one bank and one
bank row.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

20

30

40

50

60

70

80

90

100

bw0

bw1

bw2

bw3

bww0

bww1

bww2

bww3

burst

Figure 4.5.3.2 Bandwidth measurement if all requests hitting one bank but any
bank row.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

20

30

40

50

60

70

80

90

100

bw0

bw1

bw2

bw3

bww0

bww1

bww2

bww3

burst
 Figure 4.5.3.3 Bandwidth measurement for the requests hitting all banks and
one row in the each bank. Bank addresses of consecutive requests are different
and random..

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

20

30

40

50

60

70

80

90

100

bw0

bw1

bw2

bw3

bww0

bww1

bww2

bww3

burst

Figure 4.5.3.4 4 Bandwidth measurement for the requests hitting all banks and
all rows in the each bank. Bank and row addresses of consecutive requests are
different and random..

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

 4.5.4 Analysis of measurement results

 4.5.4.1 Access within one bank and one bank row mode
Any HSSDRC IP core configuration has the same bandwidth
performance.

The memory refresh cycle time is the main limitation of bandwidth in this
access mode.

 4.5.4.2 Access within one bank and one bank and any bank
row mode
Any HSSDRC IP core configuration has the same bandwidth
performance.

A lot of bank control commands is the main limitation of bandwidth in this
access mode.

This mode is the most ineffective for memory performance.

 4.5.4.3 Access within one bank and any bank and one row of
each bank mode
All HSSDRC IP core configurations have comparable bandwidth
performance.

The memory refresh cycle time is the main limitation of bandwidth in this
access mode.

Small failing of performance in the configurations №1 and №3 is
explained by inability to use the pause in the operation of the SDRAM
command pipeline for the bank ACTIVATE command.

 4.5.4.4 Access within one bank and any bank and any row of
each bank mode
HSSDRC IP core configurations №0, №1, №2 have comparable
bandwidth performance. The performance is significantly reduced in the
configuration №3 only.

The bank control command time is the main limitation of bandwidth in this
access mode.

Failing of performance in the configurations №3 is explained by inability
to use a lot of pauses in the operation of the SDRAM command pipeline
with bank control commands.

Bandwidth performance is significantly diminished when there are a lot of bus turnaround
cycles in any access mode and at any configuration. The CAS Latency is main limitation of
bandwidth in this case.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

06.03.08 HSSDRC IP Core Design Document

It is recommended to use default synthesis settings to maximize bandwidth performance if
you don’t know anything about the characteristic of requests in advance.

One can adjust HSSDRC IP Core for less FPGA resource usage or clock rate increase if
one knows some address characteristic of requests (“sequential linear write/read with
burst length more than 4”, for example).

Controller system address mapping on SDRAM bank, row and column addresses is
defined by characteristic of memory requests.

Table 4.5.4 Variants of the controller system address mapping on SDRAM bank, row and
column addresses

The address mapping function (bank, row
and column addresses concatenation)

Comment

sys_addr = {sys_ba, sys_rowa, sys_cola} it is recommended to use in case when applica-
tion have linear sequential access and data size
is less than capacities of one memory row.

sys_addr = {sys_rowa, sys_ba, sys_cola} It is recommended to use in all other cases.

http://www.opencores.org Rev 0.1 Preliminary

http://www.opencores.org/

	Author: Denis Shekhalev
	des00@opencores.org
	Rev. 0.1

