Spring 2003

Bruce Jacob David Wang

University of Maryland

DRAM Circuit and Architecture Basics

- Overview
- Terminology
- Access Protocol
- Architecture

DRAM Circuit Basics

DRAM Cell

David Wang

DRAM Memory System: Lecture 2

> University of Maryland

Spring 2003

Bruce Jacob

DRAM Circuit Basics

"Row" Defined

DRAM Memory System: Lecture 2

Spring 2003

Bruce Jacob David Wang

DRAM	Memory
System: I	_ecture 2

Spring 2003

Bruce Jacob David Wang

University of Maryland

DRAM Circuit Basics

Sense Amplifier I

DRAM	I Memory
System:	Lecture 2

Spring 2003

Bruce Jacob David Wang

University of Maryland

DRAM Circuit Basics

Sense Amplifier II : Precharged

DRAM Circuit Basics

Bruce Jacob David Wang

Spring 2003

DRAM Memory System: Lecture 2

> University of Maryland

Sense Amplifier III : Destructive Read

DRAM Access Protocol

ROW ACCESS

DRAM Memory System: Lecture 2

Spring 2003

Bruce Jacob David Wang

Spring 2003

Bruce Jacob David Wang

University of Maryland

DRAM Circuit Basics

"Column" Defined

Column: Smallest addressable quantity of DRAM on chip

SDRAM*: column size == chip data bus width (4, 8,16, 32) RDRAM: column size != chip data bus width (128 bit fixed)

SDRAM*: get "n" columns per access. n = (1, 2, 4, 8) RDRAM: get 1 column per access.

DRAM Access Protocol

COLUMN ACCESS I

DRAM Memory System: Lecture 2

Spring 2003

Bruce Jacob David Wang

DRAM Access Protocol

Column Access II

note: page mode enables overlap with CAS

DRAM Memory System: Lecture 2

Spring 2003

Bruce Jacob David Wang

DRAM "Speed" Part I

How fast can I move data from DRAM cell to sense amp?

University of Maryland

Spring 2003

Bruce Jacob David Wang

DRAM Memory System: Lecture 2

Spring 2003

Bruce Jacob David Wang

University of Maryland

DRAM "Speed" Part II

How fast can I get data out of sense amps back into memory controller?

DRAM "Speed" Part III

Bruce Jacob David Wang

Spring 2003

DRAM Memory System: Lecture 2

> University of Maryland

How fast can I move data from DRAM cell into memory controller?

DRAM "Speed" Part IV

How fast can I precharge DRAM array so I can engage another RAS?

System: Lecture 2

DRAM Memory

Spring 2003

Bruce Jacob David Wang

DRAM "Speed" Part V

Bruce Jacob David Wang

Spring 2003

DRAM Memory System: Lecture 2

> University of Maryland

How fast can I read from different rows?

Spring 2003

Bruce Jacob David Wang

University of Maryland

DRAM "Speed" Summary I

What do I care about?

Spring 2003

Bruce Jacob David Wang

University of Maryland

DRAM "Speed" Summary II

DRAM Type	Frequency	Data Bus Width (per chip)	Peak Data Bandwidth (per Chip)	Random Access Time (t _{RAC})	Row Cycle Time (t _{RC})
PC133 SDRAM	133	16	200 MB/s	45 ns	60 ns
DDR 266	133 * 2	16	532 MB/s	45 ns	60 ns
PC800 RDRAM	400 * 2	16	1.6 GB/s	60 ns	70 ns
FCRAM	200 * 2	16	0.8 GB/s	25 ns	25 ns
RLDRAM	300 * 2	32	2.4 GB/s	25 ns	25 ns

DRAM is "slow" But doesn't have to be t_{RC} < 10ns achievable

Higher die cost → Not adopted in standard

Not commodity

"DRAM latency"

A: Transaction request may be delayed in Queue
B: Transaction request sent to Memory Controller
C: Transaction converted to Command Sequences (may be queued)

D: Command/s Sent to DRAM

 E_1 : Requires only a **CAS** or

- E₂: Requires **RAS + CAS** or
- E_{3:} Requires **PRE + RAS + CAS**

F: Transaction sent back to CPU

"DRAM Latency" = A + B + C + D + E + F

DRAM Memory System: Lecture 2

Spring 2003

Bruce Jacob David Wang

DRAM	Architecture	Basics
------	--------------	---------------

PHYSICAL ORGANIZATION

DRAM Memory System: Lecture 2

Spring 2003

Bruce Jacob David Wang

DRAM Architecture Basics

Read Timing for Conventional DRAM

DRAM Memory System: Lecture 2

Spring 2003

Bruce Jacob David Wang

DRAM	l Memory
System:	Lecture 2

Spring 2003

Bruce Jacob David Wang

University of Maryland

DRAM Evolution

(RAS + CAS + OE ... == Command Bus)

Spring 2003

Bruce Jacob David Wang

University of Maryland

DRAM Evolution

Inter-Row Read Timing for ESDRAM

ESDRAM, R/R to same bank

Spring 2003

Bruce Jacob David Wang

University of Maryland

DRAM Evolution

Write-Around in ESDRAM

"Regular" CAS-2 SDRAM, R/W/R to same bank, rows 0/1/0

ESDRAM, R/W/R to same bank, rows 0/1/0

(can second READ be this aggressive?)

