Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

SLIDE 1

ENEE 759H, Spring 2005 Memory Systems: Architecture and Performance Analysis

DRAM Device Circuits and Architecture

Credit where credit is due:

Slides contain original artwork (© Jacob, Wang 2005)

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

Polycide Bitlines

Unlayered DRAM Cell Array

DRAM Array III (folded bitline)

2 Bitline lanes through each cell (larger cell size) Cell size: typically 8 F² Better noise tolerance (common mode rejection)

Memory Systems Architecture and Performance Analysis

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

SLIDE 10

Dummy structures at array edges

DRAM Array IV (Open Bitline)

1 Bitline lane through each cell Cell size: typically 6 F²

Bitline pairs comes from different array segments

Challenge: How to get good noise tolerance AND small cell size?

Array Precharge

Assert equalize, Array precharged to V_{ref} (typically $V_{cc}/2$)

V_{ref} - V_{ref} V_{ref} + 1
Voltage color chart

Lecture2.fm Bruce Jacob

David Wang

Memory Systems Architecture and

Performance

Spring 2005

ENEE 759H

Analysis

University of Maryland ECE Dept.

Row Access II (sense)

SAN and SAP control signals active lower NFet more conductive, upper PFet more conductive. Bitline pairs slammed to opposite voltage rails, then upper NFet and lower PFet shut off completely.

Memory Systems Architecture and Performance Analysis

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

Row Access III (Restore)

Wordline kept open, now sensing circuit drives the full voltage level "1" back into cell. If the column is selected, data is driven out to rest of the world.

Memory Systems Architecture and Performance Analysis

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

Decoders and Redundancy

Memory Systems Architecture and Performance Analysis

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

Programmable Decoders I

functionally equivalent to NOR gate with output that can be disabled by laser (or fuse)

 Ω (loser) are cromospheric line

 \otimes (laser) programmable link

Memory Systems Architecture and Performance Analysis

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

Device Control Logic

Memory Systems Architecture and Performance Analysis

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

Modern DRAM devices (SDRAM, Direct RDRAM, DDRx SDRAM, etc. have programmable behaviour) Load value from address bus with special command.

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

SLIDE 22

Data I/O

2N Bit prefetch in DDR SDRAM devices 4N in DDR2 SDRAM devices, and 8N in DDR3 SDRAM devices Allows "core" to run at slower datarates while interface datarate cranks up. drawback - minimum burst lengths (loss of "randomness")

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

SLIDE 23

Find bank 0, row 0x02F1, column 0x0EA and get an A

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

SLIDE 24

	2004	2007	2010	2013	2016
Semi Generation (nm)	90	65	45	32	22
High Perf. device pin count	2263	3012	4009	5335	7100
High Perf. device cost (cents/pin)	1.88	1.61	1.68	1.44	1.22
Memory device pin count	48-160	48-160	62-208	81-270	105-351
Memory device pin cost (cents/pin)	0.34 - 1.39	0.27 - 0.84	0.22 - 0.34	0.19 - 0.39	0.19 - 0.33

ITRS Roadmap

Package Evolution (higher pin count, higher datarate) (higher costs, testing etc.)

Spring 2005

ENEE 759H Lecture2.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

SLIDE 25

Package and Pincount II

16M x 16													
32M x 8													
	4	£	6	64M x 4									
VCC	VCC	VCC	1		54	VSS	VSS	VSS					
D00	D00	NC	2		53	NC	D07	DO15					
VCCO	VCCO	VCCO	2		52	VSSO	VSSO	VSSO					
D01	NC	NC	4		51	NS	NS	DO14					
DO2	DO1	DO0	5		50	DO3	DO6	D013					
VSSO	vsso	VSSO	6		49	VCCO	VCCO	VCCO					
DO3	NC	NC	7		48	NC	NC	D012					
DQ4	DQ2	NC	8		47	NC	DQ5	D011					
VCCO	VCCQ	VCCO	9		46	VSSO	VSSO	vsso					
DQ5	NC	NC	10		45	NC	NC	DQ10					
DQ6	DQ3	DQ1	11		44	DQ2	DQ4	DQ9					
VSSQ	VSSQ	VSSQ	12		43	VCCQ	VCCQ	VCCQ					
DQ7	NC	NC	13		42	NC	NC	DQ8					
VCC	VCC	VCC	14		41	VSS	VSS	VSS					
DQML	NC	NC	15		40	RESERVED	RESERVED	RESERVED					
WE#	WE#	WE#	16		39	DQM	DQM	DQM					
CAS#	CAS#	CAS#	17		38	CLK	CLK	CLK					
RAS#	RAS#	RAS#	18		37	CLKE	CLKE	CLKE					
CS#	CS#	CS#	19		36	A14	A14	A14					
A13(BA0)	A13(BA0)	A13(BA0)	20		35	A11	A11	A11					
A12(BA1)	A12(BA1)	A12(BA1)	21		34	A9	A9	A9					
A10(AP)	A10(AP)	A10(AP)	22	54 pin	33	A8	A8	A8					
A0	A0	A0	23	TSOD	32	A7	A7	A7					
A1	A1	A1	24	1501	31	A6	A6	A6					
A2	A2	A2	25		30	A5	A5	A5					
A2	A2	A2	26		29	A4	A4	A4					
VCC	VCC	VCC	27		28	VSS	VSS	VSS					

SDRAM "Same pinout", except for data bus

