
A FPGA-Based Real-Time Hardware Accelerator
for Orientation Calculation Part in SIFT

Jingbang QIU, Ying LU, Tianci HUANG, and Takeshi IKENAGA
Graduate School of IPS, WASEDA Univ.

megisgem0630@ruri.waseda.jp

Abstract

SIFT is regarded as one of the most powerful

feature point detection algorithms in the world. The
Orientation Calculation Part, defining major
orientation of feature points, enables selected image
features to be invariant to rotation changes. In this
paper, we propose an FPGA-implementable hardware
accelerator for this part. By introducing LUT-Based
Square Root Computation and Shifting-Based
Orientation Calculation with use of dual-port DDR2
memory access, we achieve to reach real-time process
speed, meanwhile keeping high accuracy. By
experiment, our system proves to reach Max Clock
Frequency of 130.0 MHz, processing up to around
256,000 feature points including memory operations.
Compared with conventional work, hardware cost is
remained at the same level. Accuracy is kept at 98.9%
for over 40,000 feature points from 50 images. Our
proposal is suitable for a real-time SIFT system.

1. Introduction

Feature Detection has been of great interest in
computer vision filed in recent years. Good features
detected from images can be applied onto various
circumstances. SIFT, abbreviated for Scale Invariant
Feature Transform, is proposed by David Lowe [1, 2].
A significant advantage of SIFT over other algorithms
is that, feature points detected are invariant to image
scaling changes and rotation changes, while at the
same time being robust to changes in illumination,
addition of noise, cluster scene, occlusion and minor
changes in viewpoint.

In cost of achieving its robustness, time
consumption of SIFT is relatively huge. Hardly any
real-time system exists (VGA size). GPU-based system
has been proposed. However, yet accelerated, this
method majorly depends on the performance of the
GPU chip and the PC environment, and the results vary
greatly from computer to computer. Recently,

researches have been focusing on specified hardware
accelerators for the SIFT algorithm based on FPGA [3,
4, 5, 6, 7], introducing some successful SIFT hardware
design examples. Although these systems are far from
perfect, the results showed a promising view of
hardware implementation of SIFT.

As stated in [4], SIFT can be structurally divided
into 4 major parts, Gaussian Pyramids & DoG
Pyramids Construction, Feature Point Detection,
Orientation Calculation (OC), and Descriptor Creation
(Fig. 1.).

Figure 1. Components of SIFT

In this paper, we focus on hardware implementation

of OC part.

1.1. Previous Work on OC
The OC Part is the third part of the SIFT algorithm.

This part calculates the gradient magnitudes (GMs) and
gradient orientations (GOs) of the local area of a
feature point and does histogram to find out the major
orientation of a feature point. Although this part
consumes only 10% of the computational complexity,
it enables the image features extracted to be invariant
to rotation changes.

In [3], the author pre-computes gradient magnitudes
and gradient orientations for all pixels in various scales
and octaves. The results are then sent to a NIOS II

SIFT

Scaling Invariant Rotation Invariant

View-Point Invariant Illumination Invariant

Gaussian
Smooth

Gradient
Mag & Ori

Orientation
Histogram Normalization

2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing

978-0-7695-3762-7/09 $26.00 © 2009 IEEE

DOI 10.1109/IIH-MSP.2009.64

1334

2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing

978-0-7695-3762-7/09 $26.00 © 2009 IEEE

DOI 10.1109/IIH-MSP.2009.64

1334

processor for further processing. In another word,
major orientation is not decided by specified hardware,
but by an embedded processor. Also, a huge amount of
memory is needed. Thus it’s not suitable for a low
power system.

In [7], a robotic system is implemented with SIFT
algorithm with Stratix II FPGA board. It is claimed
that the system could process one VGA image in 60ms.
However, no structural information and no information
on SIFT version is given.

This paper is arranged as follows. Our proposal for
OC hardware accelerator will be given in SECTION II.
SECTION III presents in detail experimental
environment, hardware synthesis, and software
simulation. SECTION IV briefly concludes our work.

2. Proposed Hardware Architecture
2.1. Overall System Structure

Our purpose is to develop a real-time processing
hardware system with modest hardware cost, keeping
relatively stable quality and high accuracy.

Two highlight features of our proposal are 1) LUT-
based Square Root Computation (LUT-SRC), and 2)
Shifting-based Orientation Calculation (SOC). Input of
pixels of Gaussian Images is represented by 8 registers.

Our proposed hardware architecture is decided for
the VGA image processing, but not confined to VGA
size.

As few feature points have more than 2 major
directions, we assume that every feature point would at
the most have 2 major directions.

Overall system structure is shown is Fig. 2.

Figure 2. Overall system structure

2.2. LUT-Based Square Root Computation

This part is implemented in GraMagComp module.
GM in this process is computed by Formula 1.

GM(x, y) = [dx2+dy2]1
2ൗ (1)

where GM(∗) denotes Gradient Magnitude; dx denotes L(x +

1, y) − L(x − 1, y) ; dy denotes L(x, y + 1) − L(x, y − 1) ; L(∗)
denotes pixel values of Gaussian Images.

Although square is easy to compute, square root
computation is generally regarded as the hardware-
consuming part. That’s because, to generate the square
root of a value, one needs to consider not only the
integer part but also the numerical part, which concerns
complex floating point calculations.

However, in this work, we use pixel input of 8
registers, which represent integers ranging from -127
to 128. Thus, square roots computed would be within
the range from 0 to 128. Furthermore, as the results
after square root computations are used for creating
histograms, it is reasonable that we may ignore the
numerical part which is just a small part under huge
amount of data.

As a result of the above reasons, we propose to
build up a LUT for only integer part of square root
computation instead of designing complex hardware.
As page is limited, detailed LUT construction is not
given here, but can still be abstracted as in Formula 2.

By this method, altogether 128 thresholds are
needed to define integer square roots from 0 to 128. By
hardware optimization, fewer thresholds are needed.

Square Root = ⎩⎪⎨
⎪⎧ 0, x2 + y2 = 0

1, 1 ≤ x2 + y2 ≤ 2⋮
127, 16000 ≤ x2 + y2 ≤ 16256
128, x2 + y2 > 16256

 (2)

2.3. Shifting-Based Orientation Calculation

This part is implemented in BinSelect module.
GO in this process is computed by Formula 3.

GO(x, y) = tan−1 ቂL(x,y+1)−L(x,y−1)
L(x+1,y)−L(x−1,y)ቃ (3)

 where GO(∗) denotes Gradient Orientation; L(∗) denotes pixel
values of Gaussian Images.

Like square root computation, arctan computation is
a hardware-consuming component. Also, division in
Formula 3 is not welcome in hardware design. As a
result, we re-design this part based on multiply
operations.

In respect with that computed GOs are then used to
indicate to which bin a pixel belong, where altogether
36 bins exists, it is reasonable that we don’t compute
the exact values of GOs, but directly computes the
exact bins that pixels belong to.

To define the bin, we may again use the LUT
method. Although there are 36 bins within 360 degrees,
dividing 10 degrees for each, the values of arctan

13351335

function are anti-symmetric, as a result of which we
may only consider values from 0 degree to 90 degrees.
For other values from -180 degrees to 0 degree, and
those from 90 degrees to 180 degrees, we may use
plus/minus information of dx and dy to define.

To decide a pixel is in a certain bin within degrees
from Thd (l) to Thd (u), we may use Formula 4.

tan

Thd (l)
180 πൗ ≤ dy

dx
< tan

Thd (u)
180 πൗ (4)

where both dx and dy are larger than 0; both Thd (l) and Thd (u) are

within 0 to 90 degrees.
By multiplying dx to both sides we get,

dx ∙ tan
Thd (l)
180 πൗ ≤ dy < dx ∙ tan

Thd (u)
180 πൗ (5)

As indicated in Formula 5, we only need to pre-

decide the tangent value of the thresholds and then by
multiplication and comparisons we can know the bin
that a pixel belongs to.

Multiplying tangent values can be substituted by
combinations of shifting different digits of the input dx,
shown in table 1. Multiplying integer parts of Binary
numbers can be implemented by right shifting dx ;
Multiplying numerical parts can be implemented by
left shifting dx. Degree differences are within ∓0.03.

Table 1. Tangent values by binary numbers in ThdCreator

Degree Tangent Binary Tangent Difference
(degree)

10 0.17633 000.00101101 -0.03
20 0.36397 000.01011101 -0.03
30 0.57735 000.10010100 +0.03
40 0.83910 000.11010111 +0.03
50 1.19175 001.00110001 +0.01
60 1.73205 001.10111100 +0.03
70 2.74748 010.10111111 -0.01
80 5.67128 101.10101100 +0.00

Table 2. Bin definition by threshold signals in AngleCmp

a1 a2 a3 a4 a5 a6 a7 a8 Bin Range
0 X X X X X X X 0 0~10
1 0 X X X X X X 1 10~20
1 1 0 X X X X X 2 20~30
1 1 1 0 X X X X 3 30~40
1 1 1 1 0 X X X 4 40~50
1 1 1 1 1 0 X X 5 50~60
1 1 1 1 1 1 0 X 6 60~70
1 1 1 1 1 1 1 0 7 70~80
1 1 1 1 1 1 1 1 8 80~90

Defining threshold signal indicating dy larger than

dx multiplying tangent value of 10 degrees as a1, we
have similarly a2 to a8. By table 2, we may define the
bins.

Combining bin information obtained from table 2,
we may use plus/minus information of dx and dy to
fully define bins from -180 to 180 degrees.

A BinSelect unit in Fig.1 is constructed as in Fig. 3.

Figure 3. Construction of a BinSelect unit

2.4. Dual-Port DDR2 Memory operations

Dual-port DDR2 memory is embedded on Virtex®-
V FPGA board. Two independent ports of 36-bit
read/write width are provided. Read or Write memory
operations can be finished in one clock, and the two
ports can independently be Read or Write. This
provides a variety of memory operations. In one clock,
at the most 72 bits can be loaded or written; or 36-bit
Read can be done in one port, while 36-bit Write done
in the other port. In our implementation, we assign
dual-port DDR2 memory operations as in Table 3.

Table 3. Dual-Port DDR2 Memory Port Assignment

Stage Port A Port B Contents Clocks
Initiation 36-bit

Read
36-bit
Read

4 pixels and
position

1

Loading 36-bit
Read

No use 4 pixels 1

Writing
(worst case)

36-bit
Write

No use Pixel value,
position, and
orientation

1

As a result, to compute gradient magnitude and

orientation for one pixel, it takes altogether 3 clocks.
Worst case is defined when every feature point has 2
major directions.

3. Experimental Results

Hardware Synthesis is done with Xilinx ISE
WebPACK 10.1 with Virtex®-5 FPGA board.
Software Simulation is done with Microsoft® Visual
Studio® 2008 on a PC of Intel® Core™ 2 CPU 6700
@ 2.66GHz 2.67GHz, 2.00GB RAM. Hardware
synthesis detail and comparisons are shown in table 4.
Evaluation Dataset of 50 images are used, including

13361336

static objects, surveillance camera shots, landscapes,
office shots and humans.

From table 4, we may find out that although
hardware cost is a bit increased, the process speed is
greatly improved to 250 fps, giving much space for
system overhead. More hardware consumption is
brought by extra hardware for deciding bins, creating
histogram and max selection.

Accuracy compared with original software
implementation [8] is given in table 5 and Fig. 4.
Averaged accuracy for 50 examined images is 98.9%.

Table 4. Hardware synthesis detail and comparisons. Assuming

averagely every VGA image has 1000 feature points

Item Proposed Convention[3] Convention[7]
Image Size 640x480 320x240 640x480
#FP/Image ~1000 ~150 ~1000
Max Clock
Frequency

130.0 MHz 184 MHz ---

Process Speed 256 fps 30 fps 15 fps
Slice Registers 1220 670 ---
Slice LUTs 2548 1863 ---

Table 5. Accuracy comparisons with original software

implementation. TP denotes correct major orientation detected; FP
denotes false major orientation which does not exist in original

software implementation; FN denotes hardware solution does not
extract a major orientation where there should be one

Image #FP TP FP FN
Builing06 588 576 10 12
Man01 586 580 13 6
Office05 550 542 12 8
Land05 452 445 15 7

4. Conclusion

In this paper, we proposed a real-time hardware
accelerator for Orientation Calculation part in SIFT
algorithm. Altogether 1220 Slice Registers and 2548
Slice LUTs are used, which is under affordable
hardware range of a Virtex®-V FPGA board.

Based on dual-port DDR2 memory embedded with
Virtex®-V FPGA, we propose LUT-Based Square
Root Computation and Shifting-Based Orientation
Calculation. By introducing the two schemes, our
proposed system reaches Max Clock Frequency of
130.0 MHz, with worst-case process speed for up to
256 fps (around 256,000 feature points), which is faster
than real-time. Averaged accuracy for 50 examined
images is 98.9%. Our system proves to be a suitable
architecture for real-time SIFT system.

5. Acknowledgement

This work was supported by fund from MEXT via
Kitakyushu innovative cluster projects and CREST.

Figure 4. Feature points extracted by proposed hardware

implementation. (a) Building06; (b) Man01; (c) Office05; (d)
Land05

6. References
[1] David G. Lowe, "Object recognition from local scale-
invariant features" International Conference on Computer
Vision, Corfu, Greece, pp. 1150-1157, Sep. 1999
[2] David G. Lowe, "Distinctive image features from scale-
invariant keypoints" International Journal of Computer
Vision, 60, 2, pp. 91-110, 2004
[3] Vanderlei Bonato, Eduardo Marques, and George A., "A
Parallel Hardware Architecture for Scale and Rotation
Invariant Feature Detection" IEEE Transaction on Circuits
and Systems for Video Technology, Vol. 18, No. 12, pp.
1703 – 1712, Dec. 2008
[4] Jingbang QIU, Tianci HUANG, Takeshi IKENAGA,
"Hardware Accelerator for Feature Point Detection Part in
SIFT Algorithm & Corresponding Hardware-Friendly
Modification" Workshop on Synthesis And System
Integration of Mixed Information Technologies, Okinawa,
Japan, pp. 213 – 218, Mar. 2009
[5] Jingbang QIU, Tianci HUANG, Yiqing HUANG,
Takeshi IKENAGA, "A Hardware Accelerator with Variable
Pixel Representation & Skip Mode Prediction for Feature
Point Detection Part of SIFT Algorithm" IAPR Conference
on Machine Vision Applications, Tokyo, Japan, May. 2009
[6] Jingbang QIU, Tianci HUANG, Takeshi IKENAGA,
"1D-based 2D Gaussian Convolution Unit Based Hardware
Accelerator for Gaussian & DoG Pyramid Construction in
SIFT" The Institute of Electronics, Information and
Communication Engineers general conference, Matsuyama,
Japan, Mar. 2009
[7] Stephen Se, ho-Kong Ng, Pitor Jasiobedzki, Tai-Jing
Moyung, "VISION BASED MODELING AND
LOCALIZATION FOR PLANETARY EXPLORATION
ROVERS" 55th International Astronautical Congress 2004,
Vancouver, Canada, pp. 11-11 Oct. 2004
[8] Rob Hess – School of EECS @ Oregon State University
http://web.engr.oregonstate.edu/~hess/

(a) (b)

(c) (d)

13371337

