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Abstract 

 
SIFT is regarded as one of the most powerful 

feature point detection algorithms in the world. The 
Orientation Calculation Part, defining major 
orientation of feature points, enables selected image 
features to be invariant to rotation changes. In this 
paper, we propose an FPGA-implementable hardware 
accelerator for this part. By introducing LUT-Based 
Square Root Computation and Shifting-Based 
Orientation Calculation with use of dual-port DDR2 
memory access, we achieve to reach real-time process 
speed, meanwhile keeping high accuracy. By 
experiment, our system proves to reach Max Clock 
Frequency of 130.0 MHz, processing up to around 
256,000 feature points including memory operations. 
Compared with conventional work, hardware cost is 
remained at the same level. Accuracy is kept at 98.9% 
for over 40,000 feature points from 50 images. Our 
proposal is suitable for a real-time SIFT system. 
 
1. Introduction 

Feature Detection has been of great interest in 
computer vision filed in recent years. Good features 
detected from images can be applied onto various 
circumstances. SIFT, abbreviated for Scale Invariant 
Feature Transform, is proposed by David Lowe [1, 2]. 
A significant advantage of SIFT over other algorithms 
is that, feature points detected are invariant to image 
scaling changes and rotation changes, while at the 
same time being robust to changes in illumination, 
addition of noise, cluster scene, occlusion and minor 
changes in viewpoint. 

In cost of achieving its robustness, time 
consumption of SIFT is relatively huge. Hardly any 
real-time system exists (VGA size). GPU-based system 
has been proposed. However, yet accelerated, this 
method majorly depends on the performance of the 
GPU chip and the PC environment, and the results vary 
greatly from computer to computer. Recently, 

researches have been focusing on specified hardware 
accelerators for the SIFT algorithm based on FPGA [3, 
4, 5, 6, 7], introducing some successful SIFT hardware 
design examples. Although these systems are far from 
perfect, the results showed a promising view of 
hardware implementation of SIFT.  

As stated in [4], SIFT can be structurally divided 
into 4 major parts, Gaussian Pyramids & DoG 
Pyramids Construction, Feature Point Detection, 
Orientation Calculation (OC), and Descriptor Creation
(Fig. 1.). 

 
Figure 1. Components of SIFT 

 
In this paper, we focus on hardware implementation 

of OC part.  
 

1.1. Previous Work on OC 
The OC Part is the third part of the SIFT algorithm. 

This part calculates the gradient magnitudes (GMs) and 
gradient orientations (GOs) of the local area of a 
feature point and does histogram to find out the major 
orientation of a feature point. Although this part 
consumes only 10% of the computational complexity, 
it enables the image features extracted to be invariant 
to rotation changes.  

In [3], the author pre-computes gradient magnitudes 
and gradient orientations for all pixels in various scales 
and octaves. The results are then sent to a NIOS II 
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processor for further processing. In another word, 
major orientation is not decided by specified hardware, 
but by an embedded processor. Also, a huge amount of 
memory is needed. Thus it’s not suitable for a low 
power system. 

In [7], a robotic system is implemented with SIFT 
algorithm with Stratix II FPGA board. It is claimed 
that the system could process one VGA image in 60ms. 
However, no structural information and no information 
on SIFT version is given. 

This paper is arranged as follows. Our proposal for 
OC hardware accelerator will be given in SECTION II. 
SECTION III presents in detail experimental 
environment, hardware synthesis, and software 
simulation. SECTION IV briefly concludes our work. 

 
2. Proposed Hardware Architecture 
2.1. Overall System Structure 

Our purpose is to develop a real-time processing 
hardware system with modest hardware cost, keeping 
relatively stable quality and high accuracy. 

Two highlight features of our proposal are 1) LUT-
based Square Root Computation (LUT-SRC), and 2) 
Shifting-based Orientation Calculation (SOC). Input of 
pixels of Gaussian Images is represented by 8 registers. 

Our proposed hardware architecture is decided for 
the VGA image processing, but not confined to VGA 
size. 

As few feature points have more than 2 major 
directions, we assume that every feature point would at 
the most have 2 major directions. 

Overall system structure is shown is Fig. 2. 

 
Figure 2. Overall system structure 

 
2.2. LUT-Based Square Root Computation 

This part is implemented in GraMagComp module. 
GM in this process is computed by Formula 1. 
 

GM(x, y) = [dx2+dy2]1
2ൗ                                (1) 

 
where GM(∗)  denotes Gradient Magnitude; dx  denotes L(x +

1, y) − L(x − 1, y) ; dy  denotes L(x, y + 1) − L(x, y − 1) ; L(∗) 
denotes pixel values of Gaussian Images. 

Although square is easy to compute, square root 
computation is generally regarded as the hardware-
consuming part. That’s because, to generate the square 
root of a value, one needs to consider not only the 
integer part but also the numerical part, which concerns 
complex floating point calculations. 

However, in this work, we use pixel input of 8 
registers, which represent integers ranging from -127 
to 128. Thus, square roots computed would be within 
the range from 0 to 128. Furthermore, as the results 
after square root computations are used for creating 
histograms, it is reasonable that we may ignore the 
numerical part which is just a small part under huge 
amount of data. 

As a result of the above reasons, we propose to 
build up a LUT for only integer part of square root 
computation instead of designing complex hardware. 
As page is limited, detailed LUT construction is not 
given here, but can still be abstracted as in Formula 2. 

By this method, altogether 128 thresholds are 
needed to define integer square roots from 0 to 128. By 
hardware optimization, fewer thresholds are needed. 

 

Square Root = ⎩⎪⎨
⎪⎧ 0,                                 x2 + y2 = 0  

1,                           1 ≤ x2 + y2 ≤ 2⋮
127,            16000 ≤ x2 + y2 ≤ 16256
128,                               x2 + y2 > 16256

         (2) 

 
2.3. Shifting-Based Orientation Calculation 

This part is implemented in BinSelect module.  
GO in this process is computed by Formula 3. 
 

GO(x, y) = tan−1 ቂL(x,y+1)−L(x,y−1)
L(x+1,y)−L(x−1,y)ቃ                   (3) 

 where GO(∗)  denotes Gradient Orientation; L(∗)  denotes pixel 
values of Gaussian Images. 

Like square root computation, arctan computation is 
a hardware-consuming component. Also, division in 
Formula 3 is not welcome in hardware design. As a 
result, we re-design this part based on multiply 
operations. 

In respect with that computed GOs are then used to 
indicate to which bin a pixel belong, where altogether 
36 bins exists, it is reasonable that we don’t compute 
the exact values of GOs, but directly computes the 
exact bins that pixels belong to. 

To define the bin, we may again use the LUT 
method. Although there are 36 bins within 360 degrees, 
dividing 10 degrees for each, the values of arctan 
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function are anti-symmetric, as a result of which we 
may only consider values from 0 degree to 90 degrees. 
For other values from -180 degrees to 0 degree, and 
those from 90 degrees to 180 degrees, we may use 
plus/minus information of dx and dy to define. 

To decide a pixel is in a certain bin within degrees 
from Thd (l) to Thd (u), we may use Formula 4. 

 
tan

Thd (l)
180 πൗ ≤ dy

dx
< tan

Thd (u )
180 πൗ                              (4) 

 
where both dx and dy are larger than 0; both Thd (l) and Thd (u) are 

within 0 to 90 degrees. 
By multiplying dx to both sides we get, 
 

dx ∙ tan
Thd (l)
180 πൗ ≤ dy < dx ∙ tan

Thd (u)
180 πൗ                          (5) 

 
As indicated in Formula 5, we only need to pre-

decide the tangent value of the thresholds and then by 
multiplication and comparisons we can know the bin 
that a pixel belongs to. 

Multiplying tangent values can be substituted by 
combinations of shifting different digits of the input dx, 
shown in table 1. Multiplying integer parts of Binary 
numbers can be implemented by right shifting dx ; 
Multiplying numerical parts can be implemented by 
left shifting dx. Degree differences are within ∓0.03. 

 
Table 1. Tangent values by binary numbers in ThdCreator 

Degree Tangent Binary Tangent Difference 
(degree) 

10 0.17633 000.00101101 -0.03 
20 0.36397 000.01011101 -0.03 
30 0.57735 000.10010100 +0.03 
40 0.83910 000.11010111 +0.03 
50 1.19175 001.00110001 +0.01 
60 1.73205 001.10111100 +0.03 
70 2.74748 010.10111111 -0.01 
80 5.67128 101.10101100 +0.00 

 
Table 2. Bin definition by threshold signals in AngleCmp 

a1 a2 a3 a4 a5 a6 a7 a8 Bin Range 
0 X X X X X X X 0 0~10 
1 0 X X X X X X 1 10~20 
1 1 0 X X X X X 2 20~30 
1 1 1 0 X X X X 3 30~40 
1 1 1 1 0 X X X 4 40~50 
1 1 1 1 1 0 X X 5 50~60 
1 1 1 1 1 1 0 X 6 60~70 
1 1 1 1 1 1 1 0 7 70~80 
1 1 1 1 1 1 1 1 8 80~90 
 
Defining threshold signal indicating dy larger than 

dx multiplying tangent value of 10 degrees as a1, we 
have similarly a2 to a8. By table 2, we may define the 
bins. 

Combining bin information obtained from table 2, 
we may use plus/minus information of dx and dy to 
fully define bins from -180 to 180 degrees. 

A BinSelect unit in Fig.1 is constructed as in Fig. 3. 
 

 
Figure 3. Construction of a BinSelect unit 

 
2.4. Dual-Port DDR2 Memory operations 

Dual-port DDR2 memory is embedded on Virtex®-
V FPGA board. Two independent ports of 36-bit 
read/write width are provided. Read or Write memory 
operations can be finished in one clock, and the two 
ports can independently be Read or Write. This 
provides a variety of memory operations. In one clock, 
at the most 72 bits can be loaded or written; or 36-bit 
Read can be done in one port, while 36-bit Write done 
in the other port. In our implementation, we assign 
dual-port DDR2 memory operations as in Table 3. 

 
Table 3. Dual-Port DDR2 Memory Port Assignment 

Stage Port A Port B Contents Clocks 
Initiation 36-bit 

Read 
36-bit 
Read 

4 pixels and 
position 

1 

Loading 36-bit 
Read 

No use 4 pixels 1 

Writing 
(worst case) 

36-bit 
Write 

No use Pixel value, 
position, and 
orientation 

1 

 
As a result, to compute gradient magnitude and 

orientation for one pixel, it takes altogether 3 clocks. 
Worst case is defined when every feature point has 2 
major directions.  

 
3. Experimental Results 

Hardware Synthesis is done with Xilinx ISE 
WebPACK 10.1 with Virtex®-5 FPGA board. 
Software Simulation is done with Microsoft® Visual 
Studio® 2008 on a PC of Intel® Core™ 2 CPU 6700 
@ 2.66GHz 2.67GHz, 2.00GB RAM. Hardware 
synthesis detail and comparisons are shown in table 4. 
Evaluation Dataset of 50 images are used, including 
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static objects, surveillance camera shots, landscapes, 
office shots and humans.  

From table 4, we may find out that although 
hardware cost is a bit increased, the process speed is 
greatly improved to 250 fps, giving much space for 
system overhead. More hardware consumption is 
brought by extra hardware for deciding bins, creating 
histogram and max selection.  

Accuracy compared with original software 
implementation [8] is given in table 5 and Fig. 4. 
Averaged accuracy for 50 examined images is 98.9%. 

 
Table 4. Hardware synthesis detail and comparisons. Assuming 

averagely every VGA image has 1000 feature points 

Item Proposed Convention[3] Convention[7] 
Image Size 640x480 320x240 640x480 
#FP/Image ~1000 ~150 ~1000 
Max Clock  
Frequency 

130.0 MHz 184 MHz --- 

Process Speed 256 fps 30 fps 15 fps 
Slice Registers 1220 670 --- 
Slice LUTs 2548 1863 --- 

 
Table 5. Accuracy comparisons with original software 

implementation. TP denotes correct major orientation detected; FP 
denotes false major orientation which does not exist in original 

software implementation; FN denotes hardware solution does not 
extract a major orientation where there should be one 

Image #FP TP FP FN 
Builing06 588 576 10 12 
Man01 586 580 13 6 
Office05 550 542 12 8 
Land05 452 445 15 7 

 
4. Conclusion 

In this paper, we proposed a real-time hardware 
accelerator for Orientation Calculation part in SIFT 
algorithm. Altogether 1220 Slice Registers and 2548 
Slice LUTs are used, which is under affordable 
hardware range of a Virtex®-V FPGA board. 

Based on dual-port DDR2 memory embedded with 
Virtex®-V FPGA, we propose LUT-Based Square 
Root Computation and Shifting-Based Orientation 
Calculation. By introducing the two schemes, our 
proposed system reaches Max Clock Frequency of 
130.0 MHz, with worst-case process speed for up to 
256 fps (around 256,000 feature points), which is faster 
than real-time. Averaged accuracy for 50 examined 
images is 98.9%. Our system proves to be a suitable 
architecture for real-time SIFT system.  

 
5. Acknowledgement 

This work was supported by fund from MEXT via 
Kitakyushu innovative cluster projects and CREST. 

 
Figure 4. Feature points extracted by proposed hardware 

implementation. (a) Building06; (b) Man01; (c) Office05; (d) 
Land05 
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