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RASIM: A Novel Rotation and Scale Invariant
Matching of Local Image Interest Points

Mahdi Amiri and Hamid R. Rabiee, Senior Member, IEEE

Abstract—This paper presents a novel algorithm for matching
image interest points. Potential interest points are identified by
searching for local peaks in Difference-of-Gaussian (DoG) images.
We refine and assign rotation, scale and location for each keypoint
by using the SIFT algorithm [1]. Pseudo log-polar sampling grid
is then applied to properly scaled image patches around each key-
point, and aweighted adaptive lifting scheme transform is designed
for each ring of the log-polar grid. The designed adaptive trans-
form for a ring in the reference keypoint and the general non-adap-
tive transform are applied to the corresponding ring in a test key-
point. Similarity measure is calculated by comparing the corre-
sponding transform domain coefficients of the adaptive and non-
adaptive transforms. We refer to the proposed versatile system
of Rotation And Scale Invariant Matching as RASIM. Our experi-
ments show that the accuracy of RASIM is more than SIFT, which
is the most widely used interest point matching algorithm in the lit-
erature. RASIM is also more robust to image deformations while
its computation time is comparable to SIFT.

Index Terms—Adaptive lifting scheme, object detection, rota-
tion/scale invariant template matching.

I. INTRODUCTION

T EMPLATE matching is extensively used in applications
such as video surveillance [2], autonomous navigation

[3], object-based coding [4], visual control [5], image registra-
tion [6], [7], image recognition [8], object detection [9], stereo
matching [10], and image retrieval systems [11], [12].
Invariance to scale and rotation and ability to handle partial

occlusion are among the most desired robustness properties in
the field of template matching. We have provided a brief survey
of the recent rotation/scale invariant template matching algo-
rithms in [13]. In the same reference, we introduced a novel ro-
tation and scale invariant template matching algorithm based on
adaptive lifting scheme that used a combination of small number
of template views, called vertex templates; however, it was not
able to handle partial occlusion.
More recently, interest point based algorithms for template

matching applications have received considerable attention
within the image understanding community. In particular, they
are resistant to partial occlusion, are relatively insensitive to
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changes in viewpoint and can be computed efficiently [14]. It
has been shown that the accuracy ranking of different algo-
rithms is relatively insensitive to the method employed to find
interest points in the image but it is dependent on the represen-
tation used to model the image patch around the interest points
[14], [15].
In this paper, we find the interest points by using the SIFT al-

gorithm [1], but to model the image patch around the interest
points, we will use a pseudo log-polar sampling grid on the
properly scaled image patches around each keypoint, instead of
the commonly used Cartesian grid. The contents of each ring in
the log-polar grid will be used to create a data vector for each
ring. For any given reference data vector, we employ a novel
algorithm to design an adaptive lifted wavelet transform. At the
matching stage, both of the designed adaptive lifted wavelet
transform and the general non-adaptive wavelet transform are
applied to any given test data vector. Similarity measure be-
tween the reference data vector and the test data vector is cal-
culated by comparing the corresponding transform domain co-
efficients of adaptive and non-adaptive transforms.
The rest of this paper is organized as follows. Section II will

provide a survey of the recent rotation/scale invariant template
matching algorithms and adaptive wavelet transforms. The pro-
posed detection algorithm is described in Section III and the ex-
perimental results are presented in Section IV. Finally, the future
work to further improve the performance of the proposed algo-
rithm and the concluding remarks are presented in Section V.

II. RELATED WORKS

In 1999, David Lowe published a paper describing a novel
method called SIFT, for extracting distinctive invariant features
from images that can be used to perform reliable matching be-
tween different views of an object or scene [16]. Soon after, the
idea of representing local image features by histograms of gra-
dient locations and orientations became a widely accepted ap-
proach for image matching algorithms.
Many attempts to improve the SIFT have been presented

during the past decade. Bay et al. proposed SURF [17] as an
efficient implementation of SIFT by relying on integral images
to compute image convolutions and using a small number
of histogram bins for quantizing the gradient orientations.
Agrawal et al. proposed CenSurE [18] in which features are
computed at the extrema of the center-surround filters over
multiple scales. Center surround extremas can be computed in
real time using integral images. These were just two prominent
examples of many other modified versions of SIFT, which
have been reported in the literature [19]. Most of the modified
versions try to achieve better computational characteristics.
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Fig. 1. Block diagram of RASIM, Offline step. (a) Finding keypoints of the reference template, (b) Preparing data vectors of reference image patch around each
keypoint, (c) Designing the adaptive wavelet transform for each data vector.

Although they are more efficient than the original SIFT for
some test images with specific degradations, but in general they
perform worse than SIFT in terms of quality of matching. So
far, no interest point method have been capable to outperform
SIFT in a wide range of applications.
We have already developed object detection algorithms based

on the adaptive lifting scheme to provide different robustness
properties [13], [20]. The basic detection algorithm along with
the ability to adapt to uncertainty about object properties, ability
to adapt to the changing local image statistics, ability to adapt
to high background noise and slight deformations in the object
of interest are presented in [20], and the rotation/scale invari-
ance properties were included in the detection algorithm of [13].
While the algorithm in [13] had acceptable results for the slight
deformations in the object of interest, but it was not resistant to
partial occlusion.
In this paper, we introduce a new adaptive lifting scheme

based detection algorithm that can be applied to the image
patches around specific interest points. We refer to the pro-
posed algorithm as RASIM which stands for “Rotation And
Scale Invariant Matching”. The proposed algorithm has a com-
pletely different approach for object detection compared to our
previous work in [13], here we use interest points, while in [13]
we were using the combination of a small number of template
views, called vertex templates. By using interest points, we
may also achieve resistance to partial occlusion and relative
insensitivity to changes in the viewpoint, besides preserving
robustness properties of our previous works.

III. THE PROPOSED DETECTION ALGORITHM

The block diagram of RASIM is shown in Fig. 1 (offline step)
and Fig. 2 (online step). In this section, we first describe the
main building blocks of each diagram, individually. Then the

role of each building block in the whole detection system will
be discussed.

A. Problem Definition

Consider a reference template and an input
test image . The problem of template matching can be stated as
follows: To find the rotation angle , the scale factor and loca-
tion in the image that minimizes the objective function

(1)

where denotes the rotation operator and denotes the scale
operator. The function is a measure of similarity between the
rotated and scaled template and the image
patch from image centered at . Different matching
methods take different forms of function . As a classic ex-
ample, may represent the normalized cross correlation.

B. Keypoint Selection

The standard SIFT keypoint selection process as described in
[16] already poses an efficient and carefully designed refining
method. On the other hand, it has been shown that between “in-
terest point selection method” and “the representation method
used to model the image patch around the interest point”, the
latter one has much more effect in the ranking of accuracy for
different algorithms [14]. Therefore, in this paper we select the
keypoints similar to the SIFT algorithm, but later will use a new
model for the image patch around the interest points based on
the pseudo log-polar sampling grid.
The potential interest points are identified by searching for

maxima and minima in the scale-space representation of an
image. This scale-space representation is produced by the
Difference-of-Gaussian (DoG) images. A few other refining
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Fig. 2. Block diagram of RASIM, Online step. (a) Finding keypoints of the test image, (b) Preparing data vectors of test image patch around each keypoint, (c)
Computing similarity between reference template and test image data vectors using the designed adaptive wavelet, (d) Computing similarity between keypoint
pairs as weighted sum of similarity between their data vectors.

and eliminating stages are applied in the SIFT algorithm to
assign proper orientation, scale and location for each keypoint.
In RASIM, we employ this keypoint selection process in the
offline step for finding the reference object template keypoints
(OKPs) as illustrated in Fig. 1(a), and in the online step for
finding the test image keypoints (TKPs) as shown in Fig. 2(a).

C. Preparing Data Vectors

Before going through the core of matching algorithm based
on the adaptive wavelet transform, we convert the image patches
around each keypoint to a set of data vectors. First we employ
the gradient magnitude and gradient orientation of the subimage
around each keypoint as two different input data types. The
structure of RASIM could simply incorporate more than two
different input data types, when more robustness is required and
we have enough free processing time.
Then, we apply a pseudo log-polar mapping on each

subimage, instead of passing the common Cartesian image
pixel values to the next step. The log-polar mapping inherently
includes both ring and radial projections. This property will
mostly enhance the results of the matching algorithm when
the assigned rotation and scale for the keypoints are slightly
degraded. This is because we chose the log-polar pixels of

each ring as a separate input data vector (DV) for the matching
algorithm.
There is a vast amount of literature related to the fields of tem-

plate matching, image registration and motion estimation that
make use of log-polar mapping based methods. The motivations
in this regard stem from its scale and rotation invariance prop-
erties and the existence of a biological foundation. The pseudo
log-polar sampling grid with different number of rings, and
number of receptive fields (circles) in each ring, is illustrated
in Fig. 3.
The main geometric properties and a well-accepted mathe-

matical definition for the projection of the retina onto the human
visual cortex are presented by Schwartz [21]. His model has
only theoretical significance and due to singularity of the loga-
rithmic function in the origin (fovea), it cannot directly be used
for a computer implementation. To avoid the problem of having
infinite mapping in the fovea, different solutions have been pro-
posed. A good study of the existing log-polar mapping models
and their properties may be found in [22].
We have chosen the model of Tistarelli-Sandini [23] for the

log-polar mapping as it presents both rotation and scale invari-
ance properties [13]. Although this model will include blind-
ness in fovea, but the blind area is not extended more than a few
pixels and could be ignored.
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Fig. 3. Pseudo log-polar sampling grid with different number of rings, and number of receptive fields (circles) in each ring, .

We perform log-polar mapping in software by the lookup
table (LUT) method. Every log-polar pixel will be cal-
culated by the normalized weighted sum of a list of Cartesian
pixels . A fast algorithm for generating this LUT is pre-
sented in [22]. At the offline step we initialize such a list for
each log-polar pixel in the LUT. Therefore, it will be used wher-
ever in the object detection system that the log-polar mapping
is required.

D. Designing the Adaptive Wavelet Transform

Designing an adaptive wavelet transform for a given data
vector based on the lifting scheme structure is the main building
block of RASIM. First the classical wavelet transform is ap-
plied to the given data vector and large values in the high-pass
component of this non-adaptive wavelet transform are consid-
ered to be the data features. The main idea of the proposed de-
tection algorithm is the design of an adaptive transform based
on these features. Therefore, our new adaptive wavelet trans-
form is designed such that the desired large coefficients in the
high-pass component of the non-adaptive transform vanish in
the high-pass component of the adaptive transform.
The process of vanishing data features in the transform do-

main will help us in two ways. First, it will assist us to construct
a system of linear equations for designing the desired adaptive
wavelet transform as described in Section III.D.2. Second, it
will provide a basis for comparing the outcome of the adap-
tive and non-adaptive filters which is the essence of similarity
measurement in our matching system. In the online step, we
apply both non-adaptive and adaptive transforms to a given test
data vector. Then, the high-pass component coefficients of the
non-adaptive and the adaptive wavelet transforms are compared
for calculating the similarity value.
In the following subsections, we first introduce the concept of

dual lifting step in the lifting scheme. Then, it will be shown that
how we could design the desired adaptive wavelet transform for
a reference object data vector (ODV) using the lifting scheme
structure. Although the design of adaptive wavelet transform
for 1-D signals have already been presented in [13]; for the pro-
posed algorithm the 1-D input signal is replaced with reference

Fig. 4. Fast lifted wavelet transform using dual lifting step.

object data vector (ODV) and the 1-D test signal is replaced with
test data vector (TDV). Therefore, we have repeated the deriva-
tion steps in the following subsections to keep this paper as
self contained. This is followed by introduction of the algorithm
for finding the similarity measurement between a reference data
vector and a test data vector (TDV). Finally, we provide a dis-
cussion on selection of the required parameters of this algorithm
and its efficiency. Moreover, a weighted adaptive version of the
proposed similarity measurement method will be presented that
enhances the detection power of our algorithm [24].
1) The Dual Lifting Step: The fast lifted wavelet transform

block diagram using a dual lifting step [25] is shown in Fig. 4.
Here, and are the low-pass and high-pass analysis fil-
ters of the non-adaptive wavelet transform that are applied to the
input signal , respectively. The prediction filter is applied to
the low-pass component and the output is subtracted from
the old high-pass component, , in order to produce the new
high-pass component as follows:

(2)

(3)

(4)

where denotes the convolution operator.
2) The Prediction Filter: In this subsection, we show how to

find the coefficients of the prediction filter , such that the coef-
ficients of the non-adaptive wavelet transform’s high-pass com-
ponent, vanish in the high-pass component of the adaptive lifted
wavelet transform. Let be the signal of interest (a reference
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object data vector, ODV, in RASIM). Applying the non-adap-
tive wavelet transform to this signal will produce the following
low-pass and high-pass components

(5)

(6)

where is the index of elements belonging to low-pass and
high-pass components and is the index of elements belonging
to the source signal .
Given the prediction filter , the high pass component of the

adaptive lifted wavelet transform is obtained as follows:

(7)

(8)

If we consider a coefficient in the old high-pass component
, with index , which has a relatively large magnitude and

try to vanish its corresponding coefficient in the high-pass com-
ponent , based on (8), we would have

(9)

and by substituting from (7), we obtain

(10)

On the other hand, it is known that, the high-pass analysis filter
for the adaptive lifted wavelet transform is given by the fol-
lowing equation [25]

(11)

Clearly, the summation of the filter coefficients is equal to zero

(12)

which is equivalent to:

(13)

Let be the length of the prediction filter . Now if we let
be the number of selected large coefficients of the old high-pass
component with indices , we would have

(14)

and then we try to vanish their corresponding coefficients in the
new high-pass component. Considering (10) and (13), a linear
system of equations could be formed as (15)

...
...

. . . ...
...

(15)

In general, is greater than , and (15) is an over-deter-
mined linear system of equations (OLSE). When ,
(15) could be solved by the Gaussian elimination algorithm.
When , Gauss-Newton method may be used to solve
(15) in order to obtain the coefficients of the prediction filter .
3) The Similarity Measurement: After finding the coef-

ficients of the desired prediction filter, the dual lifting step
structure of Fig. 4 will form our adaptive wavelet transform.
This new transform could be used in the following algorithm
for finding the similarity between a reference object data vector
and a test image data vector. The signal of interest (ODV in
RASIM) and the test signal (TDV in RASIM) are assumed
to be the input arguments.
A. Offline Steps:
1) Select a non-adaptive wavelet transform, and values of the
parameters and .

2) Find the desired prediction filter , as described in
Section III.D.2 for .

B. Online Steps:
1) Apply the non-adaptive and the adaptive lifted wavelet
transforms to the test signal and find the high-pass com-
ponents and .

2) Construct an empty vector with the same length as
and .

3) Compare each coefficient of with the corresponding
coefficient in and if it is decreased, find the vanishing
percentage (VP), and save it in vector

(16)

4) Sweep vector with a window of the same length as signal
, and find sum of the VPs for each windowed location,

(17)

where is half of total support width of reference signal
and is the index of elements belonging to the high-pass
component. The maximum value for this sum, could be
considered as the similarity between reference signal and
test signal .

4) The Weighted Adaptation in Basic Form: Our experi-
mental results have shown that the above similarity measure-
ment method result in an effective detection algorithm [20].
However, in presence of noise, when the image quality is low
(i.e., low signal to noise ratio), the performance of the algorithm
would deteriorate. Therefore, a modified version of the predic-
tion filter could help us to boost the detection power in presence
of noise by introducing a new weighting parameter in the adap-
tation process.
If we represent eachmatrix in (15) by a single letter, we obtain

(18)

where is an -by- matrix, is a column vector with
entries and is a column vector with entries.
We desire the vanishing percentage of each coefficient to be

proportional to its value, in a way that the larger coefficients
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vanish more than the smaller ones. Therefore, a weight vector,
, is added to both sides of (18), resulting in the following

weighted OLSE

(19)

in which

(20)

where denotes element-by-element product and

(21)

where and are the largest and the smallest among the
selected coefficients, respectively. Therefore, according to (21),
weight values will be between one and . Parameter
is a constant vanishing booster coefficient and its value may
vary from one to infinity. The significance of the parameter
is explained in the following section. It is important to note that
the Gauss-Newton method may be used to solve (19) in order to
obtain the coefficients of the prediction filter .
5) Prediction Filter Design Discussion: Finding the predic-

tion filter for each data vector of the reference template could
be a time consuming task. But in many applications, like image
retrieval, we only need to compute the prediction filters once,
and use the same filters for detecting object of interest in any
chosen test image from the database.
Moreover, due to the following reasons, noise or slight defor-

mations in the object of interest, would not have considerable
impact on the resulted VPs.
• Most of the large values in the high-pass component re-
main among large values in the noisy signals as well.

• Both the non-adaptive and the adaptive transforms are ap-
plied to the same noisy signal and the vanishing percentage
is proportional with the ratio of to ; therefore the VP
values will not experience a considerable change.

There is a trade-off in choosing a value for the parameter .
Greater values for will result in greater vanishing percentage
for larger old high-pass component coefficients, and as a re-
sult, the detection algorithm will be less sensitive to the noise,
because the large high-pass component coefficients represent
edges where the noise has less impact on their values. On the
other hand, greater values for will make it difficult to detect
objects that have a large number of small edges.
We conclude that in the noisy images, one may choose larger

values for the parameter to achieve better detection results.
Moreover, when a blurred version of the object is expected in
the test image, one may choose smaller values for the parameter
. Albeit, even when parameter is one, the weight vector will

keep the vanishing percentage of each coefficient proportional
to its value, leading to better detection results in the weighted
form of our algorithm.

E. The Whole Matching System

We are using adaptive lifting scheme transform
(Section III.D) on the corresponding data vectors from refer-
ence template and the test image as the core of our detection

algorithm to construct a rotation and scale invariant object
detection system. Pseudo log-polar sampling grid, as described
in Section III.C, is applied to the properly scaled image patches
around each keypoint for acquiring the data vectors. A detailed
step-by-step description of RASIM is presented in this section.
1) RASIM, Offline Step: The main building blocks of the

offline step are depicted in Fig. 1.
1) The standard SIFT keypoint selection process as described
in [16] is applied for finding the reference object template
keypoints (OKPs) and assigning proper orientation, scale
and location for each keypoint.We call the number of these
keypoints, (Section III.B, Fig. 1(a)).

2) Considering the assigned location, orientation and scale,
the image patch around each OKP is taken and the gra-
dient magnitude and the gradient orientation images are
computed for them. The pseudo log-polar sampling is ap-
plied to the gradient subimages. The set of log-polar pixels
which belong to the same ring is taken as a separate ref-
erence object data vector(ODV). Therefore, for each of

OKPs, we will acquire ODVs from gradient mag-
nitude subimage and ODVs from gradient orientation
subimage. The length of each data vector will be equal
to the number of log-polar pixels in angular direction,
(Section III.C, Fig. 1(b)).

3) The adaptive wavelet transform is designed for each
of ODVs, as described in Section III.D
(Fig. 1(c)). The length of lifting step filter and the
number of large values in the high-pass component are
two main fixed parameters in this step. The prediction fil-
ters, , for and
are saved to be used for the matching process in the online
step.

2) RASIM, Online Step: The main building blocks of the
online step are depicted in Fig. 2. The process which is shown in
this figure, shows how we find the similarity between any pair
of keypoints from the reference template and the test image.
1) The standard SIFT keypoint selection process is applied
for finding the test image keypoints (TKPs) and assigning
proper orientation, scale and location for each keypoint.
We call the number of these keypoints, (Section III.B,
Fig. 2(a)).

2) Considering the assigned location, orientation and scale,
the image patch around each TKP is taken and the gra-
dient magnitude and the gradient orientation images are
computed for them. The pseudo log-polar sampling is
applied to the gradient subimages. The set of log-polar
pixels which belong to the same ring is taken as a separate
test image data vector (TDV). Therefore, for each of
TKPs, we will acquire TDVs from gradient magni-
tude subimage and TDVs from gradient orientation
subimage. The length of each data vector will be equal
to the number of log-polar pixels in angular direction,
(Section III.C, Fig. 2(b)).

3) The core detection algorithm will be used to find the simi-
larity between and . is the data
vector of th test image keypoint at ring . is
the data vector of th reference object keypoint at ring .
The adaptive transform will be constructed using the pre-
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diction filter , which we have saved for in
the offline step. Both of the non-adaptive wavelet trans-
form and the designed adaptive transform are applied to

and wavelet domain coefficients are compared
as described in Section III.D to find the similarity value

. This step will be repeated for
, and .

4) Similarity between keypoint pairs will be equal to the
Gaussian weighted sum of similarity between their data
vectors. We use (22) to find similarity between th refer-
ence object keypoint, and th test image keypoint,

(22)

where

(23)

Operation “ ” stands for modulus after division. The
best candidate match for each OKP in the database of test
image keypoints is the one which will result in the max-
imum similarity value.

Similar to the SIFT keypoint matching, we discard a match for
an OKP by comparing the similarity value of the best match to
that of the second-best match.We reject all matches in which the
distance to “best” over distance to “second best” ratio is greater
than 0.8. This measure performs well because correct matches
need to have the maximum similarity value significantly larger
than the best incorrect match to achieve reliable matching [1].
The reference object detection proceeds by a Hough transform
to identify clusters that agree on a single object pose and per-
forming verification through least-squares solution for consis-
tent pose parameters.

IV. IMPLEMENTATION NOTES AND EXPERIMENTAL RESULTS

A. Discussion and Implementation Notes

The first advantage of using each ring in the pseudo log-polar
sampling grid as input data vectors is because the wrong rotation
assignment to a keypoint will only result in a circular shift in the
data vector. On the other hand both the adaptive and non-adap-
tive wavelet transforms are translation invariant. This will help
to reduce the effect of wrong rotation assignment to a keypoint,
in degrading the similarity value.
Another advantage of log-polar mapping for interest point

matching comes from its space variant sampling property. It
provides means to have high resolution in the areas of interest
and also to control the number of information bearing pixels
(length of each data vector). The number of data vectors is con-
trolled by the number of rings and the number of samples in
each data vector is controlled by the number of receptive fields
in angular direction . The sampling resolution of log-polar
mapping is higher around fovea and decreases exponentially as
it gets further from that, so the area near to center point (key-
point location) automatically becomes more important than the
surrounding areas which are more likely to be the background
of the target image.

TABLE I
TYPICAL SETTINGS USED FOR PRESENTING THE AVERAGE COMPUTATIONAL

TIME

Most of the time consuming tasks in RASIM can be done
in the offline step. The LUT initialization for log-polar map-
ping and designing lifting step filter for adaptive wavelet trans-
form are required to be done only once for the given reference
template in the offline step. Computational time for MATLAB
implementation of RASIM on the Pentium 2.8 GHz personal
computer is approximately 4 milliseconds, for finding similarity
value of a pair of keypoints. This time includes preparing of
OKP and TKP data vectors, designing adaptive transform for
OKP data vectors, applying non-adaptive and adaptive trans-
form to TKP data vectors and comparing wavelet domain co-
efficients. This is calculated based on the average runtime of
our experiments for the typical settings presented in Table I. A
processing time comparison of SIFT, Speeded-Up Robust Fea-
tures (SURF) [17] and RASIM is also presented at the end of
Section IV.B.
The most time consuming task at the online step is log-polar

mapping. Our experiments show that in average nearly 80%
of the total online execution time is occupied by LUT based
log-polar mapping. It is due to the software implementation of
log-polar mapping in our experiments. The runtime of the ob-
ject detection system can considerably be improved using the
hardware implementation for the log-polar mapping. Albeit the
true log-polar sensors have already been built [26], [27].
The best choices for the value of parameters and can be

determined experimentally by studying different range of values
under various realistic simulations. Our experiments show that
the correct detection percentage of RASIM provides the most
reliable results in data vectors when the value of pa-
rameter is between 12 and 21 and the value of parameter
is between 20 and 32. Within these range of values the correct
detection percentage did not show considerable increase or de-
crease. Therefore, we have selected the typical values of 16 and
24 for the parameters and , respectively.

B. Keypoint Matching Evaluation

Due to page limit, we have excluded the experimental results
of the core detection algorithm (Section III.D) on data vectors.
Sample experimental results of the core detection algorithm on
1D signals may be found in our previously published papers [20]
and [24].
The performance of keypoint descriptor matching is evalu-

ated by descriptor repeatability measurement as it is used in the
widely accepted framework of [28]. Based on this framework,
the repeatability scores for each keypoint descriptor are evalu-
ated on the boat and graffiti sequences of Fig. 5 which are avail-
able from [29].
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Fig. 5. Keypoint matching evaluation test images. (a) boat sequence which includes scale changed and rotated images, (b) graffiti sequence which includes
viewpoint changed images.

Fig. 6. Descriptor repeatability of SIFT, SURF and RASIM between first image and other five images of test sequences. (a) boat sequence (rotation and zoom),
(b) graffiti sequence (viewpoint).

The descriptor repeatability measurement of two images
I1 and I2 is computed as the ratio between the number of
point-to-point correspondences that can be established for
detected points by the keypoint matching algorithm and the
mean number of keypoints detected in two images [30]

(24)

where denotes the number of corresponding couples,
and are the number of detected keypoints in and ,

respectively. Two points correspond if the error in relative lo-
cation does not exceed 1.5 pixel in the coarse resolution image
and the ratio of detected scales for these points does not differ
from the real scale ratio by more than 20%.
The boat sequence is challenging because of large changes in

rotation and zoom. Fig. 6(a) shows the descriptor repeatability
of SIFT, SURF and RASIM between first image and other five
images in this sequence. The results show that, when the scale
change and rotation angle gets larger, RASIM performs better
than SIFT and SURF.
The graffiti sequence is to evaluate stability of these methods

when we have affine transformations. Being robust to viewpoint
changes is important in panorama stitching. Descriptor repeata-
bility diagrams of the same three methods for this sequence are
shown in Fig. 6(b). RASIM and SIFT have almost equal repeata-
bility score when the viewpoint change is small, but for the large
viewpoint changes, RASIM performs slightly better than SIFT.
SURF finds the least matched keypoints and doesn’t work well
when we have large rotation or large viewpoint change.

TABLE II
PROCESSING TIME COMPARISON OF SIFT, SURF, AND RASIM (MATLAB
IMPLEMENTATIONS). EACH LINE SHOWS THE AVERAGE PROCESSING TIME OF

MATCHING TWO IMAGES IN THE GIVEN TEST SEQUENCE

There was other data sets from [29] which were including
image sequences with illumination changes and blurred images.
Our experiments show that for those sequences RASIM and
SIFT had similar descriptor repeatability scores and are not il-
lustrated in this paper.
The processing time of SIFT, SURF and RASIM are evalu-

ated for the boat and graffiti datasets. This evaluation is mainly
influenced by the input parameters of the three algorithms.
We have chosen the parameters of SIFT and SURF algorithms
according to the original papers [1], [17]. The typical settings
presented in Table I were used as the input parameters of
RASIM. This time includes the whole process of detecting
keypoints, calculating descriptors and matching the keypoints
in the MATLAB implementation of these algorithms. First
image of each sequence is matched with other five images of
the test sequence to calculate the average processing time of
matching two images. The results are presented in Table II
which shows that SURF is much faster than SIFT and RASIM.
Although RASIM is slightly slower than SIFT, but is superior
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Fig. 7. RASIM evaluation example, (a) Reference template, (b) Sample test image configuration, (c) Three different background images (Texture1, Marble, and
Trees), (d) 30 different test images after adding backgrounds and toy letter “O”.

Fig. 8. Correct detection percentage evaluation results. Each point is the correct detection percentage obtained by different tests for a fixed rotation
angle from to and scaling factor from 0.5 to 1.5, (a) RASIM, (b) SIFT.

in terms of keypoint matching quality. As we have mentioned
earlier, the runtime of RASIM can considerably be improved
using the hardware implementation for the log-polar mapping.

C. Image Matching Evaluation

We have conducted a comprehensive set of experiments to
obtain a detailed evaluation for the results of RASIM. We have
created a large number of test images with different configu-
ration of the toy letters. For evaluation, we select a toy letter
as the reference template and create 30 different test images
as follows. For example, the toy letter “O” which is shown in
Fig. 7(a), is selected as the reference template. We select 10
different test images similar to the one presented in Fig. 7(b).
Each test image includes different configuration of the toy let-
ters. A sample test image is created by placing rotated and scaled
form of the reference template instead of the empty black box in
Fig. 7(b) and adding one of the three different background im-
ages (Texture1, Marble, Trees) shown in Fig. 7(c). The resulting
test images are illustrated in Fig. 7(d). We have conducted our
experiments using 6 different toy letters (C, H, L, M, O, Y) as
the reference templates.

Rotation angle range of the reference template instance in the
test images was chosen from to 90 with 15 increments
(13 different rotation angles). Scaling factor range of the ref-
erence template instance in the test images was set from 0.5
to 1.5 with 0.1 steps (11 different scaling factors). Considering
10 different configuration for basic toy letter test images, 3 dif-
ferent background images, 13 different rotation angles and 11
different scaling factors for the reference template instance, this
experiment consists of 4290 different test images for a toy letter.
From another point of view, for each combination of values in
the chosen range of rotation angles and scaling factors, we con-
ducted 30 different tests.
RASIM is used to locate the reference template in each test

image. The typical settings presented in Table I were used in this
experiment. Correct detection percentages obtained by a total of
6 4290 tests are illustrated in Fig. 8(a) for the proposed object
detection system and in Fig. 8(b) for SIFT. Each point in this
figure represents the correct detection percentage obtained by
6 30 different tests for a fixed rotation angle from to

and scaling factor from 0.5 to 1.5. Excluding the boundary
results obtained in scales 0.5 and 0.6, the correct detection rate is
above 85%. Our experiments show that the proposed detection
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Fig. 9. Mean error and standard deviation for the estimated rotation angle and scaling factor in the whole tests. (a) Mean error of the estimated rotation angles.
(b) Standard deviation of the estimated rotation angles. (c) Mean error of the estimated scaling factors. (d) Standard deviation of the estimated scaling factors.

Fig. 10. Floor tile pattern #1 detection example, (a) Reference template, (b) Sample results of SIFT (Correct detection: 84%), (c) Sample results of RASIM
(Correct detection: 91%).

system is more accurate than SIFT. RASIM is more accurate
than SIFT specially when the scaling factor is under 0.7 and
above 1.3.
We have conducted this comparison, as SIFT is the widely

accepted benchmark method for object detection in the litera-
ture. Although SURF is superior to SIFT in terms of runtime
efficiency, but as the feature point selection and object detec-
tion quality is our main concern in this paper, we have chosen
SIFT instead of SURF. Comparing SIFT against SURF, it is al-
ready shown that SIFT performs best in terms of keypoint match
ratio and total number of correct keypoint matches [31]. key-
points in SURF are found by using a so called fast-hessian de-
tector that bases on an approximation of the hessian matrix for
a given image point. We may incorporate fast keypoint detec-
tion approach of SURF instead of SIFT like keypoint detection
step in RASIM to further improve the computational time. The
scale-invariant center-surround detector (CenSurE) is also su-
perior to SIFT and SURF in terms of runtime efficiency, but is
not fully rotation invariant and is relatively sensitive to in-plane
rotations [18].

The estimated rotation angle and scaling factor obtained
for each test image are compared with the true rotation angle
and scaling factor of the reference template instance in the test
image. Mean error and standard deviation for the estimated
rotation angle and scaling factor in the whole 6 4290 tests
are illustrated in Fig. 9(a) through (d). The overall performance
is rather good as in the majority of tests the mean error of the
estimated rotation angle is less than 11 and the mean error of
the estimated scaling factor is less than 0.15.

D. Detection Examples

Fig. 10 shows sample examples of object detection in a video.
We have recorded the video from floor tile patterns by moving
around the camera so that we may capture various pattern dis-
tortions in video frames, including rotation, scaling, blurring,
change of view point and illumination changes. The reference
template is a clip of a tile pattern (of size 300 by 246 pixels)
which is shown in Fig. 10(a). SIFT and RASIM are used to de-
tect the reference pattern clip in all 1330 video frames (of size
640 by 480 pixels).
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Fig. 11. Floor tile pattern #2 detection example, (a) Reference template, (b) Sample results of SIFT (Correct detection: 76%), (c) Sample results of RASIM
(Correct detection: 88%).

Fig. 12. Graphic card box detection example, (a) Reference template, (b) Sample results of SIFT (Correct detection: 87%), (c) Sample results of RASIM (Correct
detection: 92%).

The performance of object detection is evaluated by the
overlap error measurement as it is defined and used in the
widely accepted framework of [28]. The ground truth bounding
box of the object of interest in each frame is determined by the
human-marked data. Two regions are considered as a correct
match if the overlap error, defined as the error in the image area
covered by the regions, is sufficiently small. Similar to [28], the
overlap error threshold is fixed to 40% in all the experiments.
The detection results in sample frames are illustrated in

Fig. 10(b) for SIFT and in Fig. 10(c) for RASIM. This refer-
ence pattern clip was mostly subject to rotation and scaling
in the video frames, although blurring and slight changes of
view point were in effect too. Correct detection percentage of
RASIM is nearly 7% more than SIFT in this example.
Fig. 11 shows sample examples of a more challenging object

detection. In this example we have selected 259 by 197 pixels
pattern clip shown in Fig. 11(a) as the reference template which
is subject to severe blurring and distortions in most of the video
frames. In some of the video frames blurring, change of view
point and illumination changes have simultaneously occurred
(e.g., Frame #848 which is shown in Fig. 11). The detection
results in sample frames are illustrated in Fig. 11(b) for SIFT
and in Fig. 11(c) for RASIM. The correct detection percentage
of both methods are decreased. Yet, this time the correct detec-
tion percentage of RASIM is nearly 12% more than SIFT which
demonstrates the higher performance of RASIM when various
object distortions may simultaneously occure in the given test
images.
Fig. 12 shows another object detection example where mostly

change of view point, occlusion and spot illuminations over ref-
erence template are considered. Graphic card box image of size
537 by 302 pixels shown in Fig. 12(a) is selected as the reference
template. The detection results in sample frames (of size 640 by

480 pixels) are illustrated in Fig. 12(b) for SIFT and in Fig. 12(c)
for RASIM.Within the frames where the object of interest is oc-
cluded (e.g., frame #1312) both SIFT and RASIM perform well.
While in change of view point cases like frame #677 and spot
illuminations like frame #571, RASIM has been more effective
than SIFT. The complete video results of Figs. 10, 11, and 12
are available at http://www.dml.ir/rasim/.

V. CONCLUSION

In this paper, we have presented a novel adaptive lifted
wavelet transform based algorithm for matching image interest
points between a reference template and a given test image. The
evaluation results show that RASIM interest point matching
algorithm provides efficient distinctiveness to detect an object
of interest in the test images.
The most time consuming tasks have been moved to the of-

fline steps of the algorithm, therefore for the several thousand
keypoints that can be extracted from a typical image the online
steps can be executed with near real-time performance on stan-
dard PC hardware. Also, the computation time can be improved
using hardware implementation for the log-polar mapping.
Many variations of RASIM could be designed to improve

its performance. For example, here we have only focused on
grayscale images. The color components may be considered in
the future developments. Also, here we have only used “gradient
magnitude” and “gradient orientation” to provide two types of
input data vectors. Other image feature extractors may be in-
cluded as the preprocessing steps for providing more input data
vectors.
RASIM may be used as the basic building block of any

application that require identification of matching interest
points between images. In this paper we have focused on
the object detection application. Other potential applications



AMIRI AND RABIEE: NOVEL ROTATION AND SCALE INVARIANT MATCHING 3591

include image panorama assembly, moving object tracking,
image segmentation, view matching for 3D reconstruction and
robot localization.
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