
PCA-SIFT: A More Distinctive Representation for Local Image Descriptors

Yan Ke1, Rahul Sukthankar2,1

{yke,rahuls}@cs.cmu.edu
1 School of Computer Science, Carnegie Mellon University; 2 Intel Research Pittsburgh

http://www.cs.cmu.edu/˜yke/pcasift/

Abstract

Stable local feature detection and representation is a fun-
damental component of many image registration and object
recognition algorithms. Mikolajczyk and Schmid [14] re-
cently evaluated a variety of approaches and identified the
SIFT [11] algorithm as being the most resistant to common
image deformations. This paper examines (and improves
upon) the local image descriptor used by SIFT. Like SIFT,
our descriptors encode the salient aspects of the image gra-
dient in the feature point’s neighborhood; however, instead
of using SIFT’s smoothed weighted histograms, we apply
Principal Components Analysis (PCA) to the normalized
gradient patch. Our experiments demonstrate that the PCA-
based local descriptors are more distinctive, more robust to
image deformations, and more compact than the standard
SIFT representation. We also present results showing that
using these descriptors in an image retrieval application re-
sults in increased accuracy and faster matching.

1. Introduction
Local descriptors [6, 12, 18] are commonly employed in a
number of real-world applications such as object recogni-
tion [3, 11] and image retrieval [13] because they can be
computed efficiently, are resistant to partial occlusion, and
are relatively insensitive to changes in viewpoint. There are
two considerations to using local descriptors in these appli-
cations. First, we must localize the interest point in position
and scale. Typically, interest points are placed at local peaks
in a scale-space search, and filtered to preserve only those
that are likely to remain stable over transformations. Sec-
ond, we must build a description of the interest point; ide-
ally, this description should be distinctive (reliably differen-
tiating one interest point from others), concise, and invari-
ant over transformations caused by changes in camera pose
and lighting. While the localization and description aspects
of interest point algorithms are often designed together, the
solutions to these two problems are independent [14]. This
paper focuses on approaches to the second aspect – the con-
struction and evaluation of local descriptor representations.

Mikolajczyk and Schmid [14] presented a comparative

study of several local descriptors including steerable fil-
ters [4], differential invariants [9], moment invariants [18],
complex filters [16], SIFT [11], and cross-correlation of dif-
ferent types of interest points [6, 13]. Their experiments
showed that the ranking of accuracy for the different algo-
rithms was relatively insensitive to the method employed to
find interest points in the image but was dependent on the
representation used to model the image patch around the
interest point. Since their best matching results were ob-
tained using the SIFT descriptor, this paper focuses on that
algorithm and explores alternatives to its local descriptor
representation.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the relevant aspects of the SIFT algorithm.
Section 3 details our PCA-based representation for local
features (PCA-SIFT). Section 4 presents our evaluation
methodology and performance metrics. Section 5 provides
detailed experimental results comparing PCA-SIFT to stan-
dard SIFT on feature-matching experiments and also in the
context of an image retrieval application. Section 6 exam-
ines the reasons behind PCA-SIFT’s accuracy by exploring
the role of different components in the representation. Fi-
nally, Section 7 summarizes the contributions of this paper.

2. Review of the SIFT Algorithm
SIFT, as described in [12], consists of four major stages:
(1) scale-space peak selection; (2) keypoint localization;
(3) orientation assignment; (4) keypoint descriptor. In the
first stage, potential interest points are identified by scan-
ning the image over location and scale. This is imple-
mented efficiently by constructing a Gaussian pyramid and
searching for local peaks (termed keypoints) in a series of
difference-of-Gaussian (DoG) images. In the second stage,
candidate keypoints are localized to sub-pixel accuracy and
eliminated if found to be unstable. The third identifies the
dominant orientations for each keypoint based on its local
image patch. The assigned orientation(s), scale and loca-
tion for each keypoint enables SIFT to construct a canoni-
cal view for the keypoint that is invariant to similarity trans-
forms. The final stage builds a local image descriptor for
each keypoint, based upon the image gradients in its local

neighborhood (discussed below in greater detail). The first
three stages will not be discussed further in this paper since
our work makes no contributions to those areas.

The final (keypoint descriptor) stage of the SIFT algo-
rithm builds a representation for each keypoint based on
a patch of pixels in its local neighborhood. Note that the
patch has been previously centered about the keypoint’s lo-
cation, rotated on the basis of its dominant orientation and
scaled to the appropriate size. The goal is to create a de-
scriptor for the patch that is compact, highly distinctive (i.e.,
patches from different keypoints map to different represen-
tations) and yet robust to changes in illumination and cam-
era viewpoint (i.e., the same keypoint in different images
maps to similar representations). As discussed in [12], ob-
vious approaches such as normalized correlation between
image patches do not work since they are overly sensitive
to registration errors and non-rigid deformations. The stan-
dard keypoint descriptor used by SIFT is created by sam-
pling the magnitudes and orientations of the image gradient
in the patch around the keypoint, and building smoothed
orientation histograms to capture the important aspects of
the patch. A 4×4 array of histograms, each with 8 orienta-
tion bins, captures the rough spatial structure of the patch.
This 128-element vector is then normalized to unit length
and thresholded to remove elements with small values.

The standard SIFT keypoint descriptor representation is
noteworthy in several respects: (1) the representation is
carefully designed to avoid problems due to boundary ef-
fects — smooth changes in location, orientation and scale
do not cause radical changes in the feature vector; (2) it
is fairly compact, expressing the patch of pixels using a
128 element vector; (3) while not explicitly invariant to
affine transformations, the representation is surprisingly re-
silient to deformations such as those caused by perspec-
tive effects. These characteristics are evidenced in excellent
matching performance against competing algorithms [14].

On the other hand, the construction of the standard SIFT
feature vector is complicated and the choices behind its spe-
cific design (as given in [12]) are not clear. Our initial goal
was to explore simpler alternatives and to empirically evalu-
ate the tradeoffs. However, as discussed in the remainder of
this paper, we discovered that our alternate representation
was theoretically simpler, more compact, faster and more
accurate than the standard SIFT descriptor. To ensure that
our results are an accurate reflection of reality, we use the
original SIFT source code and restrict our changes to the
fourth stage.

3. PCA-based SIFT descriptors

Our algorithm for local descriptors (termed PCA-SIFT) ac-
cepts the same input as the standard SIFT descriptor: the
sub-pixel location, scale, and dominant orientations of the

keypoint. We extract a 41×41 patch at the given scale,
centered over the keypoint, and rotated to align its domi-
nant orientation to a canonical direction.1 PCA-SIFT can
be summarized in the following steps: (1) pre-compute an
eigenspace to express the gradient images of local patches;
(2) given a patch, compute its local image gradient; (3)
project the gradient image vector using the eigenspace to
derive a compact feature vector. This feature vector is sig-
nificantly smaller than the standard SIFT feature vector,
and can be used with the same matching algorithms. The
Euclidean distance between two feature vectors is used to
determine whether the two vectors correspond to the same
keypoint in different images.

Principal Component Analysis (PCA) [7] is a stan-
dard technique for dimensionality reduction and has been
applied to a broad class of computer vision problems,
including feature selection (e.g., [5]), object recognition
(e.g., [15]) and face recognition (e.g., [17]). While PCA
suffers from a number of shortcomings [8, 10], such as its
implicit assumption of Gaussian distributions and its restric-
tion to orthogonal linear combinations, it remains popular
due to its simplicity. The idea of applying PCA to image
patches is not novel (e.g., [3]). Our contribution lies in rig-
orously demonstrating that PCA is well-suited to represent-
ing keypoint patches (once they have been transformed into
a canonical scale, position and orientation), and that this
representation significantly improves SIFT’s matching per-
formance. PCA-SIFT is detailed in the following subsec-
tions.

3.1. Offline computation of patch eigenspace
PCA enables us to linearly-project high-dimensional sam-
ples onto a low-dimensional feature space. For our applica-
tion, this projection (encoded by the patch eigenspace) can
be pre-computed once and stored.

As discussed above, the input vector is created by con-
catenating the horizontal and vertical gradient maps for the
41×41 patch centered at the keypoint. Thus, the input vec-
tor has 2×39×39=3042 elements. We then normalize this
vector to unit magnitude to minimize the impact of varia-
tions in illumination. It is important to note that the 41×41
patch does not span the entire space of pixel values, nor the
smaller manifold of patches drawn from natural images; it
consists of the highly-restricted set of patches that passed
through the first three stages of SIFT. More precisely, each
of the patches satisfies the following properties: (1) it is
centered on a local maximum in scale-space; (2) it has been
rotated so that (one of its) dominant gradient orientations
is aligned to be vertical; (3) it only contains information for
the scale appropriate to this keypoint – i.e., the 41×41 patch

1For keypoints with multiple dominant orientations, we build a repre-
sentation for each orientation, in the same manner as SIFT.

may have been created from a much larger region from the
original image. The remaining variations in the input vec-
tor are mainly due to the “identity” of the keypoint (i.e., the
3-D scene corresponding to this location) or to unmodeled
distortions (such as perspective effects caused by changing
camera viewpoint). It is not unreasonable to believe that
these remaining variations can be reasonably modeled by
low-dimensional Gaussian distributions, enabling PCA to
accurately represent them with a compact feature represen-
tation. More importantly, projecting the gradient patch onto
the low-dimensional space appears to retain the identity-
related variation while discarding the distortions induced
by other effects. This hypothesis is supported by the ex-
perimental evidence discussed in Sections 4 and 6.

To build our eigenspace, we ran the first three stages of
the SIFT algorithm on a diverse collection of images and
collected 21,000 patches. Each was processed as described
above to create a 3042-element vector, and PCA was ap-
plied to the covariance matrix of these vectors. The matrix
consisting of the top n eigenvectors was stored on disk and
used as the projection matrix for PCA-SIFT. The images
used in building the eigenspace were discarded and not used
in any of the matching experiments.

3.2. Feature representation
To find the feature vector for a given image patch, we sim-
ply create its 3042-element normalized image gradient vec-
tor and project it into our feature space using the stored
eigenspace. We empirically determined good values for the
dimensionality of the feature space, n; most of the results
described in this paper use n = 20 (Section 6 discusses
the effects of n on performance). The standard SIFT rep-
resentation employs 128-element vectors; using PCA-SIFT
results in significant space benefits.

As discussed above, we use the Euclidean distance be-
tween two feature vectors to determine whether the two
vectors belong to the same keypoint in different images.
Thresholding this distance generates a binary decision, and
adjusting this threshold enables one to select the appropriate
trade-off between false positives and false negatives.

4. Evaluation
First, we discuss the evaluation metrics used to quantify our
results. We then outline our experimental setup and discuss
the issue of generating ground-truth data. Results are pre-
sented in Section 5.

4.1. Evaluation metrics
Receiver Operating Characteristics (ROC) and Recall-
Precision are both popular metrics in the literature, and are
sometimes used interchangeably. Both capture the fact that
we want to increase the number of correct positives while

minimizing the number of false positives; however, the sub-
tle differences between the metrics should dictate the choice
of one over the other for specific scenarios. As observed
in [2], the former is well-suited for evaluating classifiers,
since the false detection rate is well-defined; the latter is
better-suited for evaluating detectors, since the number of
false detections relative to the total number of detections is
correctly expressed by 1−precision even though the total
number of negatives cannot be determined.

Following [14], we chose to measure the performance
of the SIFT local descriptor representations on a keypoint
matching problem, defined as follows: given an interest
point in one image, find all matches of that interest point
in the dataset. Clearly, this is a detection rather than a
classification task (the total number of negatives is not
well-defined), and thus the appropriate metric is recall-
precision. Therefore, although [14] uses ROC curves, this
paper presents recall vs. 1−precision graphs.

These graphs are generated as follows. The keypoints
for all of the images in the dataset are identified (using
the initial stages of the SIFT algorithm). All pairs of key-
points from different images are examined. If the Euclidean
distance between the feature vectors for a particular pair
of keypoints falls below the chosen threshold, this pair is
termed a match. A correct-positive is a match where the
two keypoints correspond to the same physical location (as
determined either by ground truth for labeled images, or us-
ing known image transformations for synthetic image de-
formation tests). A false-positive is a match where the two
keypoints come from different physical locations. The to-
tal number of positives for the given dataset is known a
priori. From these numbers, we can determine recall and
1−precision:

recall =
number of correct-positives

total number of positives

and

1−precision =
number of false-positives

total number of matches (correct or false)
.

We generate the recall vs. 1−precision graphs for our
experiments by varying the threshold for each algorithm.

4.2. Experimental setup
We ran three main types of experiments to explore the
difference between the standard SIFT representation and
PCA-SIFT. The first type examined each descriptor’s ro-
bustness to (synthetically-generated) effects caused by the
addition of noise, changes in illumination and the applica-
tion of image transformations. We collected a dataset of
images2 and applied the following transformations to each

2Available at: http://www.cs.cmu.edu/˜yke/pcasift/

image: (1) Gaussian noise (σ=0.05), where image intensi-
ties range from 0 to 1; (2) rotation of 45◦ followed by a 50%
scaling; (3) intensity scaling of 50%; (4) projective warp
equivalent to a viewing angle change of approximately 30◦.

Three descriptors were evaluated in these experiments:
(1) the standard SIFT feature representation (denoted as
“SIFT”); (2) PCA-SIFT (n=20) as described in Section 3,
where the eigenspace models the local gradient (denoted
as “Grad PCA 20”); (3) a variant of PCA-SIFT where the
eigenspace directly models the local image patch rather than
the local gradient (denoted as “Img PCA 20”). For (3), we
employed the standard intensity normalization technique of
subtracting the mean and scaling to unit variance; without
this step, the results for (3) would be even worse.

The second type evaluated both descriptors on real im-
ages taken from varying viewpoints, such as the INRIA
MOVI Graffiti datasets [1]. The third type involved integrat-
ing SIFT and PCA-SIFT into an image retrieval application.
Additional experiments to investigate the effect of keypoint
localization error, number of PCA components, choice of
distance metric are given in Section 6.

4.3. Generation of ground truth data
We run the initial stages of SIFT on every image to identify
the keypoints. The goal is to obtain, for every pair of im-
ages, a list of the correct keypoint matches. Since the SIFT
algorithm generates hundreds or thousands of keypoints per
image, manually identifying matches for a large dataset
would be extremely time-consuming and potentially error-
prone. Fortunately, knowing the mapping between two im-
ages enables us to automatically resolve the matching prob-
lem. For experiments involving synthetically-generated tar-
get images, these image transforms are known a priori. For
the experiments involving the Graffiti dataset, the transform
(expressed as a homography) between two matching scenes
is given. We use that information as follows.

Let Tij be the transformation mapping a point in image
i to its corresponding point in image j. An interest point
in the first image, Pi, maps to P ′

i = Tij(Pi) in the sec-
ond image. Ideally, one should expect a matching interest
point in the second image to lie at Pj = P ′

i . In practice,
we consider the match to be valid if Pj and P ′

i are suffi-
ciently close in space and scale. Two points are considered
sufficiently close in space if the distance between them is
less than σ pixels, where σ is the standard deviation of the
Gaussian used to generate the DoG function. They are con-
sidered sufficiently close in scale if their scales are within√

2 of each other.

5. Results
This section presents results comparing PCA-SIFT to the
standard SIFT representation on controlled experiments, the

Graffiti dataset, and on an image retrieval task.

5.1. Controlled transformations
Figure 1 presents the results of the first set of matching ex-
periments, where images were distorted under controlled
conditions.

Figure 1a shows that PCA-SIFT is dramatically better at
handling noisy images for almost all values of 1−precision,
and that PCA-SIFT (on the gradient map) dominates the
PCA representation of the local image patch. The standard
SIFT representation outperforms PCA-SIFT only when ex-
tremely high false positives rates can be tolerated. These
results are not particularly surprising since PCA should pro-
vide excellent reconstruction under the effects of Gaussian
noise. Our next experiments examine the impact of geomet-
ric transforms.

Figure 1b plots results of an experiment where target im-
ages were rotated by 45◦ and scaled by 50% while Figure 1c
shows matches after targets were distorted with perspec-
tive transformation corresponding to a 30◦ out-of-plane ro-
tation. While none of the representations are particularly
well-suited to this task, PCA-SIFT clearly dominates the
other two algorithms.

Figure 1d shows that all of the representations are well-
suited to capturing simple variations in illumination (note
that recall axis has been magnified and offset to highlight
the differences). Looking closely, we can see that the stan-
dard SIFT representation is slightly better than PCA-SIFT
for most of the domain. However, given that all of the al-
gorithms display a recall of more than 95%, this is not very
significant.

5.2. INRIA Graffiti dataset
The INRIA Graffiti [1] dataset contains images of graffiti-
covered walls taken from different camera viewpoints.
Since the scene is planar, the transformation between im-
ages can be modeled as a 2-D planar homography (given
in the dataset). Our goal was to match corresponding key-
points between images. Figure 2 shows the matching per-
formance for the two algorithms on the Graffiti 6 dataset.
Although the absolute recall is rather low due to the high
degree of projective warp, PCA-SIFT clearly dominates.
Note that a low recall at high precision is acceptable for
real-world applications. For instance, PCA-SIFT has a re-
call of about 5% at 1−precision of 20%; we locate about a
thousand keypoints in the image, of which 50 are reliable
matches. This number of reliable matches is sufficient for
applications such as image retrieval.

5.3. Image retrieval application
We have integrated SIFT and PCA-SIFT into an image re-
trieval application for real-world scenes taken from differ-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

Grad PCA 20
SIFT
Img PCA 20

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

Grad PCA 20
SIFT
Img PCA 20

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

Grad PCA 20
SIFT
Img PCA 20

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

Grad PCA 20
SIFT
Img PCA 20

(a) add noise (b) rotate & scale (c) projective warp (d) reduce brightness

Figure 1: SIFT vs. PCA-SIFT on a matching task where the images are deformed or corrupted under controlled conditions. (a)
target images were corrupted by Gaussian noise (σ=0.05 of the intensity range). (b) target images were rotated by 45◦ and
scaled by 50%. (c) target images were projectively warped to simulate a viewpoint change of 30◦. (d) target image intensities
were scaled by 50%. Note that the Recall axis starts at 0.9 because all methods perform extremely well on this task.

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

Grad PCA 12
SIFT

Figure 2: SIFT vs. PCA-SIFT (n=12) on Graffiti 6 [1].

ent viewpoints. Unlike the Graffiti dataset, the scenes are
not planar, and contain occlusions, and reflective surfaces.

Image retrieval using SIFT is formulated as follows.
Given two images, we first extract their corresponding fea-
ture vectors. For each feature vector in one image, we com-
pare it against all feature vectors in the other image and
count the number of features that are within a threshold
distance. We treat the number of matches as a similarity
between images.

For this experiment, we chose a small dataset3 of 30 im-
ages (10 common household items, photographed from dif-
ferent viewpoints). Each image was used as a query into the
database (in a leave-one-out manner). If both of the other
two images of the corresponding object were returned in
the top three positions, the algorithm was awarded 2 points;
if only one of the correct matches appeared in the top three
positions, it was awarded 1 point; otherwise, it was awarded
no points. The scores were divided by 60 (the total number
of correct matches) and are given in Table 1.4 The threshold
distance for each algorithm was tuned to give the best re-
sults (SIFT threshold: 141; PCA-SIFT threshold: 2200); in
practice, a wide range of thresholds works well. The results
show that PCA-SIFT’s matching accuracy at the keypoint
level also translates into better retrieval results.

3Available at http://www.cs.cmu.edu/˜yke/pcasift/
4This is equivalent to measuring P(2), the precision of the system when

two objects are retrieved.

SIFT PCA-SIFT (n=20)
Correct retrieval 43% 68%

Table 1: Percentage of images correctly retrieved in our im-
age retrieval application. PCA-SIFT’s matching accuracy
translates into significant practical benefits.

Figure 3 shows the result of applying SIFT to two chal-
lenging scenes (a cluttered coffee table and a Graffiti im-
age). We manually set the thresholds to have each algorithm
return 10 matches. PCA-SIFT clearly dominates the stan-
dard representation in these experiments. In particular, the
latter appears to get confused by the edges of several of the
objects.

Figure 4 is a detailed look at one of the keypoints from
this example. The potential matches are presented in rank
order for each algorithm. The standard representation rates
the correct match in the third position while PCA-SIFT cor-
rectly ranks it first.

Table 2 compares the running time between SIFT and
PCA-SIFT. The top part shows the feature extraction of an
image with approximately 2200 interest points. The first
row is the time needed to localize the interest point (com-
mon to both algorithms). The second and third rows show
the time needed to calculate the descriptor representation.
We observe that the time needed to compute the represen-
tation is comparable. The lower part of the table shows
that PCA-SIFT is significantly faster in the matching phase;
PCA-SIFT (n=20) requires only a third of the time to do the
2.4 million point comparisons.

6. Discussion
Section 5 showed that PCA-SIFT was both significantly
more accurate and much faster than the standard SIFT local
descriptor. However, these results are somewhat surprising
since the latter was carefully designed while PCA-SIFT is
a somewhat obvious idea. We now take a closer look at
the algorithm, and propose some hypotheses that may help

(A1) SIFT: (A2) PCA-SIFT (n=20): (B1) SIFT: (B2) PCA-SIFT (n=20):
4/10 correct 9/10 correct 6/10 correct 10/10 correct

Figure 3: A comparison between SIFT and PCA-SIFT (n=20) on some challenging real-world images taken from different
viewpoints. (A) is a photo of a cluttered coffee table; (B) is a wall covered in Graffiti from the INRIA Graffiti dataset. The top ten
matches are shown for each algorithm: solid white lines denote correct matches while dotted black lines show incorrect ones.

Query keypoint
Rank 1 2 3

SIFT
SIFT Distance 158 245 256

PCA-SIFT Distance 8087 8551 4438

PCA-SIFT
SIFT Distance 256 399 158

PCA-SIFT Distance 4438 7011 8087

Figure 4: A closer look at matching results for a particular
keypoint (zoomed in view of a region from Figure 3). The
top three matches for this keypoint for SIFT and PCA-SIFT
(n=20) are shown. The correct match is third on the list
for the standard representation, while it is the top match for
PCA-SIFT. The two algorithms use different feature spaces
so a direct comparison of the distance values is not mean-
ingful.

explain PCA-SIFT’s success.
Figure 5 shows that the gradient patches surrounding

SIFT keypoints are highly structured, and therefore easier to
represent using PCA. We see that the eigenvalues for these
patches decay much faster than eigenvalues for randomly-
selected gradient patches. This is because the patches sur-
rounding keypoints all share certain characteristics, stem-
ming from the SIFT keypoint detection phase: they are all

time (sec) σ

Localization and I/O 2.63 0.09
SIFT representation 1.59 0.06
PCA-SIFT representation 1.64 0.04
SIFT matching 2.20 0.03
PCA-SIFT matching 0.58 0.05

Table 2: Running times (and standard deviations) for SIFT
and PCA-SIFT (n=20) averaged over 10 independent runs.
The localization and I/O steps are common to both algo-
rithms. Building both representations takes comparable
time, but matching using PCA-SIFT is much faster.

centered on a local maximum in scale-space, rotated to align
the dominant gradients with the vertical, and scaled appro-
priately. This simplifies the job that PCA must do, and en-
ables PCA-SIFT to accurately represent the patch using a
small number of dimensions.

A natural question to consider is whether PCA-SIFT’s
representation is sensitive to the images used in the cre-
ation of the eigenspace — i.e., is it reasonable to assume
a canonical eigenspace for representing keypoint gradient
patches? Our experiments show that the eigenspaces gen-
erated from keypoint patches obtained from different image
sets are quite consistent, and that PCA-SIFT’s performance
does not require us to train an eigenspace specifically for the
testing images. Figure 6 shows the results of two controlled
transformation experiments (described in Section 4.2) per-
formed with two different eigenspaces. In the first exper-
iment, the target images were rotated by 45◦; in the sec-
ond, the target images were projectively warped. The first
eigenspace was tailored specifically to the images used in

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 51 101 151 201

Component #

N
o

rm
al

iz
ed

 E
ig

en
va

lu
e

Random Gradients

Keypoint Gradients

Figure 5: This graph shows that PCA on randomly-selected
gradient image patches differs from PCA-SIFT, where PCA
is applied to gradient patches surrounding SIFT keypoints.
The eigenvalues for PCA-SIFT decay much more rapidly,
supporting our belief that PCA-SIFT successfully represents
keypoints using a small number of dimensions because PCA
is only required to capture the appearance of a very particu-
lar type of image patch.

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

Test-Train Same (Rot 45)

Test-Train Diff (Rot 45)
0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

Test-Train Same (Proj)

Test-Train Diff (Proj)

(a) Rotate 45◦ (b) Projective warp 30◦

Figure 6: PCA-SIFT’s performance is not sensitive to the
images used in the creation of the eigenspace (graph mag-
nified to highlight differences). The solid lines show results
using an eigenspace that was trained on keypoint patches
from the test set (the optimal training set) while the dashed
lines show results using our standard eigenspace. Using a
customized eigenspace makes almost no difference. This
strongly supports our belief that the entire space of keypoint
patches is well represented by a single eigenspace.

this test; the second eigenspace was trained on an unrelated
set of images (and is the eigenspace used in all of our ex-
periments). On each experiment, PCA-SIFT’s performance
with either eigenspace is almost identical; the differences
are too small to be seen in an unscaled graph, requiring us
to magnify Figure 6 to highlight them.

Figure 7a shows the relationship between PCA-SIFT’s
matching accuracy and the dimensionality of the feature
space (for small values of n). As expected, increasing the
dimensionality of the feature vector results in better accu-
racy, since the representation is able to capture the structure
of the gradient patch with better fidelity. As we continue
adding dimensions to the feature vector, the marginal ben-
efit slows. Figure 7b shows the same graph for greater val-
ues of n, as the number of dimensions in the representation
approaches the number of dimensions of the input vector.
Now we see an interesting phenomenon: once n exceeds

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

PCA 36
PCA 28
PCA 20
PCA 16
PCA 12
PCA 10
PCA 8

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

PCA 3042
PCA 300
PCA 100
PCA 60
PCA 36
PCA 20
PCA 12

(a) (b)

Figure 7: PCA-SIFT performance as PCA dimension (n) is
varied. n = 36 achieves the best matching performance.

a certain size, the matching accuracy of the algorithm ac-
tually begins to decline. At n=3042, where PCA performs
a perfect (loss-less) reconstruction of the input vector, the
matching accuracy is only slightly better than n=12. Our
hypothesis for this is that the first several components of the
PCA subspace are sufficient for encoding the variations in
the gradient patch caused by the identity of the keypoint,
(which we would like to model accurately) while the later
components represent detail in the gradient image that is not
useful, or potentially detrimental, such as distortions from
projective warps. There is also trade-off between running
time and the dimensionality of the feature vector. Using
fewer components requires less storage and results in faster
matching. We obtain good results with n=20.

One of the reasons cited for SIFT’s matching success is
that its feature representation has been carefully designed to
be robust to localization error. By contrast, PCA is known
to be notoriously sensitive to registration error. Figure 8a
shows an experiment where we introduce registration er-
ror after the localization stage. We add 1 and 3 pixel er-
rors (at the appropriate scale) in a random direction with re-
spect to the dominant orientation. Somewhat surprisingly,
PCA-SIFT continues to perform well. However, when error
is introduced into the orientation assignment phase (Fig-
ure 8b) or in the scale estimation (Figure 8c), we see that
PCA-SIFT’s accuracy begins to degrade. This confirms our
belief that the standard SIFT representation is better suited
at handling these errors. However, our experiments show
that the feature localization stage of the SIFT algorithm is
very good at centering, orienting and scaling the keypoint
patches; thus these benefits of the standard SIFT represen-
tation are rarely (if ever) observed in practice.

We hypothesize that PCA-SIFT’s matching accuracy can
be attributed to several factors. First, using the gradient
patch rather than the raw patch around the keypoint makes
the representation robust to illumination changes, and re-
duces the variation that PCA needs to model. Second, the
pre-processing performed by the first three stages of SIFT
simplifies the modeling problem for PCA since the remain-
der of the variation is due to keypoint identity and perspec-
tive distortions. Third, discarding the lower components in

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

PCA 20 Shift 1
SIFT Shift 1
PCA 20 Shift 3
SIFT Shift 3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

PCA 20 Rotate 5°

SIFT Rotate 5°

PCA 20 Rotate 10°

SIFT Rotate 10°

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1 - Precision

R
ec

al
l

PCA 20 Scale 10%

SIFT Scale 10%

PCA 20 Scale 20%

SIFT Scale 20%

(a) shift (b) rotation (c) scale

Figure 8: SIFT vs. PCA-SIFT (n=20) when additional error is directly introduced in the feature localization stage. The estimates
given by SIFT’s localization stage were shifted by kσ pixel (k=1,3; σ is scale of the extracted feature). PCA is often observed
to be sensitive to registration error; however, PCA-SIFT performs very well under these conditions. When the localization is
corrupted by errors in rotation (5

◦ and 10
◦) or scale (10% and 20%), SIFT outperforms PCA-SIFT as expected because SIFT

is specifically engineered to be robust against detector error.

PCA improves accuracy by eliminating the variations due to
unmodeled distortions. Finally, using a small number of di-
mensions provides significant benefits in storage space and
matching speed.

7. Conclusion
This paper introduced an alternate representation for local
image descriptors for the SIFT algorithm. Compared to the
standard representation, PCA-SIFT is both more distinc-
tive and more compact leading to significant improvements
in matching accuracy (and speed) for both controlled and
real-world conditions. We believe that, although PCA is ill-
suited for representing the general class of image patches, it
is very well-suited for capturing the variation in the gradient
image of a keypoint that has been localized in scale, space
and orientation. We are currently extending our representa-
tion to color images, and exploring ways to apply the ideas
behind PCA-SIFT to other keypoint algorithms.

8. Acknowledgments
Yan Ke is supported by the Intel Research Scholar program.
Thanks to David Lowe for the SIFT source code and helpful
advice on this topic. Thanks also to Larry Huston, Phil Gib-
bons, M. Satyanarayanan, and Martial Hebert for valuable
feedback.

References
[1] Viewpoint change sequences. http://www.inrialpes.fr/

movi/.

[2] S. Agarwal and D. Roth. Learning a sparse representation for ob-
ject detection. In Proceedings of European Conference on Computer
Vision, pages 113–130, 2002.

[3] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by
unsupervised scale-invariant learning. In Proceedings of Computer
Vision and Pattern Recognition, June 2003.

[4] W. T. Freeman and E. H. Adelson. The design and use of steer-
able filters. IEEE Trans. Pattern Analysis and Machine Intelligence,
13(9):891–906, 1991.

[5] K. Fukunaga and W. Koontz. Application of the Karhunen-Loeve
expansion to feature selection and ordering. IEEE Trans. Communi-
cations, 19(4), 1970.

[6] C. Harris and M. Stephens. A combined corner and edge detector. In
Alvey Vision Conference, pages 147–151, 1988.

[7] I. T. Joliffe. Principal Component Analysis. Springer-Verlag, 1986.

[8] J. Karhunen and J. Joutsensalo. Generalization of principal compo-
nent analysis, optimization problems and neural networks. Neural
Networks, 8(4), 1995.

[9] J. Koenderink and A. van Doorn. Representation of local geometry
in the visual system. In Biological Cybernetics, volume 55, pages
367–375, 1987.

[10] D. Lee and S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401, 1999.

[11] D. G. Lowe. Object recognition from local scale-invariant features.
In Proceedings of International Conference on Computer Vision,
pages 1150–1157, 1999.

[12] D. G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 2004.

[13] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant
interest points. In Proceedings of International Conference on Com-
puter Vision, pages 525–531, July 2001.

[14] K. Mikolajczyk and C. Schmid. A performance evaluation of local
descriptors. In Proceedings of Computer Vision and Pattern Recog-
nition, June 2003.

[15] H. Murase and S. Nayar. Detection of 3D objects in cluttered scenes
using hierarchical eigenspace. Pattern Recognition Letters, 18(4),
April 1997.

[16] F. Schaffalitzky and A. Zisserman. Multi-view matching for un-
ordered image sets. In Proceedings of European Conference on Com-
puter Vision, volume 1, pages 414–431. Springer-Verlag, 2002.

[17] M. Turk and A. Pentland. Face recognition using eigenfaces. In
Proceedings of Computer Vision and Pattern Recognition, 1991.

[18] L. Van Gool, T. Moons, and D. Ungureanu. Affine/photometric in-
variants for planar intensity patterns. In Proceedings of European
Conference on Computer Vision, 1996.

