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Abstract: Matching feature points between images is one of the most fundamental issues in computer vision tasks. As 
the number of feature points increases, the feature matching rapidly becomes a bottleneck. In this paper, a 
novel method is presented to accelerate features matching by two modifications of the popular SIFT 
algorithm. The first modification is based on splitting the SIFT features into two types, Maxima- and 
Minima-SIFT features, and making comparisons only between the features of the same type, which reduces 
the matching time to 50% with respect to the original SIFT. In the second modification, the SIFT feature is 
extended by a new attribute which is an angle between two independent orientations. Based on this angle, 
SIFT features are divided into subsets and only the features with the difference of their angles less than a 
pre-set threshold value are compared. The performance of the proposed methods was tested on two groups 
of images, real-world stereo images and standard dataset images. The presented experimental results show 
that the feature matching step can be accelerated 18 times with respect to exhaustive search without losing a 
noticeable portion of correct matches. 

1 INTRODUCTION 

Matching a given image with one or many others is 
a key task in many computer vision applications 
such as object recognition, images stitching and 3D 
stereo reconstruction. These applications require 
often real-time performance. The matching is 
usually done by detecting and describing key-points 
in the images then applying a matching algorithm to 
search for correspondences.  

Classic key-point detectors such as Difference of 
Gaussians (DoG) (Lowe, 2004), Difference of 
Means (DoM) (Bay et al., 2008) and Harris corner 
detector (Harris & Stephens, 1988) use simple 
attributes like blob-like shapes or corners.  

For the key-point description a variety of key-
point descriptors have been proposed such as the 
Scale Invariant Feature Transform (SIFT) (Lowe, 
2004), Speeded Up Robust Features (SURF) (Bay et 
al., 2008) and Gradient Location and Orientation 
Histogram (GLOH) (Mikolajczyk & Schmid, 2005).  

To robustly match the images, point-to-point 
correspondences are determined using similarity 
measure for Nearest Neighbour (NN) search such as 
Euclidean distance. After that, the RANdom Sample 
Consensus (RANSAC) method is applied to estimate  

the correct correspondences (inliers). 
The combination of the DoG detector and SIFT 

descriptor proposed in (Lowe, 2004) is currently the 
most widely used in computer vision applications 
due to the fact that SIFT features are highly 
distinctive, and invariant to scale, rotation and 
illumination changes. In addition, SIFT features are 
relatively easy to extract and to match against a large 
database of local features. However, the main 
drawback of SIFT is that the computational 
complexity of the algorithm increases rapidly with 
the number of key-points, especially at the matching 
step due to the high dimensionality of the SIFT 
feature descriptor. 

In order to overcome the main SIFT drawback, 
various modifications of the SIFT algorithm have 
been proposed. In general, the strategies dealing 
with the acceleration of SIFT features matching can 
be classified into three different categories: reducing 
the descriptor dimensionality, parallelization and 
exploiting the power of hardware (GPUs, FGPAs or 
multi-core systems) and Approximate Nearest 
Neighbor (ANN) searching methods.  

(Ke & Sukthankar, 2004) applied Principal 
Components Analysis (PCA) to the SIFT descriptor. 
The PCA-SIFT reduces the SIFT feature descriptor 
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dimensionality from 128 to 36, so that the PCA-
SIFT is fast for matching, but seems to be less 
distinctive than the original SIFT as demonstrated in 
a comparative study by (Mikolajczyk & Schmid, 
2005).  

(Bay et al., 2008) developed the Speeded Up 
Robust Feature (SURF) method that is a 
modification of the SIFT method aiming at better 
run time performance of features detection and 
matching. This is achieved by two major 
modifications. In the first one, the Difference of 
Gaussian (DoG) filter is replaced by the Difference 
of Means (DoM) filter. The use of the DoM filter 
speeds up the computation of features detection due 
to the exploiting integral images for a DoM 
implementation. The second modification is the 
reduction of the image feature vector length to half 
the size of the SIFT feature descriptor length, which 
enables quicker features matching. These 
modifications result in an increase computation 
speed by a factor 3 compared to the original SIFT 
method. However, this is insufficient for real-time 
requirements.  

In recent years, several papers (Heymann et al., 
2007) were published addressing the use of the 
parallelism of modern graphics hardware (GPU) to 
accelerate some parts of the SIFT algorithm, focused 
on features detection and description steps. In 
(Charriot & Keriven, 2008) GPU power was 
exploited to accelerate features matching. These 
GPU-SIFT approaches provide 10 to 20 times faster 
processing allowing real-time application.  

The matching step can be speeded up by 
searching for the Approximate Nearest Neighbor 
(ANN) instead of the exact nearest neighbor. The 
most widely used algorithm for ANN is the kd-tree 
(Firedman et al., 1977), which successfully works in 
low dimensional search space, but performs poorly 
when feature dimensionality increases. (Lowe, 2004) 
used the Best-Bin-First (BBF) method, which is 
expanded from kd-tree by modification of the search 
ordering so that bins in feature space are searched in 
the order of their closest distance from the query 
feature and stopping search after checking the first 
200 nearest-neighbor candidates. The BBF provides 
a speedup factor of 2 times faster than exhaustive 
search while losing about 5% of correct matches. In 
(Muja & Lowe., 2009) Muja and Lowe compared 
many different algorithms for approximate nearest 
neighbor search on datasets with a wide range of 
dimensionality and they found that two algorithms 
obtained the best performance, depending on the 
dataset and the desired precision. These algorithms 
used either the hierarchical k-means tree or multiple 
randomized kd-trees.  

In this paper, a novel strategy which is distinctly 
different from all three of the above mentioned 
strategies, is introduced to accelerate the SIFT 
features matching step. The paper contribution is 
summarized in two points.  

Firstly, in the key-point detection stage, the SIFT 
features are split into two types, Maxima and 
Minima, without extra computational cost and at the 
matching stage only features of the same type are 
compared. since correct match can not be expected 
between two features of different types.  

Secondly, in the orientation assignment stage the 
SIFT feature is extended by a new attribute without 
extra computational cost. The novel attribute is an 
angle between the original SIFT feature orientation 
and a new different orientation φ . Hence SIFT 
features are divided into a few clusters based on the 
introduced angle. At the matching stage, only 
features of the almost same angle are compared. The 
idea behined this is that correct matches can be 
expected only between two features whose angles 
differ for less than a pre-defined threshold.  

The proposed method can be generalized for all 
local feature-based matching algorithms which 
detect two or more types of key-points (e.g. DoG, 
LoG, DoM) and whose descriptors are rotation 
invariant, where two different orientations can be 
assigned (e.g. SIFT, SURF, GLOH). 

2 ORIGINAL SIFT METHOD 

The Scale Invariant Feature Transform (SIFT) 
method, proposed by Lowe (Lowe, 2004), takes an 
image and transforms it into a set of local features. 
The SIFT features are extracted through the 
following three stages: 
1. Feature Detection and Localization: In this 
stage, the locations of potential interest points in the 
image are determined by detecting the extrema of 
Difference of Gaussian (DoG) scale space. For 
searching scale space extrema, each pixel in the 
DoG images is compared with its 26 neighbors in 
3×3 regions of scale-space. If the pixel is 
lower/larger than all its neighbors, then it is labelled 
as a candidate key-point. Each of these key-points is 
exactly localized by fitting a 3D quadratic function 
computed using a second order Taylor expansion 
around key-point location. Hence key-points are 
filtered by discarding points of low contrast and 
points that correspond to edges.  
2. Feature Orientation Assignment: An orientation 
is assigned to each key-point based on local image 
gradient data. For each pixel in a certain region R  
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around the key-point location, the first order 
gradients are calculated according to the following 
equations: 
 

( 1, , ) ( 1, , )

( , 1, ) ( , 1, )
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g L x y L x y

σ σ

σ σ
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= + − −
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where ( , , )L x y σ  is the grey value of the pixel 
( , )p x y in the image blurred by a Gaussian Kernel 

whose size is determined by σ . 
The gradient magnitude and orientation for each 

pixel are computed respectively as follows: 

2 2( ) )

)
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( , ) arctan(
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y x
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=
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From gradient data (magnitudes and orientations) 
of pixels within the region R , a 36-bin orientation 
histogram is constructed covering the range of 
orientations [-180°, 180°] (each bin covers 10°). For 
each bin, the histogram is calculated according to 
following formulas: 

( ) int( ( , ) / 10) 17ori i x yθ= −  (3)

where
 

( , ) [0 , 360 )x yθ ∈ ° °  

 ( ) ( , ) ( , )
R Rimag i m x y m x y= ∑ ∑  (4)

where ( , )im x y are gradient magnitudes of pixels 
that have discrete gradient orientations equal to 

( )ori i . An example of the orientation histogram is 
given in Figure1. 

 
Figure 1: 36 bins orientation histogram constructed using 
local gradient data around a key-point. 

The orientation of the SIFT feature is defined as 
the orientation corresponding to the maximum bin of 
the orientation histogram according to: 

( )( )max arg max ( )ori mag iθ =  (5)

 

3. Feature Description: A local feature descriptor is 
computed at each key-point based on the local image 
gradient data. The region around the key-point is 
divided into 16 square boxes. For each box an eight 
bin orientation histogram is calculated from gradient 
data of pixels within the corresponding box relative 
to the feature orientation to provide rotation 
invariance. Finally, all 16 resulted eight bin 
orientation histograms is transformed into 128-D 
vector. The vector is normalized to unit length to 
achieve the invariance against illumination changes. 

Therefore the original SIFT feature consists of 
four attributes, a location ( , )P x y , a scale σ  (level 
of scale space where is the key-point), an orientation 

maxθ  and a 128-D descriptor vector V . Hence, the 
original SIFT feature can be written as: 

max( , , , )F P Vσ θ . 

3 EXTENDED SIFT FEATURES 

Generally, if a scene is captured by two cameras or 
by one camera but from two different viewpoints, 
the corresponding points in two resulted images, 
which represent images of the same 3D point, will 
have different image coordinates, different scales, 
and different orientations, though, they must have 
almost similar descriptors which are used to match 
the images using a similarity measures.  

In order to speed-up the features matching, it is 
assumed in this paper that two independent 
orientations can be assigned to each feature so that 
the angle φ  between them stays almost unchanged 
for all correct corresponding points even in the case 
of the images captured under different conditions 
such as viewing geometry and illumination changes.  

The idea of using an angle between two 
independent orientations is aimed at avoidance of 
comparison of a great portion of features that can not 
be matched in any way. This leads to a significant 
acceleration of the matching step. Hence, the reason 
for proposing SIFT feature angle φ  is twofold.  

On the one hand, to filter the correct matches, so 
that a correct match

 ijM  can be established 

between two features 1

i
F

 
and 2

jF , which belong 

respectively to images 1 and 2, if and only if the 
difference  between  their  angles  1

iφ and  2
jφ  is  less 

than a preset threshold value ε : 

( )mag i

( )ori i

180− ° 180+ °maxθ
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i j

φ φ φ εΔ = − ≤  (6)

On the other hand, the reason for proposing SIFT 
feature angle φ  is to accelerate the SIFT feature 
matching because there is no necessity to compare 
two features if the difference between their angles is 
larger than a preset threshold ε . 

3.1 Matching Speeded-Up Factor 

Assuming two images to be matched whose feature 
angles { }1iφ and { }2

jφ  are considered as random 

variables 1Φ  and 2Φ  respectively.  
In the case of correct matches the random 

variables 1Φ  and 2Φ are dependent on each other 
since the angle differences of correct matches are 
equal to zero which correspond to the ideal image 
matching case.  

In contrast, the random variables 1Φ  and 2Φ  are 
independent of each other for incorrect matches 
while the angle differences of incorrect matches are 
somehow distributed in the range[ , ]π π− .  

Therefore, the difference 1 2ΔΦ = Φ −Φ  for the 
incorrect matches has a probability density function 
(PDF) distributed over the whole angle range 
[ , ]π π− , whereas the PDF of ΔΦ for the correct 
matches is concentrated in the so-called range of 
correct matches, which is the narrow range about 0°.  

Generally, if the random variables 1Φ  and 

2Φ are independent and uniformly distributed in the 
range[ , ]π π− , their difference ΔΦ  is uniformly 
distributed in the same range (Simon et al., 1995). 

If a matching procedure, which compares only 
the features having angle differences ΔΦ  in the 
range of correct matches, is used in the case of 
uniform distribution of ΔΦ  for incorrect matches, 
then the matching process is accelerated by a speed-
up factor SF . Speed-up factor can be expressed as 
the ratio between the width of the whole angle range 

360totalw = °  and the width of the range of correct 

matches corw : 

360total

cor cor

w
SF

w w

°
= =  (7)

 
 

3.2 SIFT Feature Angle 

It is suggested that a SIFT feature is extended with 
an angle that meets the following conditions: 
1- The angle has to be invariant to the geometric 

and photometric transformations (the invariance 
condition); 

2- The angle has to be uniformly distributed in the 
range [ , ]π π−  (the “equally likely” condition). 
To assign an angle to the SIFT feature, two 

orientations are required.  
The invariance condition is guaranteed only if 

these orientations are different, whereas the “equally 
likely” condition is guaranteed if the orientations are 
independent and uniformly distributed in the range 
[ , ]π π− . 

As mentioned in Section 2, the original SIFT 
feature has already an orientation maxθ . Therefore, it 
is only necessary to define one new orientation.  

Firstly, the angle sumθ corresponding to the 
vector sum of all orientation histogram bins is 
considered and the difference between the suggested 
orientation and the original SIFT feature orientation 

maxsum sumφ θ θ= − is assigned to the SIFT feature as 

the SIFT feature angle sumφ φ= . 
 

 
Figure 2: The vector sum of the bins of an eight 
orientation histogram. 

Figure 2 presents geometrically the vector sum 
of an eight bins orientation histogram (eight bins 
only for the sake of simplicity), whereas the used 
orientation histogram has 36 bins as explained in 
Section 2 for the case of the original SIFT. Hence, 
mathematically, the proposed orientation sumθ is 
calculated according to: 

sumφ

maxθ

sumθ
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Since sumθ  is different from maxθ , sumφ  meets 
the invariance condition.  

To examine whether sumφ  meets the “equally 
likely” condition, it is considered as a random 
variable sumΦ .  

The PDF of sumΦ  is estimated using 725356 
SIFT features extracted from 600 test images (400 
benchmark images (Image-Dataset) and 200 stereo 
images from a real-world robotic application) Some 
examples of used images are given in Section 5. 

The PDF of sumΦ  was computed by dividing the 
angle space [-180°,180°] into 36 sub-ranges, where 
each sub-range cover 10°, and by counting the 
numbers of features whose angle sumφ  belong to 
each sub-range. 

As evident from Figure 3 about 60% of features 
have angles sumφ  falling in the range [-30°,30°]. The 
reason of this outcome is the high dependency 
between maxθ  and sumθ  due to the fact that the sumθ  
corresponds to the vector sum of all orientation 
histogram bins including the bin which corresponds 
to maxθ . 

  

0

2

4

6

8

10

12

14

16

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

Angle(degree)

Φsum Φtran,0 Φtran,1

Φtran,2 Φtran,3 Φtran,4

 
Figure 3: The experimental PDFs of sumΦ and ,tran κΦ  

for SIFT features extracted from 600 test images.
 

The maxθ  is the dominant orientation in the patch 
around the key-point so that it has dominant 
influence to the sumθ . Due to the high dependency 

between maxθ  and sumθ , sumφ  does not meet the 
“equally likely” condition and can not be considered 
as SIFT feature angle.  

To define an appropriate SIFT feature angle, 
orientations ,tran κθ  are further suggested These 
orientations are computed as the vector sums of all 
orientation histogram bins excluding the maximum 
bin and κ of its neighbour bins at the left and at the 
right side as follows:  
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(9)

 

where arg max( ( ))m mag i= . 

The PDFs of the random variables ,tran κΦ  

corresponding to angles , , maxtran tranκ κφ θ θ= −  are 

estimated in the same manner as the PDF of sumΦ , 
performing the experiments over 725356 SIFT 
features extracted from the same 600 test images 
mentioned before. The measured PDFs of ,tran κΦ  
(for 0,1, 2, 3, 4κ = ) are shown in Figure 3. It is 
evident from Figure 3 that the ,1tranΦ  has a PDF 
which is the closest to the uniform distribution. 
Therefore, the angle ,1tranφ  meets both conditions, 
invariance and “equally likely” condition, and it can 
be considered as a new attribute φ of the SIFT 
feature, ,1tranφ φ= . With this extension a SIFT 

feature becomes max( , , , , )F P Vσ θ φ . 
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4 SPLIT AND EXTENDED SIFT 
FEATURES MATCHING 

Assuming that two sets of extended SIFT features 
are given: 

;{ 1, 2, ..., }r
iR F i r= =   

;{ 1, 2, ...., }l
jL F j l= = , 

containing respectively r  and l  features. The 
number of possible matches ( ),r l

i jijM F F is equal to 
r l⋅ . Among these possible matches a small number 
of correct matches may exist. Considering of all 
possible matches is computationally expensive.  

In the following two novel matching procedures 
are proposed to accelerate the matching process. The 
main idea behind both procedures is comparison of 
only features that share the same property which 
may lead to correct matches. 

4.1 Split SIFT Features Matching 

As said in Section 2, the SIFT feature locations are 
detected as the extrema of the scale space. Extrema 
can be Minima or Maxima so that there are two 
types of SIFT features, Maxima and Minima SIFT 
features. 

Through the extraction of SIFT features from 
600 different images in considered experiments, it 
was found that the number of Maxima is almost 
equal to the number of Minima SIFT features 
extracted from the same image. The matching time 
was reduced by 50% with respect to the original 
SIFT matching starting from the idea that no correct 
match can be expected between two features of 
different types. The claim that no correct matches 
between Minima and Maxima SIFT features is 
experimentally supported. Namely, it was found that 
the features of each correct match are always from 
the same type.  

To declare the matching time reduction by 
splitting the SIFT features, it is assumed that the 
number of features extracted from the first and the 
second image are expressed as: 

max minr r r= +  
max minl l l= +  

(10) 

where max max )(r l  and min min( )r l  are the numbers of 
Maxima and Minima SIFT features respectively.  

The matching time without regard to the type of 
features, that is the time of exhaustive search, is: 

exhT r l= ⋅  (11) 

The matching time, in the case of comparison of 
only features of the same type, is proportional to the 
following sum: 

max max min minsplitT r l r l= ⋅ + ⋅  (12) 

Substituting the assumption max min 2r r r≅ ≅  

and max min 2l l l≅ ≅  into (12) one obtains: 

2 2split exhT r l T= ⋅ =  (13) 

Hence, the matching time is decreased by 50% in 
respect to exhaustive search. 

4.2 Extended SIFT Features Matching 

A set of SIFT feature angle differences 
{ ; 1, 2, ..., }r l

ij i j ij r lφ φ φΔ = − = ⋅  is established for 

the SIFT feature angles { ; 1, 2, ..., }r
i i rφ =  and 

{ ; 1, 2, ..., }l
j j lφ =  of the extended SIFT features 

from the given sets R and L.  
Considering the angle differences ijφΔ  as a 

random variable ijΔΦ , the PDFs of ijΔΦ  for both 
correct and incorrect matches are measured in 
experiments over considered 600 images.  

The measured PDFs are shown in Figure 4. It can 
be seen from Figure 4 that about 92 % of correct and 
only 12% of possible matches belong to [-20°,20°]. 
Therefore, in order to find correct matches it is 
needed to treat only 12% of possible matches which 
can speed-up the features matching significantly. 

To exploit this outcome, SIFT features are 
divided into several subsets based on their angles. 
The SIFT features of each subset are compared only 
with the features of some subsets, so that the 
resulting correspondences must have absolute 
differences of angles less than a pre-set threshold. 
Here a threshold of 20 is selected because almost all 
correct matches have angle differences in the range 
[-20°, 20°] as illustrated in Figure 4. 

Consider that each of the sets of features R and 
L are divided into b  subsets, so that the first subset 
contains only the SIFT features whose angles belong 
to [ , 2 )bπ π π− − +  and the thi  subset contains 
features whose angles belong to 
[ 2( 1) , 2 )i b i bπ π π π− + − − + . Consequently, the 
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thb  subset contains features whose angles belong to 
[ 2( 1) , )b bπ π π− + − . 
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Figure 4: The experimental PDF of the angle difference 
for the incorrect and the possible matches. 

The number of features of the both sets can be 
expressed as: 

0 1 1... br r r r −= + + +  
0 1 1... bl l l l −= + + +  

(14) 

Because of the evenly distribution of feature 
angles over the range of their angles [ , ]π π−  as 
shown in Figure 3, the features are almost equally 
divided into several subsets. Therefore, it can be 
asserted that the feature numbers of each subset are 
almost equal to each other.  

0 1 1.... br r r r b−≅ ≅ ≅  
0 1 1.... bl l l l b−≅ ≅ ≅  

(15) 

To exclude matching of features that have a 
difference of angles outside the range [ , ]a a− ° ° , 
each subset is matched to its corresponding one and 
to n  neighbouring subsets to the left and to the right 
side  as illustrated in  Figure 5.  In this case  the mat- 
ching time is proportional to the following term: 

( ) ( )

1

0

1

02 1 1

(2 1)

b j n

i j i n

b i n

i j i n

extend i j

extend

extend

T r l

r lT b
r l nT b

− +

= = −

− +

= = −

⎛ ⎞
⎜ ⎟
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⎝ ⎠

= ⋅∑ ∑

⋅≅ ∑ ∑

⋅ ⋅ +
≅

 (16) 

Therefore, the achieved speed-up factor to 
exhaustive search is equal to: 

2 1extend
bSF n= +  (17) 

The relation between n , a  and b  is as follows: 

( ) 360 22 1 2. 1 2360
a bn a nb

⎢ ⎥⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

° ⋅ ⋅⋅ + ⋅ = ⇒ = −  (18) 

where ⎢ ⎥⎣ ⎦• represents the first integer value larger 
than or equal to • . 

Substituting (18) into (17) yields: 

360
2extendSF a
°=  (19) 

The result (19) means that if it is aimed to 
exclude matching of features that have angle 
differences outside the range [-20°,20°], then the 
matching step is accelerated by a factor 9.  

When this modification of original SIFT feature 
matching is combined with the split SIFT features 
matching, the obtained speedup factor is 18 without 
loosing a noticeable portion of correct matches. This 
is illustrated with the experimental results presented 
in the next section. 

 

Figure 5: The matching procedure through the comparison 
of features having angle differences smaller than a pre-set 
threshold. 

5 EXPERIMENTAL RESULTS 

The proposed method for speeding up feature 
matching based on split and extended SIFT features 
was tested using both a standard image dataset, and 
real world stereo images.  

The used image dataset *ID consists of about 
500 images of 34 different scenes. Each scene is 
represented with a number of images taken under 
different photometric and geometric conditions. 
Some examples of the images used in the 
experiments, whose results are presented here, are 
given in Figure 6. 

Stereo images were grabbed by the stereo camera  

)2 ,4b bπ π⎡
⎢⎣  

)0,2 bπ⎡
⎢⎣  

)2 ,0bπ⎡
⎢⎣−  
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Figure 6: Some of the standard dataset images of scenes 
captured under different conditions: (a) viewpoint, (b) 
light changes, (c) zoom, (d) rotation. 

system of the rehabilitation robotic system FRIEND 
(Functional Robot arm with frIENdly interface for 
Disabled people) (Martens et al., 2007). FRIEND is 
intended to support the user in daily life activities 
which demand object manipulation such as serving a 
drink and preparing and serving a meal. The crucial 
for autonomous object manipulation is precise 3D 
object localization. The key factor for reliable 3D 
reconstruction of object points is correct matching of 
correspondence points in stereo images. Hence, 
stereo robot vision is a typical application where fast 
and reliable feature matching is of utmost interest.  

Some examples of stereo images showing 
FRIEND environment in “serving a drink” robot 
working scenario are given in Figure 7. 

In order to evaluate the effectiveness of the 
proposed method, its performance was compared 
with the performances of two algorithms for ANN 
(hierarchical k-means tree and randomized kd-trees). 

 
Figure 7: Stereo images from a real-world robotic 
application used in the experiments. 

Comparisons were performed using the Fast 
Library for Approximate Nearest Neighbors 
**(FLANN), which is a library for performing fast 
approximate nearest neighbour searching in high 
dimensional spaces. For all experiments, the 
matching process is carried out under different 
precision degrees making trade off between 
matching speedup and matching accuracy.  

The precision degree is defined as the ratio 
between the number of correct matches returned 
using the considered algorithm and the number of 
correct  matches  returned  using  exhaustive  search, 

 
*http://lear.inrialpes.fr/people/Mikolajczyk/Database/index.html

 **http://people.cs.ubc.ca/~mariusm/index.php/FLANN/
 

whereas the speedup factor is defined as the ratio 
between the exhaustive matching time and the 
matching time for the corresponding method 

For both ANN algorithms, hierarchical k-means 
trees and randomized kd-trees, the precision is 
adjusted by the number of nodes to be examined, 
whereas for the proposed “Split and Extended SIFT” 
method, the precision is determined by adjusting the 
width of the range of correct matches corw  
(explained in Section 3). The correct matches are 
determined using the Nearest Neighbor Distance 
Ratio matching strategy (Lowe, 2004) with distance 
ratio equal to 0.6, followed by RANSAC algorithm 
to keep only inliers. 

Two experiments were run to evaluate proposed 
method, on real stereo images and on the images of 
the dataset ID. In the first experiment, SIFT features 
are extracted from 200 stereo images. Each two 
corresponding images are matched using all three 
considered algorithms under different degrees of 
precision. The experimental results are shown in 
Figure 8.  
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Figure 8: Trade-off between matching speedup and 
matching precision for real stereo image matching. 

As can be seen from Figure 8, the performance 
of the proposed method outperforms both ANN 
algorithms for all precisions. For precision around 
99% level, the proposed method provides a speedup 
factor of about 20. For the lower precision degree 
speedup factor is much higher.  

As evident from Figure 8 by using proposed 
“Split and extended SIFT” the speedup factor 
relative to exhaustive search can be increased to 80 
times while still returning 70% of the correct 
matches. 

The second experiment was carried out on the 
images of the dataset ID. As said before, this dataset 
consists of about 500 images of various contents. 
These images represent images of 34 different 
scenes taken under different conditions such as 
rotation, zoom, light and viewpoint changes. 

For the performed experiments the images of 
dataset are grouped according to these different con- 
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Figure 9: Trade-off between matching speedup (SF) and 
matching precision for image groups (a) light, (b) 
viewpoint, (c) rotation, (d) zoom changes. 

ditions into viewpoint, zoom, rotation and light 
group. For each group, SIFT features are extracted 
from each image and pairs of two corresponding 
images are matched using hierarchical k-means tree, 
randomized kd-trees and proposed “Split and 
Extended SIFT”, with different degrees of precision. 
The experimental results are shown in Figure 9. 

As evident from Figure 9, proposed “Split and 
Extended SIFT” outperforms the both other 
considered ANN algorithms in speeding up of 
features matching for all precision degrees. 

6 CONCLUSIONS 

In this paper two novel ideas are proposed to 
accelerate the matching process. Both ideas are 
based on the same principle, which is comparison of 
only features that share the same property which 
may lead to correct matches. The proposed method 
was compared with two algorithms for ANN 
searching, hierarchical k-means and randomized kd-
trees. The presented experimental results show that 
the performance of the proposed method 
outperforms two other considered algorithms. Also, 
the presented experimental results show that the 
feature matching step can be accelerated 18 times 
with respect to exhaustive search without losing a 
noticeable portion of correct matches. When only 
50% of correct matches is required, the speedup 
factor can be increased to more than100. 
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