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Abstract 

This paper presents a new approach for feature description 
used in image processing and robust image recognition 
algorithms such as 3D camera tracking, view reconstruction 
or 3D scene analysis. 
State of the art feature detectors distinguish interest point 
detection and description. The former is commonly performed 
in scale space, while the latter is used to describe a 
normalized support region using histograms of gradients or 
similar derivatives of the grayscale image patch. This 
approach has proven to be very successful. However, the 
descriptors are usually of high dimensionality in order to 
achieve a high descriptiveness.  
Against this background, we propose a binarized descriptor 
which has a low memory usage and good matching 
performance. The descriptor is composed of binarized 
responses resulting from a set of folding operations applied to 
the normalized support region. We demonstrate the real-time 
capabilities of the feature descriptor in a stereo matching 
environment. 
 
 
Keywords: Feature Descriptor, Feature Matching, 3D Scene 
Analysis, Stereo Matching. 

1 Introduction 

In the past years much attention has been paid to the 
development of robust interest point detectors and descriptors. 
SIFT [1] and SURF [2] are two prominent examples of such 
combined interested point detectors with associated 
descriptors. Moreover a number of dedicated region detectors 
have been proposed [7][8][9][10][23]. In-depth comparisons 
of the different detectors and descriptors have been carried 
out in [4] and [5]. 
Usually, the interest point detector searches for extremal 
values of a defined function (e.g. Laplacian/Difference of 
Gaussian or Determinant of Hessian functions) in scale space. 
Later on, a region around this interest point, nominated as 
support region, is described using a specific descriptor, while 
the support region might be normalized in scale and possibly 
in orientation (to achieve scale invariance and rotational 
invariance respectively). An automatic scale selection is 
commonly performed as proposed in [7]. Some region 
detectors are even invariant against affine transformations [6]. 

The commonly used descriptors, such as SIFT [1], SURF [2], 
or GLOH [4] use histograms of gradients to describe the 
support region. High dimensional feature vectors are used to 
describe the feature point. SURF uses 64 dimensions while 
SIFT uses 128 dimensions. Each dimension is typically 
represented by a floating point number or by a 1-byte integer 
value. This leads to a high memory usage and a fairly slow 
matching process. 
Consequently, effort has been spent to reduce the 
dimensionality. PCA-SIFT proposed by [14] and GLOH [4] 
reduce the dimensions by performing a principal component 
analysis of the feature vectors. However, the description 
process is slowed down by this operation. Moreover, the 
descriptors itself remain floating point numbers or integer 
values which use the relatively slow L2-norm to match. On 
the other hand, the matching quality in terms of recall rate is 
much higher than simpler interest point detectors such as the 
Harris Corner detector [11] in combination with a cross-
correlation based matching.  
In the recent past, research has been conducted to build 
descriptors consisting of binary elements, denoted as binary 
strings in order to reduce the bitrate needed to transmit and to 
store the descriptors and to reduce the matching time, as 
matching can then be performed using the Hamming distance 
which can be efficiently computed on modern CPUs. 
Different descriptor binarization strategies exist. Some 
approaches first compute a higher dimensional descriptor, 
which will later be binarized by hashing the real-valued 
interest point descriptors [19], by performing a transform 
coding [20] or by direct binarization of the descriptor 
components [22]. A good overview of state of the art 
strategies for reducing the descriptor bitrate is given in [21] 
where a descriptor designed for efficient compression is being 
proposed. 
On the other hand, an even further speed up can be achieved 
when the description process leads directly to a binarized 
descriptor. A prominent example for this method is the 
BRIEF descriptor [18]. A number of intensity comparisons 
(e.g. 256 in the case of BRIEF-256) is conducted which 
results in a 256-bit descriptor. This approach is nearest to the 
method proposed in this paper. Our proposed descriptor will 
therefore be compared to the BRIEF-256 descriptor. 
The basic idea of the descriptor proposed in this paper is that 
a number of convolutions with a set of folding kernels is 
performed on the support region. The kernels consist of basic 
geometric structures, namely edges, ridges, corners, blobs, 
and saddles. As all these kernels have a dedicated meaning in 
computer vision, we call them therefore semantic kernels. As 
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the filter responses are binarized, we call the method semantic 
kernels binarized, or SKB. 
Most of the kernels are computed for different orientations. In 
total, 16 kernels are evaluated at 16 positions around the 
interest point resulting in 256 kernel responses.  
The filter response to the kernels is now binarized. We 
describe three different binarization strategies. In the easiest 
way, we need only 1 bit per filter response, in a more 
complex scenario we use 2 bits per filter response. Depending 
on the method chosen, all responses above a certain threshold 
t are set to 1, all others are set to 0, while the number of bits 
set to 1 can be normalized. This can be performed by 
choosing the threshold t such that a predefined number of bits 
are above the threshold. 
The descriptor has consequently a dimension of 256 (512 
when using 2 bits per filter response), but a size of only 32 
(64) bytes. As comparison, SIFT uses 128 floating point 
numbers, resulting in a descriptor size of 4x128 = 512 bytes. 
The matching process can now be performed very efficiently. 
Indeed only a binary AND operation needs to be performed in 
order to calculate the scalar product between two feature 
vectors. Subsequently the population count of the bits set to 1 
is evaluated. Modern CPUs support the SSE4.2 instruction set 
[17]. This contains dedicated functions to evaluate the 
number of bits set of a 64 bit number, i.e. the population 
count. Only 4 (8) SSE executions are required to evaluate the 
scalar product of two possibly matching interest points. The 
matching operation only needs to calculate the Hamming 
distance which can be evaluated very efficiently on modern 
CPUs.  
The main contribution of this paper is the SKB descriptor 
which is described in section 3. However, to demonstrate its 
capability for real-time applications in a stereo matching 
environment, we briefly describe the complete processing 
chain which includes a fast interest point detector described in 
section 2. Section 4 describes different matching strategies. In 
section 5 results are presented, i.e. comparisons with other 
descriptors and a proof of concept of the real-time capability 
of the feature descriptor in combination with a fast interest 
point detector in a stereo matching environment. 
 
2  Interest Point Detector 
 
In this section, we briefly describe the interest point detector 
used in our real-time implementation. The interest point 
detector is a variant of SUSurE which has been proposed in 
[23]. 
We use a blob detector to detect interest points in scale space. 
Blobs are regions whose grayscale value near the center is 
higher (or lower) than the surrounding pixels. The Laplacian 
of Gaussian function, or similar functions such as the 
Mexican hat function can be used to detect blobs. In the case 
of SUSurE, a binarized kernel is used to detect extremal 
values of the Laplacian of Gaussian function. The detector 
uses only a single filter operation performed on an integral 
image in the box filter variant of SUSurE. 

2.1 Filter Response Evaluation 

The kernel is particularly efficient to evaluate. While [13] 
showed that a Difference of Gaussians can be used to 
approximate the Laplacian of Gaussian, SUSure’s approach is 
based on an even further going simplification. Figure 1 shows 
the kernel used for the convolution. The innermost square has 
positive weights, surrounded by a square with negative 
weights. The black and the white region have the same 
surface. The outer region (grey) does not need to be 
considered any more. The weights have been set to zero. 

 

 
Figure 1: Kernel used for searching extremal values of the 

Laplacian of Gaussian in scale space. 
 
An integral image is a very efficient way to evaluate box filter 
responses [15]. Consequently an integral image is calculated 
as a first pre-processing step. Using integral images, one can 
easily evaluate the sum of (rectangular) image regions by 
simple pixel fetch. 
In our case, we need to evaluate only two lobes in order to 
evaluate the filter response. We evaluate only a single digital 
filter. For each lobe, the four corners need to be evaluated. In 
total, only eight pixel fetches are needed to evaluate the 
complete filter response. 
The filter response r of our blob filter is: 
 � = (� + � + � + �) − (� + � + 	 + 
).     (1) 

 
Please note that the convolution operation is constant in time 
over all scales. 

2.2 Building the Scale Space Pyramid 

The filter responses are stored in a filter response pyramid. 
The pyramid consists of n octaves. Each octave consists of m 
intervals, i.e. m different scales exist per octave. Within the 
first octave, all pixels in the integral image are evaluated. For 
the subsequent octave, a 1:2 subsampling in x- and y-direction 
is applied, in the next octave a 1:4 subsampling etc. This 
saves processing time and memory usage for the filter 
response images. Within an octave, the sampling remains 
constant for all intervals.  
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2.3 Search for Local Extrema 

After the filter responses have been evaluated, one searches 
for local extrema in the filter response images. All pixels in 
the convoluted images above a threshold t are examined.  
A neighborhood of 26 surrounding pixels is evaluated – 8 

neighbors in the current scale, and 2x9 neighbors in the 
adjacent scales.  

Figure 2 illustrates this process. 
 

 
 
Figure 2: Non-maximum suppression and local search for 

extremal values. 
 
The search for local extrema can be efficiently implemented 
as proposed in [16]. 

2.4 Interest Point Localization 

The local maxima which are above a threshold t are now 
candidates for interest points. In the higher octaves, the 
sampling of the filter responses is coarser than in the lower 
octaves, with respect to the integral image. Therefore, an 
additional sampling will be performed in our real-time 
implementation for the filter response around candidate pixels 
in higher octaves. 

We will now need to interpolate the subpixel location of 
the interest point in scale and position. The basic mechanism 
is to build a Taylor polynomial of second degree [12].  

The interest point candidates are not numerically stable if 
they do not correspond to a well defined blob, but to a ridge-
like structure. If the subpixel interpolation position has a 
distance of more than ½ pixel from the original integer pixel 
position, the interest point candidate is discarded.  
An explicit edge rejection (as performed within the DoG 
search used by SIFT [1]) is not performed here, but it can 
easily be introduced if required. However, our experience is 
that it is not necessary. 
After the subpixel interpolation, the interest point has now a 
scale and position, which can later be used by the descriptor 
to define a suitable support region. Please note that we do not 
describe a rotational invariant detector here. Nevertheless, 
one can easily add support for rotational invariance by 
extracting the main gradient direction and “turn” the interest 
point (and later the support region) such that the direction 
points northwards. However, for many applications such as 
stereo matching with nearly rectified cameras, rotational 
invariance is not necessary. 

3 The SKB-Descriptor 

The major contribution of this paper is a new robust 
descriptor. The basic idea is to perform a set of convolution 
operations on the support region of the interest point. In total 
16 different kernel responses are evaluated on 16 positions 
within the support region. The 16 kernels represent basic 
geometric structures which correspond to corners, edges, 
ridges, blobs, and saddles. This explains the naming semantic 
kernels.  
This results in 256 dimensions of the descriptor. However, the 
filter responses can be binarized. Consequently, despite the 
high descriptor dimension, only 256 bit, i.e. 32 bytes are 
needed. This is particularly important, if an important number 
of interest point descriptors needs to be stored or transmitted 
over a network with limited bandwidth. 
In addition, the matching can be performed very efficiently, 
as binary AND operations can be performed in order to 
evaluate the scalar product of two descriptors. Details will be 
provided in section 4. 

3.1 Defining the Support Region 

A first step of the description process is to interpolate the 
support region based on the subpixel position and scale of the 
interest point. If required, one can achieve rotational 
invariance by “turning” the support region such that the main 
gradient direction points northwards. 
We propose two variants of the descriptor: 
  

� Type A: support region of 12x12 pixel and 
overlapping kernel set evaluation regions, optimized 
for interest points with complex gradient structure in 
the center of the support region (e.g. corner 
detectors) 

� Type B: support region of 16x16 pixel with 
equidistant and non-overlapping kernel set 
evaluation regions, optimized for interest points with 
uniform gradient structure, or (as for blob detectors) 
for interest points where most of the gradients occur 
at the border of the support region. 

Type A: Overlapping Kernel Set Evaluation Regions 

We will now describe the process of interest point description 
in detail. Let us assume, that an interest point has been 
detected and a normalized support region of 12x12 pixel 
around the interest point has been computed. 
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Figure 3: All kernels are evaluated at the positions around 

the red circles. The blue circle indicates the position of 
the interest point. Please note that the kernels have a size 
of 4x4 pixels, and that their respective evaluation 
regions overlap. 

 
Around each of the red dots in Figure 3, a number of 16 
kernels will be evaluated. An example is shown in Figure 4. 
All 16 kernels are shown in Figure 7 to Figure 10. 

 

 
Figure 4: Example of a corner-like kernel of size 4x4. 
 
Apparently, the regions of evaluation overlap as the kernels 
have a size of 4x4 and some evaluation points are only two 
pixels apart. Some pixels contribute to one, two or, three 
evaluation points. Figure 5 illustrates this behavior. The inner 
region will be evaluated three times, the outer pixel only 
once. This approximates a Gaussian giving more statistical 
weight to the center pixels. 
 

 
Figure 5: Overlap of the kernel set evaluation regions. The 

inner region will be evaluated three times, the outer 
pixels only once. This approximates a Gaussian giving 
more statistical weight to the center pixels. 

 
This type of description is suitable when the most important 
gradients are near the interest point. This is the case for region 

detectors or interest point detectors which search for corners, 
saddles, etc. 

Type B: Uniform Kernel Set Evaluation Regions  

In the case of blob detectors, one should use a support region 
of 16x16 pixel. The sampling is now uniform and non-
overlapping. Figure 6 illustrates this type of support region. 
All 16 kernels are evaluated at the red dot positions. The 
kernels have a size of 4x4, thus, the evaluated regions do not 
overlap. In total, 256 filter responses are calculated. 
 

 Figure 6: Support region suitable for blob detectors. 
Equidistant and non overlapping regions for kernel set 
evaluation. 

Blobs do not have a complex gradient structure at the center. 
The important gradients lie at the border of the support 
region. This type of support region is more suitable when the 
descriptor is combined with a blob-based interest point (or 
region) detector. Just like in the type A version, 16 kernels are 
evaluated at 16 positions resulting in 256 filter responses. 

3.2 The Kernels 

The support regions are convoluted using 16 different kernels. 
All kernels represent a named geometric structure justifying 
the terminology of semantic kernels. Many kernels exist for 
different orientations. For instance, four main directions are 
evaluated among the edge-like kernels. 
All kernels are illustrated in Figure 7 to Figure 10. 

 

 
Figure 7: Edge-like kernels. Four different main directions 

are evaluated. 

 
Figure 8: Corner-like kernels. 
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Figure 9: Ridge-like kernels 

 
Figure 10: Blob-like and saddle-like kernels 

3.3 Filter response Binarization  

The filter responses resulting from the convolution with the 
semantic kernels can be binarized. There are three versions to 
perform this task.  

Variant A: 256 bits 
In the easiest way only the signum of the filter response is 
used. In that case, the descriptor has a dimension of 256 bits. 
It is not normalized, i.e. the number of bits which are set can 
differ from descriptor to descriptor. Matching can later be 
performed by evaluating the Hamming distance between two 
descriptors. 

Variant B and C: 512 bits 
Variant B and C use 2 bits per filter response r to describe a 
tri-state situation. Three cases are distinguished: positive 
answer of high amplitude, positive or negative answer of low 
amplitude, and negative answer of high amplitude. The 
resulting bit pair b depends on the filter response r and the 
threshold t: 
 

� = �   �: � > �      ��: −� ≤ � ≤ ��: � <  −�  
�   (2) 

 

In variant B, the threshold t is fixed. This makes the 
computation faster, but also impairs the robustness against 
contrast changes. The descriptor is not normalized. The 
matching needs to evaluate the Hamming distance. 
In variant C, the threshold t is self-normalized. The aim is to 
normalize the number of bits set.  We define a unit length u to 
normalize the descriptor. The threshold t is now chosen such 
that for each descriptor, exactly u bits are set. Later matching 
can then be performed by evaluating the scalar product. 
As we have 512 bits, representing a tri-state, the unit length u 
is calculated as following:  
 

� = ���
� � = �.  (3) 

 

 

 

4 Matching 

4.1 Matching Norm 

One of the main advantages of the proposed descriptor is the 
fast matching ability. The descriptors are binary numbers. 
Consequently the scalar product which is needed for a 
correlation matrix can be computed very efficiently as well as 
the Hamming distance between two descriptors. 

Scalar Product 
To evaluate the scalar product s, a binary AND is performed 
between the feature vectors a and b. Subsequently, the 
number of bits set is evaluated, namely the population count: 

 
     � = ���_�����(� ∧ �).  (4) 

 
The scalar product can be computed if the length of the 
feature vector is normalized as it is the case for binarization 
variant C. 

Hamming Distance 
The Hamming distance h between the feature vectors a and b 
is calculated using the binary XOR and subsequent evaluation 
of the population count: 

 
 = ���_�����(� ∨ �).  (5) 
 

The Hamming distance can be computed when the length of 
the feature vector is not normalized as it is the case for 
binarization variant A and B.  
Modern CPUs support SSE4.2 [17] which has dedicated 
instructions to calculate the population count. The CPU 
instruction pop_cnt64 evaluates the population count of a 64 
bit number. Only eight executions of this instruction are 
needed for the 512 dimensional feature vector (variant C) and 
only 4 executions are needed for a 256 dimensional feature 
vector (variants A and B). 

4.2 Additional Matching Constraints 

The best matching feature vector (variant B and C: lowest 
Hamming Distance, variant A: highest scalar product) is 
compared to the second best. To achieve better matching 
results, we demand that scalar product of the best match is s 
times higher than the second best match. If the Hamming 
distance is evaluated, we demand that the lowest distance is s 
times lower than the second lowest distance. 

5 Results and Conclusion  
We have conducted a set of comparison tests. In a first step 
we’ve compared the three variants of the SKB descriptor 
using the evaluation framework and dataset used in [4] 1.  

                                                           
1 The data set is available at http://www.robots.ox.ac.uk/~vgg/research/affine. 
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Subsequently, we compared the fastest SKB variant with the 
BRIEF-256 descriptor [18] to compare the recall rate and the 
processing time of the description process. 
In a last test we evaluated the runtime of a stereo matching 
application and its detection quality in a real-time 
environment. 

SKB  vs.  GLOH, SIFT and Cross Correlation 
In a first test we compared the three variants of the SKB 
descriptor with GLOH, SIFT, and Cross Correlation using the 
test framework provided in [4]. 
As region detector we chose the Hessian-Laplace detector 
which is part of the region detectors provided in the test 
framework. We chose four images from the data set which do 
not require rotational invariance as we intended to use the 
descriptor for matching feature points in nearly rectified 
stereo images. Figures 11 to 14 show the results of this 
performance evaluation. For all test images, image 1 has been 
matched with the respective image 6, which shows the 
strongest artifacts, i.e. Blur for the Bikes and Trees images, 
Jpeg compression for the UBC image, and illumination 
change for the Leuven image. 
The descriptor shows a very high precision when the 
threshold is chosen to reproduce a recall rate around 50% of 
the maximum recall rate. For applications such as stereo 
matching and calibration purposes, it is important to have a 
low outlier rate while a reasonable number of feature points is 
sufficient for this task. In other words, our aim is not to 
maximize the recall for high 1-precision values, but to 
maximize the precision at a given recall rate. For our tests, we 
chose 50% of the maximum recall rate as target value. 
One can observe that the three variants A, B, and C show 
strong results at low thresholds for the nearest neighbour 
matching. In that scenario, the precision is high compared to 
other descriptors (Bikes, UBC, Trees). However, in the test 
image Leuven, which tests for strong illumination changes, 
other descriptors show a better performance.  

SKB vs. BRIEF 
We compared the fastest SKB variant (SKB-A) with the 
OpenCV 2.2 implementation of BRIEF-256 as described in 
[18]. Both descriptors use 256 Bit and can be matched using a 
Hamming distance matcher. We performed a test where the 
recall rate was calculated for both descriptors using images 
provided in [4]. For different image pairs, the SURF detector 
[2] was used to detect interest points for the first image. 
Subsequently, this interest point was transferred using a 
ground truth homography into the second image. This 
approach is also performed in [18]. The homographies and 
images are part of the test framework provided in [4]. 
In the next step, the interest points were described using 
SKB-A and BRIEF-256. In a last step, the feature points were 
matched using a nearest neighbor matcher. Due to the ground 
truth homography, one can examine the rate of correct and 
false matches. 
For each image set, image 1 is subsequently matched against 
the images 2, 3, 4, 5, and 6. The image degradation (blur, 

illumination change, Jpeg compression) increases within each 
set. Consequently, the recall rate for the comparison between 
image 1 and 2 is higher than the comparison between image 1 
and 6. The result is illustrated in figure 16. As one can see, 
the recall rate is higher for SKB in all cases.  
We compared the runtime of SKB-A, SIFT, SURF, and 
BRIEF-256 descriptors when describing 8372 feature points. 
For SIFT, SURF and BRIEF the OpenCV 2.2 implementation 
was used using a single CPU at 3.33 GHz. The matching 
process was not compared, as it is identical between BRIEF-
256 and SKB-A. 

 
Descriptor Runtime in ms 
SIFT 
SURF 
BRIEF-256 
SKB-A (incl. Integral Image) 
SKB-A 

2959 
457 

42 
24 
17 

 
Table 1: Runtime of different descriptors. 8375 feature 

points needed to be described. SKB-A performs the 
fastest even when the calculation of the integral image is 
included. Without counting the time for the integral 
image, it runs around 2.5 times faster than BRIEF-256. 

Table 1 shows the result of the runtime comparison. SKB-A 
performs the fastest with 24 ms for 8372 feature points, 
including the time required for the computation of the integral 
image. If the integral image is already available (e.g. already 
computed by the interest point detector) SKB-A needs only 
17 ms. 

Real-Time Stereo Matching 
In a third test, we used the SKB descriptor for a real-time 
stereo matching application. The video resolution was 
960x540 pixels, the frame-rate was 25 Hz, i.e. 40 ms were 
available for the complete detection, description, and 
matching process.  
A single screenshot is shown in Figure 15. The full video 
sequence is available as supplementary data. Around 3000 
interest points were described per frame and camera, resulting 
in 600 consistent matches in average. The matching was 
performed using a left-right consistency check (i.e. matching 
twice). Afterwards, a RANSAC algorithm was used to 
estimate the fundamental matrix and to subsequently 
eliminate outliers according to [3]. Table 1 shows the time 
consumption of the real-time matching application running on 
an Intel Xeon X5680 CPU at 3.33 GHz. The CPU has 6 cores 
plus 6 cores via hyper threading. The matching was 
performed using all CPUs, while the interest point detection 
and description was performed on 2 cores (one per camera). 
The interest point description was performed on every second 
pixel, but the full resolution was used for the pixel position 
interpolation. 
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Processing Step Runtime in ms 
Integral Image 
Binarized LoG 
SKB Descriptors 
Matching 
RANSAC 
Total 

2 
12 
3 

12 
8 

37 
 
Table 2: Runtime of the different image processing steps. At 

25 Hz, an image pair needs to be processed within 40 ms. 
Table 2 shows that the real-time requirement was met within 
the stereo matching application. The description process and 
the matching needed 12 ms each. The description could be 
speeded up when using more than 2 CPUs for the process. 
However, even in this configuration, the stereo matching 
application ran fast enough for 25 fps. 

Conclusion 
We have proposed a new feature descriptor which showed 
strong results at low outlier rates. Its suitability in terms of 
robustness and speed were demonstrated in a comparison with 
the BRIEF descriptor as well as the SIFT and GLOH 
descriptor. Moreover the SKB was successfully used within a 
real-time stereo matching environment, underlying its 
suitability for real-time image processing applications. 
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Figure 11: Bikes (Blur). The three variants SKB-A, SKB-B, and SKB-C have a similar performance. They show a 

particularly good performance at low thresholds compared to SIFT, GLOH, and Cross Correlation. At a recall rate of 
46% which is half of the maximum recall rate, SKB-B has the highest precision, i.e. the fewest outliers. 

 
Figure 12: Trees (Blur). The three variants SKB-A, SKB-B, and SKB-C have a similar performance. They show a 

particularly good performance at low thresholds compared to SIFT, GLOH, and Cross Correlation. At a recall rate of 
21% which is half of the maximum recall rate, SKB-C has the highest precision, i.e. the fewest outliers. 
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Figure 13: UBC (Jpeg compression artifacts). The three variants SKB-A, SKB-B, and SKB-C have a similar performance. 

They show a particularly good performance at low thresholds compared to SIFT, GLOH, and Cross Correlation. At a 
recall rate of 46% which is half of the maximum recall rate, SKB-A has the highest precision, i.e. the fewest outliers. 

 
Figure 14: Leuven (Illumination change). The three variants SKB-A, SKB-B, and SKB-C have a similar performance. 

They perform better than Cross Correlation, but worse than SIFT and GLOH. At a recall rate of 43% which is half of 
the maximum recall rate, SIFT has the highest precision, i.e. the fewest outliers. GLOH and SKB-C have the same 
precision at that recall rate. 
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Figure 15: Screenshot of the real-time stereo matching application. One can see that the scene contains objects in different 

distances to the stereo camera. The matched feature points are coloured according to their horizontal disparity, brown 
for near objects, blue for far objects in blue. Apparently, no outliers are visible. The full sequence is available as 
supplementary data. The original resolution used for the matching was 960x540 pixel. 

 

 

 

 

 
 
Figure 16: The SKB-A descriptor is compared to the BRIEF-256 descriptor using four image series. Each of the image 

series consists of 6 images, resulting in 5 pairs, i.e. image 1 is matched against the images 2 to 6. SKB-A shows a higher 
recall rate for all images. 
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