
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.4 APRIL 2008
971

PAPER Special Section on Selected Papers from the 20th Workshop on Circuits and Systems in Karuizawa

A High-Speed Design of Montgomery Multiplier

Yibo FAN†a), Nonmember, Takeshi IKENAGA†, Member, and Satoshi GOTO†, Fellow

SUMMARY With the increase of key length used in public crypto-
graphic algorithms such as RSA and ECC, the speed of Montgomery mul-
tiplication becomes a bottleneck. This paper proposes a high speed design
of Montgomery multiplier. Firstly, a modified scalable high-radix Mont-
gomery algorithm is proposed to reduce critical path. Secondly, a high-
radix clock-saving dataflow is proposed to support high-radix operation and
one clock cycle delay in dataflow. Finally, a hardware-reused architecture
is proposed to reduce the hardware cost and a parallel radix-16 design of
data path is proposed to accelerate the speed. By using HHNEC 0.25 µm
standard cell library, the implementation results show that the total cost
of Montgomery multiplier is 130 KGates, the clock frequency is 180 MHz
and the throughput of 1024-bit RSA encryption is 352 kbps. This design is
suitable to be used in high speed RSA or ECC encryption/decryption. As a
scalable design, it supports any key-length encryption/decryption up to the
size of on-chip memory.
key words: Montgomery multiplier, high-speed, high-radix, scalable

1. Introduction

Public key cryptography plays a very important role in mod-
ern information security. It not only can be used to en-
crypt/decrypt data like symmetric cryptography, but also
can provide service such as confidentiality, authentication,
data integrity check and non-repudiation. RSA algorithm
[1], which is proposed by Rivest, Shamir and Adleman in
1976, is the most widely used public key cryptographic al-
gorithm. ECC algorithm, which is introduced by Koblitz
[2] and Victor S. Miller [3], is another very famous public
cryptographic algorithm.

Both of RSA algorithm and ECC algorithm use mod-
ular multiplication as the primary operation. With the in-
crease of the key-length used in these algorithms, the speed
of modular multiplication becomes a bottleneck. A lot of
papers have been published to accelerate the speed of mod-
ular multiplication. Till now, Montgomery modular multi-
plication algorithm [4] is considered as the most efficient
algorithm. A lot of hardware implementations are based on
this algorithm. Some of them focus on scalable design [5],
[6], which makes the hardware implementation have abil-
ity to handle any key-length encryption/ decryption. Some
focus on high-radix design in [7]–[9], [11], which can re-
duce total clock cycles for multiplication. Some focus on
dataflow optimization [10], which can reduce the delay cy-
cles in dataflow.

Manuscript received June 22, 2007.
Manuscript revised October 3, 2007.
†The authors are with IPS, Waseda University, Kitakyushu-shi,

808-0135 Japan.
a) E-mail: fanyibo@ruri.waseda.jp

DOI: 10.1093/ietfec/e91–a.4.971

In this paper, a high-speed design of Montgomery mul-
tiplier is presented. Firstly, by using the proposed modi-
fied scalable high-radix Montgomery algorithm, it can par-
allelize the data path and shorten the critical path. Secondly,
by using the proposed high-radix clock-saving dataflow, it
achieves high-radix design with one clock cycle delay in
dataflow. Finally, a compact hardware design of Mont-
gomery multiplier is proposed to reduce hardware cost and
accelerate the speed.

The rest of the paper is organized as following: Mont-
gomery algorithm and the proposed modified algorithm are
introduced in Sect. 2. The proposed clock-saving dataflow
is introduced in Sect. 3. The architecture design of Mont-
gomery multiplier is presented in Sect. 4. The experimental
results and analysis are presented in Sect. 5. Finally, conclu-
sion is given in Sect. 6.

2. Algorithms

Table 1 shows the notations used in this paper.

2.1 Previous Algorithms

Algorithm 1: Montgomery Multiplication Algorithm

Input: X, Y , M
Output: S = MM (X, Y) = XYr−1 mod M
1. S = 0
2. For i = 0 to N − 1
3. S = S + Xi × Y

Table 1 Notations used in this paper.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

972
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.4 APRIL 2008

4. S = S + S 0 × M
5. S = S/2
6. End For
7. If S >= M Then S = S − M
8. Return S

Algorithm 1 shows the original Montgomery algo-
rithm. The advantage of this algorithm is that the division
in modular operation is replaced by shift. In this way, this
algorithm is very suitable to be implemented in hardware.

The direct hardware implementation of Montgomery
algorithm can’t support variable key-length operation. To
make Montgomery algorithm scalable to variable key-length
and improve the speed of this algorithm, Tenca and Koç pro-
posed a scalable high-radix Montgomery multiplication al-
gorithm:
Algorithm 2: Scalable High-radix Montgomery Multiplica-

tion Algorithm

Input: X, Y , M
Output: S = MM(X, Y) = XYr−1 mod M
1. S = 0, C = 0, X−1 = 0
2. For j = 0 to N − 1 Step k
3. qY j = Booth(Xj+k−1... j−1)
4. (C0, S 0) = C0 + S 0 + qY j × Y0

5. qM j = (S 0
k−1...0 + C0

k−1...0) × (2k − (M0)−1
k−1...0) mod 2k

6. (C0, S 0) = C0 + S 0 + qM j × M0

7. For i = 1 to NW − 1
8. (Ci, S i) = Ci + S i + qY j × Yi + qM j × Mi

9. S i−1 = (S i
k−1...0, S i−1

BPW−1...k)

10. Ci−1 = (Ci
k−1...0, Ci−1

BPW−1...k)
11. End For
12. S NW−1 = sign ext(S NW−1

BPW−1...k)

13. CNW−1 = sign ext(S NW−1
BPW−1...k)

14. End For
15. P = S + C
16. If P>= M Then P = P − M
17. Return P

The sign ext in step 12 and 13 is sign extending op-
eration. The Booth function in step 3 is used to support
high-radix operation. The detail of Booth function is,

Booth (Xj+k−1... j−1)=−2kX j+k−1+2k−1Xj+k−2 · · ·+20Xj−1 (1)

Algorithm 2 provides some advantages compared to al-
gorithm 1. Firstly, word-based operation makes the mul-
tiplier be scalable to variable key-length. Secondly, high-
radix design processes multiple bits of X in every loop (Step
3, Algorithm 2). It can reduce the clock cycles used in mul-
tiplication. Thirdly, carry-save adder is introduced to reduce
critical path.

However, there are some disadvantages in Algorithm
2. Firstly, high radix design makes the calculation of qY j

and qM j very complex, and the path delay will be increased
very quickly when using higher radix. This problem can be
solved by using our proposed algorithm (Sect. 2.2) and data

path architecture (Sect. 4). Secondly, scalable design makes
the data be dependent in pipeline, which causes two clock
cycles delay in pipeline. This problem also can be solved
by using our proposed high-radix clock-saving dataflow in
Sect. 3.

2.2 Proposed Algorithm

Algorithm 3: Modified scalable high-radix Montgomery
multiplication algorithm

Input: X, Y , M
Output: S = MM(X, Y) = XYr−1 mod M
1. S = 0, C = 0, X−1 = 0, Y = Y × 2k

2. For j = 0 to N + k − 1 Step k
3. qY j = Booth(Xj+k−1... j−1)
4. qM j = (S 0

k−1...0 + C0
k−1...0) × (2k − (M0)−1

k−1...0) mod 2k

5. (C0, S 0) = S 0 +C0 + qY j × Y0 + qM j × M0

6. For i = 1 to NW − 1
7. (Ci, S i) = S i + Ci + qY j × Yi + qM j × Mi

8. S i−1 = (S i
k−1...0, S i−1

BPW−1...k)

9. Ci−1 = (Ci
k−1...0, Ci−1

BPW−1...k)
10. End For
11. S NW−1 = sign ext(S NW−1

BPW−1...k)

12. CNW−1 = sign ext(S NW−1
BPW−1...k)

13. End For
14. P = S + C
15. If P>= M Then P = P − M
16. Return P

Algorithm 3 is different from algorithm 2. Firstly, in
step 1, Y is multiplied by 2k. In this way, all of the k-LSB
of Y is zero. The result of (S 0

k−1...0, C0
k−1...0) is not changed

by adding qY j × Y0. The calculation of qM j is independent
of qY j. Secondly, the calculation of qY j and qM j are per-
formed in parallel (Step 3, 4), while these two calculations
are calculated in serial in algorithm 2 (Step 3, 5).

For high-radix design, the path delay of qY j and qM j is
large. In this way, our proposed algorithm can support paral-
lel calculation of qY j and qM j, and it achieves much shorter
critical path than algorithm 2. Our proposed algorithm is
much more suitable for high-speed hardware implementa-
tion of Montgomery algorithm.

3. Data Flows

3.1 Previous Dataflows

The most frequently used dataflow for scalable high-radix
Montgomery algorithm is shown in Fig. 1(a), which is pro-
posed by Tenca and Koç in [7]. This data flow is a pipeline
data flow of algorithm 2. Due to the data dependence in al-
gorithm 2 (In Step 9, 10, the output (S i−1, Ci−1) needs both
of (S i, Ci) and (S i−1, Ci−1)), there are two clock cycles delay
in this dataflow. As a result, this dataflow needs more clock
cycles to complete one time multiplication.

FAN et al.: A HIGH-SPEED DESIGN OF MONTGOMERY MULTIPLIER
973

(a) Tenca-Koç Dataflow Two clock cycles delay
Used for Algorithm 2 with Radix 2k

(b) Herris Dataflow One clock cycles delay
Used for Algorithm 2 with Radix 2

(c) Proposed Dataflow One clock cycles delay
Used for Algorithm 3 with Radix 2k

Fig. 1 Dataflow.

In order to deal with this problem, Herris proposed a
new radix-2 dataflow in [10], which is shown in Fig. 1(b).
This dataflow achieves one clock cycle delay by removing
data dependence in algorithm 2. As shown in algorithm 2,
the right-shifting (Step 9, 10.) causes data dependence. In
Herris’ dataflow, the right-shifting of product S is removed.
As a result, the product S is equivalently be multiplied by 2
in every pipeline stage, so the input data (Y, M) of next stage
need to be multiplied by 2 too.

Tenca’s dataflow uses carry-save result and support
high-radix design. Herris’ dataflow achieves one clock cy-
cle delay while using radix-2. However, both of Tenca’s
dataflow and Herris dataflow base on algorithm 2, they can’t
be used in this paper.

3.2 Proposed High-Radix Clock-Saving Dataflow

The proposed dataflow is shown in Fig. 1(c). This dataflow
bases on proposed algorithm 3. It achieves both of one clock
cycle delay and high-radix design.

As shown in Fig. 1(c), operand Y is initially multiplied
by 2k as specified in algorithm 3, so the input data (Y, M) for
each stage becomes (2kY, M). In order to achieve one clock
cycle delay in dataflow and support high-radix design, the
input data (2kY, M) needs to be multiplied by 2k accumula-
tively in each stage (except the first stage).

Compare with others’ dataflow, the proposed dataflow
has some advantages. Firstly, high-radix and one clock cycle
delay make this dataflow need very few clock cycles to do
multiplication. Secondly, algorithm 3 used in this dataflow
can achieve much shorter critical path than other’s design. In
this way, our dataflow is much more suitable for high-speed
design of Montgomery multiplier.

4. Proposed Hardware Architecture

4.1 Hardware-Reused Multiplier Architecture

The proposed Montgomery multiplier is shown in Fig. 2(a).
The multiplier’s data path contains NS MM Cells. The MM
Cell is the basic processing element in the pipeline. There
are two coefficient processing elements, qY j PE and qM j PE.

They can be shared to all of the MM Cells in pipeline. From
Fig. 1(c), it can be seen that the calculation of qY j and qM j

are done just in the first cycle of each stage (Grey cycle
shown in Fig. 1(c)). All of the remained cycles (White cy-
cles) don’t need to calculate qY j and qM j. This property pro-
vides possibility to reuse the qY j PE and qM j PE in the data
path.

The FIFO in Fig. 2(a) is used to avoid data overflow in
pipeline. When the NW (Number of words of operands) is
larger than NS (number of stages in dataflow), data over-
flow will happen in pipeline. The FIFO can be used to store
overflowed data temporarily.

4.2 Parallel Radix-16 MM-Cell Design

The design of MM Cell is shown in Fig. 2(b). This is a high-
radix design. In this paper, we implement radix-16 (k = 4)
design of MM Cell.

As shown in algorithm 3, the function of MM Cell is:

(Ci, S i) = S i + Ci + qY j × Yi + qM j × Mi (2)

While using proposed dataflow in Fig. 1(c), the input data
(S i, Ci, Yi, Mi) becomes (2 jkS i, 2 jkCi, 2(j+1)kYi, 2 jk Mi) in
the jth pipeline stage. The input qY j sel and qM j sel are the
select signal for multiplexer, which is generated from qY j

and qM j by qY j PE and qM j PE.
The implementation of qY j ×Yi is as following: Firstly,

splitting qY j into two numbers which is power of 2. Sec-
ondly, shifting Yi to get two components of qY j × Yi based
on these two numbers. Finally, adding these two compo-
nents with (S i, Ci) by using 4-to-2 carry-save adder. For
example, while qY j = 6, qY j can be split into 2 and 4. Then,
6Yi can be represented as (2Yi + 4Yi). The inputs of 4-to-2
carry-save adder are (2Yi, 4Yi, S i, Ci). Because 2Yi and 4Yi

can be easily generated by left-shifting of Yi, the multiplica-
tion of 6 × Yi can be avoided. qM j × Mi is implemented as
same as qY j × Yi. The shift & Inverse modules in Fig. 2(b)
are used for this purpose.

Considering Eq. (1), while using radix-16, it becomes:

qY j = Booth(Xj+3... j−1)

= −24Xj+3 + 23Xj+2 + 22Xj+1 + 2Xj + Xj−1 (3)

974
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.4 APRIL 2008

(a) Hardware-reused Montgomery Multiplier Architecture (b) Parallel Radix-2k MM Cell Design

Fig. 2 Proposed hardware architecture.

Table 2 Mapping table of qM j [0, 15] to qM j’ [−7, 8].

Fig. 3 Table size of qY j PE and qM j PE.

The range of qY j is [−8, 8]. All of the number in this range
can be split into two components, which is power of 2. For
qM j under radix-16,

qM j = (S 0
3...0 +C0

3...0) × (16 − (M0)−1
3...0) mod 16 (4)

The range of qM j is [0, 15]. Unfortunately, 11 and 13
can’t satisfy the requirement. In order to deal with this prob-
lem, we propose a mapping table from [0, 15] to [−7, 8] in
Table 2, which can be equivalently used for qM j.

4.3 Very Low Complex Implementation of qM j

As shown in Eqs. (3) and (4), qM j is much more complex
than qY j. Normally, qY j PE and qM j PE are directly imple-
mented by lookup table. The size of look up table is in-
creased exponentially to radix number. This effect can be
illustrated in Fig. 3. While using radix 16, the table size of
qM j is 4 times of qY j. In order to reduce the cost of qM j cal-
culation, we present a very low complex implementation of

Table 3 M0
3...0 to InvM.

Fig. 4 Implementation of qM j.

qM j in this paper.
Considering Eq. (4), we use InvM to present (16 −

(M0)−1
3...0). Table 3 shows the mapping from M0

3...0 to InvM.
As modulus M is an odd number, there is 8 different values
of M0

3...0.
All of these values can be divided into two groups:

{(0001, 1111), (0111, 1001)} and {(0011, 0101), (1011,
1101)}. Here (A, B) means a pair of (M0

3:0, InvM) or (InvM,
M0

3:0).
In the first group:

InvM =∼ M0
3:0 + 1 (5)

In the second group:

InvM = {M0
3,M

0
1,M

0
2,M

0
0} (6)

The difference of group 1 and group 2 is:
Group 1: M0

2 xor M0
1 = 0

Group 2: M0
2 xor M0

1 = 1

FAN et al.: A HIGH-SPEED DESIGN OF MONTGOMERY MULTIPLIER
975

For example, (0001) is in group1, 0 xor 0 is equal to 0.
(0011) is in group2, 0 xor 1 is equal to 1.

Based on above analysis, the qM j can be implemented
as Fig. 4 shows. Because modulus M is an odd number,
Eq. (5) can be further presented as:

InvM =∼ M0
3:0 + 1 = {∼ M0

3, ∼ M0
2, ∼ M0

1,1} (7)

After qM j is calculated, the qM j sel can be calculated by us-
ing a small size lookup table as same as qY j sel.

5. Analysis and Experimental Results

Based on proposed dataflow in Fig. 1(c), the total number of
clock cycles to do Montgomery multiplication is shown in
Eq. (8),

TCLKs =

Table 4 Clock cycles comparison of different dataflows. (BPW = 32)

(a) Two clock cycles delay dataflow and corresponding data path (b) One clock cycles delay dataflow and corresponding data path

Fig. 5 Comparison of dataflow and corresponding data path.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⌈
N

k·NS

⌉ (
NS +

⌈
k·NS
BPW

⌉
+1
)
+NW+

⌈
k·NW
BPW

⌉
+1,NW ≤ NS

⌈
N

k·NS

⌉ (
NW+

⌈
k·NS
BPW

⌉
+1
)
+NS +

⌈
k·NS
BPW

⌉
,NW > NS

(8)

The meaning of notations in this equation can be found
in Table 1.

⌈
N

k·NS

⌉
is the number of loops in pipeline.

⌈
k·NS
BPW

⌉

and
⌈

k·NW
BPW

⌉
are the extra clock cycles overhead for our clock-

saving dataflow. As shown in Fig. 1(c), the product (S, C) is
multiplied by 2k in every stage. When it increases to 2BPW(S,
C), the LSW (Least-Significant-Word) of product is 0, so
this all-zero LSW needs 1 extra clock cycle to be eliminated.

There are two cases of this equation. While NW ≤
NS , all of the words of Y, M can be loaded in the pipeline.
The number of needed cycles is mainly decided by the NS.
While NW > NS , the operand Y, M will be overflowed in
the pipeline. In this case, the FIFO (shown in Fig. 2(a)) can
be used to store overflowed data, and the number of cycles
is mainly decided by the NW.

976
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.4 APRIL 2008

Table 5 Performance comparison with other’s work.

Table 4 shows the clock cycles comparison of our
dataflow with Tenca-Koç dataflow and Herris dataflow. It
shows that our dataflow achieves much less clock cycles
than their dataflow.

In this table, different key length and stages are used to
calculate clock cycles for each dataflow. The BPW is equal
to 32. Because our dataflow and Tenca-Koç dataflow are
high-radix dataflow, we use radix-16 for these two dataflows
in Table 4, and Herris dataflow uses radix-2.

In Table 4, the NS of one clock cycle delay dataflow
is half of two clock cycles delay dataflow. The reason is il-
lustrated in Fig. 5. Each Dataflow Stage of two clock cycles
delay dataflow in Fig. 5(a) actually includes two DataPath
Stages. One is MM Cell stage for operation of Eq. (2), the
other is Register Bank stage for storing (Yi, Mi, S i, Ci). The
dashed cycles in Fig. 5(a) represent the registering stages in
the dataflow. For fairly comparing, the NS of one clock cy-
cle delay dataflow should be two times of two clock cycles
delay dataflow.

The ASIC implementation of this work uses NS = 32,
BPW = 32, Radix = 16. We use HHNEC 0.25 µm CMOS
standard cell library and Synopsys EDA tools to do ASIC
design.

Table 5 shows the performance comparison of this pa-
per’s result with other’s work. [8] is a radix 8 design pro-
posed by Tenca-Koç, [9] is an improved radix 16 design. By
using proposed algorithm and the parallel data path design,
this design’s frequency is higher than [9] under the same
radix number. [10] is a FPGA implementation by using one
clock cycle delay dataflow, [11] is a very high radix design
(radix 216) using multiplier and RAM which is embedded in
FPGA, [12] is a radix-2 scalable design which using 2 clock
cycles delay dataflow.

Normally, radix-2k design can achieve about k times
of performance than radix-2 design. One clock cycle de-
lay dataflow can achieve about 2 times of performance than
two clock cycles delay dataflow. From the Table 5, our de-
sign uses radix-16 with one clock cycle delay dataflow. It
achieves much higher performance than other’s design.

6. Conclusion

This paper proposes a high speed design of Montgomery
multiplier. By using proposed algorithm, it parallelizes the
data path and shortens the critical path. By using pro-
posed clock-saving dataflow, it reduces the total clock cy-
cles of multiplication to a very small number. Finally, a
very compact hardware architecture design is proposed to
reduce hardware cost and improve the performance. The ex-
perimental results show that this design achieves very high
performance with low hardware cost. This design is very
suitable for high-speed RSA or ECC implementation.

Acknowledgement

This research is supported by CREST, JST.

References

[1] R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public key crypto- systems,” Commun. ACM,
vol.21, no.2, pp.120–126, 1978.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Compu-
tation, vol.48, no.177, pp.203–209, 1987.

[3] V. Miller, “Use of elliptic curves in cryptography,” Proc. CRYPTO
85, pp.417–426, 1985.

[4] P.L. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, vol.44, no.170, pp.519–521, April
1985.

[5] C. Koc, T. Acar, and B. Kaliski, “Analyzing and comparing
Montgomery multiplication algorithms,” IEEE Micro, vol.16, no.3,
pp.26–33, June 1996.

[6] A.F. Tenca and C.K. Koc, “A scalable architecture for modular mul-
tiplication based on Montgomery’s algorithm,” IEEE Trans. Com-
put., vol.52, no.9, pp.1215–1221, Sept. 2003.

[7] A.F. Tenca, G. Todorov, and C.K. Koc, “High-radix design of a scal-
able modular multiplier,” Cryptographic Hardware and embedded
Systems-CHES 2001, Lect. Notes Comput. Sci., no.2162, pp.189–
205, May 2001.

[8] G. Todorov, ASIC design, implementation and analysis of a scal-
able high-radix Montgomery multiplier, M.S. Thesis, Oregon State
University, June 2001.

[9] Y. Fan, X.Y. Zeng, Y. Yu, G. Wang, H. Deng, and Q.L. Zhang, “High
speed radix-16 design of a scalable Montgomery multiplier,” Proc.
6th International Conference on ASIC-ASICON 2005, vol.1, no.24-
27, pp.153–157, Oct. 2005.

FAN et al.: A HIGH-SPEED DESIGN OF MONTGOMERY MULTIPLIER
977

[10] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and S. Hsu,
“An improved unified scalable radix 2 Montgomery multiplier,”
Proc. 17th IEEE Symposium on Computer Arithmetic, pp.172–178,
June 2005.

[11] K. Kelley and D. Harris, “Very high radix scalable Montgomery
multipliers,” Proc. Fifth International Workshop on System-on-Chip
for Real-Time Applications, pp.400–404, July 2005.

[12] C.H. Wang, C.P. Su, C.T. Huang, and C.W. Wu, “A word-based RSA
crypto-processor with enhanced pipeline performance,” Proc. 2004
IEEE Asia-Pacific Conference on Advanced System Integrated Cir-
cuits, pp.218–221, Aug. 2004.

Yibo Fan received the B.E. degree in elec-
tronics and engineering from Zhejiang Univer-
sity, China in 2003 and M.S. degree in Micro-
electronics from Fudan University, China in
2006. Currently, he is a Ph.D. candidate in
Graduate School of Information, Production and
Systems, Waseda University, Japan. His re-
search interesting includes information security,
video coding and associated VLSI architecture.

Takeshi Ikenaga received his B.E. and
M.E. degrees in electrical en- gineering and the
Ph.D. degree in infor-mation & computer sci-
ence from Waseda University, Tokyo, Japan, in
1988, 1990, and 2002, respectively. He joined
LSI Laboratories, Nippon Telegraph and Tele-
phone Corporation (NTT) in 1990, where he
has been undertaking research on the design
and test methodologies for high-performance
ASICs, a real-time MPEG2 encoder chip set,
and a highly parallel LSI & System design for

image-understanding processing. He is presently an associate professor in
the system LSI field of the Graduate School of Information, Production
and Systems, Waseda University. His current interests are application SOC
for image, security and network processing. Dr. Ikenaga is a member of
the IPSJ and the IEEE. He received the IEICE Research Encouragement
Award in 1992.

Satoshi Goto was born on January 3rd,
1945 in Hiroshima, Japan. He received the B.E.
and M.E. degree in Electronics and Communi-
cation Engineering from Waseda University in
1968 and 1970, respectively. He also received
the Dr. of Engineering from the same univer-
sity in 1981. He is IEEE fellow, member of
Academy Engineering Society of Japan and pro-
fessor of Waseda University. His research in-
terests include LSI system and Multimedia Sys-
tem.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

