
101 Innovation Drive
San Jose, CA 95134
www.altera.com

EMI_RM-3.0

Volume 3: Reference Material

External Memory Interface Handbook

Document last updated for Altera Complete Design Suite version:
Document publication date:

12.1
November 2012

External Memory Interface Handbook Volume 3:
Reference Material

http://www.altera.com

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

November 2012 Altera Corporation
Contents
Chapter Revision Dates . xi

Section I. Functional Descriptions

Chapter 1. Functional Description—UniPHY
Block Description . 1–1

I/O Pads . 1–2
Reset and Clock Generation . 1–2
Dedicated Clock Networks . 1–3
Address and Command Datapath . 1–3
Write Datapath . 1–4

Leveling Circuitry . 1–5
Read Datapath . 1–7
Sequencer . 1–8

Nios II-Based Sequencer . 1–8
RTL-based Sequencer . 1–13

Shadow Registers . 1–14
Description . 1–14
Operation . 1–15

DLL Offset Control Block . 1–16
Interfaces . 1–16

AFI . 1–17
The Memory Interface . 1–17
The DLL and PLL Sharing Interface . 1–18

About PLL Simulation . 1–19
The OCT Sharing Interface . 1–20

UniPHY Signals . 1–21
PHY-to-Controller Interfaces . 1–24
Using a Custom Controller . 1–28
Using a Vendor-Specific Memory Model . 1–29
AFI 3.0 Specification . 1–29

Implementation . 1–29
Bus Width and AFI Ratio . 1–29

AFI Parameters . 1–30
Parameters Affecting Bus Width . 1–30

AFI Signals . 1–32
Clock and Reset Signals . 1–32
Address and Command Signals . 1–32
Write Data Signals . 1–34
Read Data Signals . 1–35
Calibration Status Signals . 1–35
Tracking Management Signals . 1–36

Register Maps . 1–37
UniPHY Register Map . 1–37
Controller Register Map . 1–39

Ping Pong PHY . 1–39
Feature Description . 1–39
Architecture . 1–40
External Memory Interface Handbook
Volume 3: Reference Material

ii Contents
Ping Pong Gasket . 1–41
Calibration . 1–42

Operation . 1–42
Efficiency Monitor and Protocol Checker . 1–42

Efficiency Monitor . 1–42
Protocol Checker . 1–43
Read Latency Counter . 1–43
Using the Efficiency Monitor and Protocol Checker . 1–43
Avalon CSR Slave and JTAG Memory Map . 1–43

UniPHY Calibration Stages . 1–45
Overview . 1–45
Calibration Stages . 1–46
Assumptions . 1–46
Memory Initialization . 1–47
Stage 1: Read Calibration Part One—DQS Enable Calibration and DQ/DQS Centering 1–47

Guaranteed Write . 1–48
DQS Enable Calibration . 1–49
Centering DQ/DQS . 1–50

Stage 2: Write Calibration Part One . 1–51
Stage 3: Write Calibration Part Two—DQ/DQS Centering . 1–53
Stage 4: Read Calibration Part Two—Read Latency Minimization . 1–53

Read Latency Tuning . 1–53
Calibration Signals . 1–53
Calibration Time . 1–54

Document Revision History . 1–55

Chapter 2. Functional Description—ALTMEMPHY
Block Description . 2–2

Calibration . 2–3
Address and Command Datapath . 2–3

Arria II GX Devices . 2–3
Clock and Reset Management . 2–5

Clock Management . 2–5
Reset Management . 2–7

Read Datapath . 2–8
Arria II GX Devices . 2–8

ALTMEMPHY Signals . 2–10
PHY-to-Controller Interfaces . 2–16
Using a Custom Controller . 2–23

Preliminary Steps . 2–23
Design Considerations . 2–23
Clocks and Resets . 2–23
Calibration Process Requirements . 2–24
Other Local Interface Requirements . 2–24
Address and Command Interfacing . 2–24
Handshake Mechanism Between Read Commands and Read Data . 2–24
Handshake Mechanism Between Write Commands and Write Data . 2–25
Partial Writes . 2–26

Controller Register Map . 2–26
ALTMEMPHY Calibration Stages . 2–27

Enter Calibration (s_reset) . 2–29
Initialize PHY (s_phy_initialize) . 2–29
Initialize DRAM . 2–29

Initialize DRAM Power Up Sequence (s_int_dram) . 2–29
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Contents iii
Program Mode Registers for Calibration (s_prog_mr) . 2–29
Write Header Information in the internal RAM (s_write_ihi) . 2–30
Load Training Patterns . 2–30

Write Block Training Pattern (s_write_btp) . 2–30
Write More Training Patterns (s_write_mtp) . 2–31

Test More Pattern Writes . 2–31
Calibrate Read Resynchronization Phase . 2–33

Initialize Read Resynchronisation Phase Calibration (s_rrp_reset) . 2–34
Calibrate Read Resynchronization Phase (s_rrp_sweep) . 2–34
Calculate Read Resynchronization Phase (s_rrp_seek) . 2–34
Calculate Read Data Valid Window (s_rdv) . 2–34

Advertize Write Latency (s_was) . 2–35
Calculate Read Latency (s_adv_rlat) . 2–35
Output Write Latency (s_adv_wlat) . 2–36
Calibrate Postamble (s_poa) . 2–36
Set Up Address and Command Clock Cycle . 2–37
Write User Mode Register Settings (s_prep_customer_mr_setup) . 2–37
Voltage and Temperature Tracking . 2–37

Setup the Mimic Window (s_tracking_setup) . 2–38
Perform Tracking (s_tracking) . 2–38

Document Revision History . 2–38

Chapter 3. Functional Description—Hard Memory Interface
Hard Memory Interface . 3–1

High-Level Feature Description . 3–1
Multi-Port Front End (MPFE) . 3–2

Fabric Interface . 3–2
Operation Ordering . 3–3
Multi-port Scheduling . 3–3

Port Scheduling . 3–3
DRAM Burst Scheduling . 3–4

DRAM Power Saving Modes . 3–5
MPFE Signal Descriptions . 3–5

Hard Memory Controller . 3–7
Clocking . 3–7
DRAM Interface . 3–8
ECC . 3–8

Controller ECC . 3–8
Bonding of Memory Controllers . 3–8

Data Return Bonding . 3–9
FIFO Ready . 3–9
Bonding Latency Impact . 3–9
Bonding Controller Usage . 3–9

Hard PHY . 3–10
Interconnections . 3–10
Clock Domains . 3–10
Hard Sequencer . 3–11

Hard Memory Interface Implementation Guidelines . 3–11
MPFE Setup Guidelines . 3–11
Soft Memory Interface to Hard Memory Interface Migration Guidelines . 3–12

Pin Connections . 3–12
Software Interface Preparation . 3–12
Latency . 3–13

Bonding Interface Guidelines . 3–13
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

iv Contents
Document Revision History . 3–14

Chapter 4. Functional Description—HPS Memory Controller
Features of the SDRAM Controller Subsystem . 4–1
SDRAM Controller Subsystem Block Diagram and System Integration . 4–2

SDRAM Controller . 4–2
DDR PHY . 4–2
SDRAM Controller Subsystem Interfaces . 4–3

MPU Subsystem Interface . 4–3
L3 Interconnect Interface . 4–3
CSR Interface . 4–3
FPGA-to-HPS SDRAM Interface . 4–3

Memory Controller Architecture . 4–4
MPFE . 4–5

Command Block . 4–5
Write Data Block . 4–6
Read Data Block . 4–6

Single-Port Controller . 4–6
Command Generator . 4–6
Timer Bank Pool . 4–6
Arbiter . 4–7
Rank Timer . 4–7
Write Data Buffer . 4–7
ECC Block . 4–7
AFI Interface . 4–7

CSR Interface . 4–7
Functional Description of the SDRAM Controller Subsystem . 4–7

MPFE Operational Behavior . 4–7
Operation Ordering . 4–7
Multiport Scheduling . 4–8
SDRAM Burst Scheduling . 4–9
Clocking . 4–10

Single-Port Controller Operational Behavior . 4–10
SDRAM Interface . 4–10
ECC . 4–11
Interleaving Options . 4–12
AXI-Exclusive Support . 4–14
Memory Protection . 4–14

SDRAM Power Management . 4–16
DDR PHY . 4–17
Clocks . 4–17
Resets . 4–18
Initialization . 4–18

Protocol Details . 4–18
SDRAM Controller Subsystem Programming Model . 4–21

 Initialization . 4–21
Timing Parameters . 4–22

SDRAM Controller Address Map and Register Definitions . 4–22
Using EMI-Related HPS Features in SoC Devices . 4–22

Architecture . 4–22
Configuration . 4–22
Simulation . 4–23

Document Revision History . 4–24
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Contents v
Chapter 5. Functional Description—HPC II Controller
Memory Controller Architecture . 5–1

Avalon-ST Input Interface . 5–2
AXI to Avalon-ST Converter . 5–2

Handshaking . 5–3
Command Channel Implementation . 5–3
Data Ordering . 5–3
Burst Types . 5–3

Backpressure Support . 5–4
Command Generator . 5–4
Timing Bank Pool . 5–4
Arbiter . 5–4

Arbitration Rules . 5–4
Rank Timer . 5–5
Read Data Buffer . 5–5
Write Data Buffer . 5–5
ECC Block . 5–5
AFI Interface . 5–5
CSR Interface . 5–5

Controller Features Descriptions . 5–5
Data Reordering . 5–5
Pre-emptive Bank Management . 5–6
Quasi-1T and Quasi-2T . 5–6
User Autoprecharge Commands . 5–6
Half-Rate Bridge . 5–6
Address and Command Decoding Logic . 5–7
Low-Power Logic . 5–7

User-Controlled Self-Refresh . 5–7
Automatic Power-Down with Programmable Time-Out . 5–8

ODT Generation Logic . 5–8
DDR2 SDRAM . 5–8
DDR3 SDRAM . 5–9

Burst Merging . 5–10
ECC . 5–10

Partial Writes . 5–11
Partial Bursts . 5–12

External Interfaces . 5–13
Clock and Reset Interface . 5–13
Avalon-ST Data Slave Interface . 5–13
AXI Data Slave Interface . 5–13

Enabling the AXI Interface . 5–13
Controller-PHY Interface . 5–20
Memory Side-Band Signals . 5–20

Self-Refresh (Low Power) Interface . 5–20
User-Controlled Refresh Interface . 5–21
Configuration and Status Register (CSR) Interface . 5–21

Top-Level Signals Description . 5–22
Controller Register Map . 5–29

Sequence of Operations . 5–33
Write Command . 5–33
Read Command . 5–33
Read-Modify-Write Command . 5–34

Document Revision History . 5–34
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

vi Contents
Chapter 6. Functional Description—QDR II Controller
Block Description . 6–1

Avalon-MM Slave Read and Write Interfaces . 6–1
Command Issuing FSM . 6–2
AFI . 6–2

Avalon-MM and Memory Data Width . 6–2
Signal Description . 6–2

Avalon-MM Slave Read Interface . 6–3
Avalon-MM Slave Write Interface . 6–3

Document Revision History . 6–4

Chapter 7. Functional Description—RLDRAM II Controller
Block Description . 7–1

Avalon-MM Slave Interface . 7–1
Write Data FIFO Buffer . 7–2
Command Issuing FSM . 7–2
Refresh Timer . 7–2
Timer Module . 7–2
AFI . 7–2

User-Controlled Features . 7–2
Error Detection Parity . 7–2
User-Controlled Refresh . 7–3

Avalon-MM and Memory Data Width . 7–3
Signal Description . 7–3

Avalon-MM Slave Interface . 7–3
Document Revision History . 7–4

Chapter 8. Functional Description—RLDRAM 3 PHY-Only IP
Block Description . 8–1
Features . 8–1
RLDRAM III AFI Protocol . 8–2
Document Revision History . 8–3

Chapter 9. Functional Description—Example Designs
Synthesis Example Design . 9–1
Simulation Example Design . 9–3
Traffic Generator and BIST Engine . 9–5

Read and Write Generation . 9–6
Individual Read and Write Generation . 9–6
Block Read and Write Generation . 9–6

Address and Burst Length Generation . 9–6
Sequential Addressing . 9–6
Random Addressing . 9–6
Sequential and Random Interleaved Addressing . 9–7

Traffic Generator Signals . 9–7
Traffic Generator Add-Ons . 9–7

User Refresh Generator . 9–7
Traffic Generator Timeout Counter . 9–8

Creating and Connecting the UniPHY Memory Interface and the Traffic Generator in Qsys 9–8
Creating the Qsys System . 9–8

Notes on Configuring UniPHY IP in Qsys . 9–9
Document Revision History . 9–10
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Contents vii
Section II. UniPHY Reference

Chapter 10. Introduction to UniPHY IP
Release Information . 10–2
Device Family Support . 10–2
Features . 10–3
Unsupported Features . 10–5
System Requirements . 10–5
MegaCore Verification . 10–5
Resource Utilization . 10–5

DDR2, DDR3, and LPDDR2 SDRAM Controllers with UniPHY . 10–5
QDR II and QDR II+ SRAM Controllers with UniPHY . 10–12
RLDRAM II Controller with UniPHY . 10–13

Document Revision History . 10–14

Chapter 11. Latency for UniPHY IP
DDR2, DDR3, and LPDDR2 . 11–2
QDR II and QDR II+ . 11–3
RLDRAM II . 11–4
RLDRAM 3 . 11–4
Variable Controller Latency . 11–4
Document Revision History . 11–5

Chapter 12. Timing Diagrams for UniPHY IP
DDR2 and DDR3 Timing Diagrams . 12–1
QDR II and QDR II+ Timing Diagrams . 12–10
RLDRAM II Timing Diagrams . 12–15
LPDDR2 Timing Diagrams . 12–19
RLDRAM 3 Timing Diagrams . 12–23
Document Revision History . 12–27

Chapter 13. UniPHY External Memory Interface Debug Toolkit
Introduction . 13–1
Architecture . 13–1

Communication . 13–1
Calibration and Report Generation . 13–2

Setup and Use . 13–2
General Workflow . 13–3

Linking the Project to a Device . 13–3
Establishing Communication to Connections . 13–4

Reports . 13–4
Summary Report . 13–4
Calibration Report . 13–5
Margin Report . 13–5

Operational Considerations . 13–5
Specifying a Particular JDI File . 13–6
PLL Status . 13–6
Margining Reports . 13–6
Group Masks . 13–6

Troubleshooting . 13–6
EMIF On-Chip Debug Toolkit . 13–8

Introduction . 13–8
Access Protocol . 13–8
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

viii Contents
Command Codes Reference . 13–10
Header Files . 13–10

Generating UniPHY IP With the Debug Port . 13–10
Example C Code for Accessing Debug Data . 13–11

Document Revision History . 13–14

Chapter 14. Upgrading to UniPHY-based Controllers from ALTMEMPHY-based Controllers
Upgrading from DDR2 or DDR3 SDRAM High-Performance Controller II with ALTMEMPHY Designs
14–1

Generating Equivalent Design . 14–1
Replacing the ALTMEMPHY Datapath with UniPHY Datapath . 14–2
Resolving Port Name Differences . 14–2
Creating OCT Signals . 14–4
Running Pin Assignments Script . 14–4
Removing Obsolete Files . 14–4
Simulating your Design . 14–4

Document Revision History . 14–6

Section III. ALTMEMPHY Reference

Chapter 15. Introduction to ALTMEMPHY IP
Release Information . 15–2
Device Family Support . 15–3
Features . 15–4

ALTMEMPHY Megafunction . 15–4
High-Performance Controller II . 15–4

Unsupported Features . 15–6
MegaCore Verification . 15–6
Resource Utilization . 15–6
System Requirements . 15–8
Installation and Licensing . 15–9

Free Evaluation . 15–9
OpenCore Plus Time-Out Behavior . 15–10

Document Revision History . 15–10

Chapter 16. Latency for ALTMEMPHY IP
Latency Stages . 16–2
Document Revision History . 16–5

Chapter 17. Timing Diagrams for ALTMEMPHY IP
DDR and DDR2 High-Performance Controllers II . 17–1

Half-Rate Read . 17–2
Half-Rate Write . 17–4
Full-Rate Read . 17–6
Full-Rate Write . 17–8

DDR3 High-Performance Controller II . 17–9
Half-Rate Read (Burst-Aligned Address) . 17–10
Half-Rate Write (Burst-Aligned Address) . 17–12
Half-Rate Read (Non Burst-Aligned Address) . 17–14
Half-Rate Write (Non Burst-Aligned Address) . 17–16
Half-Rate Read With Gaps . 17–18
Half-Rate Write With Gaps . 17–19
Half-Rate Write Operation (Merging Writes) . 17–20
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Contents ix
Write-Read-Write-Read Operation . 17–22
Document Revision History . 17–24

Chapter 18. ALTMEMPHY External Memory Interface Debug Toolkit
Debug Toolkit Overview . 18–1
Install the Debug Toolkit . 18–2
Modify the Example Top-Level File to use the Debug Toolkit . 18–2

Verify the Design . 18–3
Regenerate the IP . 18–4
Instantiate the JTAG Avalon-MM port in to the Example-Top Level Project 18–4
Add Additional Signals . 18–5
Add alt_jtagavalon.v to your Quartus II Project Settings Files List . 18–7
Recompile your Quartus II Test Design . 18–7
Program Hardware with Debug Enabled .sof . 18–7

Use the Debug Toolkit . 18–8
Interpret the Results . 18–9

Calibration Successful . 18–9
Calibration Fails . 18–13
Save the Calibration Results . 18–13

Understand the Checksum and Failure Code . 18–15
Document Revision History . 18–16
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

x Contents
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

November 2012 Altera Corporation
Chapter Revision Dates
The chapters in this document, External Memory Interface Handbook, Volume 3:
Reference Material, were revised on the following dates. Where chapters or groups of
chapters are available separately, part numbers are listed.

Chapter 1. Functional Description—UniPHY
Revised: November 2012
Part Number: EMI_RM_001-3.1

Chapter 2. Functional Description—ALTMEMPHY
Revised: November 2012
Part Number: EMI_RM_002-3.3

Chapter 3. Functional Description—Hard Memory Interface
Revised: November 2012
Part Number: EMI_RM_003-2.1

Chapter 4. Functional Description—HPS Memory Controller
Revised: November 2012
Part Number: EMI_RM_017-1.0

Chapter 5. Functional Description—HPC II Controller
Revised: November 2012
Part Number: EMI_RM_004-2.1

Chapter 6. Functional Description—QDR II Controller
Revised: November 2012
Part Number: EMI_RM_005-3.3

Chapter 7. Functional Description—RLDRAM II Controller
Revised: November 2012
Part Number: EMI_RM_006-3.3

Chapter 8. Functional Description—RLDRAM 3 PHY-Only IP
Revised: November 2012
Part Number: EMI_RM_018-1.0

Chapter 9. Functional Description—Example Designs
Revised: November 2012
Part Number: EMI_RM_007-1.3

Chapter 10. Introduction to UniPHY IP
Revised: November 2012
Part Number: EMI_RM_008-2.1

Chapter 11. Latency for UniPHY IP
Revised: November 2012
Part Number: EMI_RM_009-2.1
External Memory Interface Handbook
Volume 3: Reference Material

xii Chapter Revision Dates
Chapter 12. Timing Diagrams for UniPHY IP
Revised: November 2012
Part Number: EMI_RM_010-2.1

Chapter 13. UniPHY External Memory Interface Debug Toolkit
Revised: November 2012
Part Number: EMI_RM_011-2.2

Chapter 14. Upgrading to UniPHY-based Controllers from ALTMEMPHY-based Controllers
Revised: November 2012
Part Number: EMI_RM_012-2.3

Chapter 15. Introduction to ALTMEMPHY IP
Revised: November 2012
Part Number: EMI_RM_013-1.2

Chapter 16. Latency for ALTMEMPHY IP
Revised: November 2012
Part Number: EMI_RM014-1.2

Chapter 17. Timing Diagrams for ALTMEMPHY IP
Revised: November 2012
Part Number: EMI_RM_015-1.3

Chapter 18. ALTMEMPHY External Memory Interface Debug Toolkit
Revised: November 2012
Part Number: EMI_RM_016-1.2
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

November 2012 Altera Corporation
Section I. Functional Descriptions
This section provides functional descriptions of the major external memory interface
components.

This section includes the following chapters:

■ Chapter 1, Functional Description—UniPHY

■ Chapter 2, Functional Description—ALTMEMPHY

■ Chapter 3, Functional Description—Hard Memory Interface

■ Chapter 4, Functional Description—HPS Memory Controller

■ Chapter 5, Functional Description—HPC II Controller

■ Chapter 6, Functional Description—QDR II Controller

■ Chapter 7, Functional Description—RLDRAM II Controller

■ Chapter 8, Functional Description—RLDRAM 3 PHY-Only IP

■ Chapter 9, Functional Description—Example Designs

f For information about the revision history for chapters in this section, refer to
“Document Revision History” in each individual chapter.
External Memory Interface Handbook
Volume 3: Reference Material

I–2 Section I: Functional Descriptions
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_001-3.1

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_001-3.1
1. Functional Description—UniPHY
This chapter describes the UniPHY layer of the external memory interface, and
includes related information.

The major sections of this chapter are as follows:

■ Block Description

■ Interfaces

■ UniPHY Signals

■ PHY-to-Controller Interfaces

■ Using a Custom Controller

■ Using a Vendor-Specific Memory Model

■ AFI 3.0 Specification

■ Register Maps

■ Ping Pong PHY

■ Efficiency Monitor and Protocol Checker

■ UniPHY Calibration Stages

Block Description
This section describes the major functional units of the UniPHY layer, which include
the following:

■ Reset and Clock Generation

■ Address and Command Datapath

■ Write Datapath

■ Read Datapath

■ Sequencer
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_001
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_001-3.1 (EMI HB, Vol 3, Ch1: Functional Description - UniPHY)

1–2 Chapter 1: Functional Description—UniPHY
Block Description
Figure 1–1 shows the PHY block diagram; individual blocks are discussed in the text.

I/O Pads
The I/O pads contain all the I/O instantiations.

Reset and Clock Generation
At a high level, clocks in the PHY can be classified into two domains: the
PHY-memory domain and the PHY-AFI domain. The PHY-memory domain interfaces
with the external memory device and always operate at full-rate. The PHY-AFI
domain interfaces with the memory controller and can be a full-rate, half-rate, or
quarter-rate clock, based on the controller in use.

The number of clock domains in a memory interface can vary depending on its
configuration; for example:

■ At the PHY-memory boundary, separate clocks may exist to generate the memory
clock signal, the output strobe, and to output write data, as well as address and
command signals. These clocks include pll_dq_write_clk, pll_write_clk,
pll_mem_clk, and pll_addr_cmd_clk. These clocks are phase-shifted as required to
achieve the desired timing relationships between memory clock, address and
command signals, output data, and output strobe.

■ For quarter-rate interfaces, additional clock domains such as pll_hr_clock are
required to convert signals between half-rate and quarter-rate.

Figure 1–1. PHY Block Diagram

I/O Pads
External
Memory
Device

UniPHY

FPGA

Write
Datapath

Address
and

Command
Datapath

Memory
Controller

Read
Datapath

Reset
Generation

PHY - AFI
Domain

Sequencer

MUX

PHY - Memory
Domain
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–3
Block Description
■ For high-performance memory interfaces using Arria V, Cyclone V, or Stratix V
devices, additional clocks may be required to handle transfers between the device
core and the I/O periphery for timing closure. For core-to-periphery transfers, the
latch clock is pll_c2p_write_clock; for periphery-to-core transfers, it is
pll_p2c_read_clock. These clocks are automatically phase-adjusted for timing
closure during IP generation, but can be further adjusted in the parameter editor. If
the phases of these clocks are zero, the Fitter may remove these clocks during
optimization.

Also, high-performance interfaces using a Nios II-based sequencer require two
additional clocks, pll_avl_clock for the Nios II processor, and pll_config_clock
for clocking the I/O scan chains during calibration.

For a complete list of clocks in your memory interface, compile your design and run
the Report Clocks command in the TimeQuest Timing Analyzer.

Dedicated Clock Networks
The UniPHY layer employs three types of dedicated clock networks:

■ Global clock network

■ Dual-regional clock network

■ PHY clock network (applicable to Arria V, Cyclone V, and Stratix V devices, and
later)

The PHY clock network is a dedicated high-speed, low-skew, balanced clock tree
designed for high-performance external memory interface. For device families that
support the PHY clock network, UniPHY always uses the PHY clock network for all
clocks at the PHY-memory boundary.

For families that do not support the PHY clock network, UniPHY uses either
dual-regional or global clock networks for clocks at the PHY-memory boundary.
During generation, the system selects dual-regional or global clocks automatically,
depending on whether a given interface spans more than one quadrant. UniPHY does
not mix the usage of dual-regional and global clock networks for clocks at the
PHY-memory boundary; this ensures that timing characteristics of the various output
paths are as similar as possible.

The <variation_name>_pin_assignments.tcl script creates the appropriate clock
network type assignment. The use of the PHY clock network is specified directly in
the RTL code, and does not require an assignment.

The UniPHY uses an active-low, asychronous assert and synchronous de-assert reset
scheme. The global reset signal resets the PLL in the PHY and the rest of the system is
held in reset until after the PLL is locked.

Address and Command Datapath
The memory controller controls the read and write addresses and commands to meet
the memory specifications. The PHY is indifferent to address or command—that is, it
performs no decoding or other operations—and the circuitry is the same for both. In
full-rate and half-rate interfaces, address and command is full rate, while in
quarter-rate interfaces, address and command is half rate.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–4 Chapter 1: Functional Description—UniPHY
Block Description
Address and command signals are generated in the Altera PHY interface (AFI) clock
domain and sent to the memory device in the address and command clock domain.
The double-data rate input/output (DDIO) stage converts the half-rate signals into
full-rate signals, when the AFI clock runs at half-rate. For quarter-rate interfaces,
additional DDIO stages exist to convert the address and command signals in the
quarter-rate AFI clock domain to half-rate.

The address and command clock is offset with respect to the memory clock to balance
the nominal setup and hold margins at the memory device (center-alignment). In the
example of Figure 1–2, this offset is 270 degrees. The Fitter can further optimize
margins based on the actual delays and clock skews. In half-rate and quarter-rate
designs, the full-rate cycle shifter blocks can perform a shift measured in full-rate
cycles to implement the correct write latency; without this logic, the controller would
only be able to implement even write latencies as it operates at half the speed. The
full-rate cycle shifter is clocked by either the AFI clock or the address and command
clock, depending on the PHY configuration, to maximize timing margins on the path
from the AFI clock to the address and command clock.

Figure 1–2 illustrates the address and command datapath.

Write Datapath
The write datapath passes write data from the memory controller to the I/O. The
write data valid signal from the memory controller generates the output enable signal
to control the output buffer. For memory protocols with a bidirectional data bus, it
also generates the dynamic termination control signal, which selects between series
(output mode) and parallel (input mode) termination.

Figure 1–2. Address and Command Datapath (Half-rate example shown)

Core

afi_clk

DDIO

Address/Command

add_cmd_clk
270 Degrees

H0/L0

H0L 0

mem_clk

Center-aligned at
the memory device

Full-Rate
Cycle Shifter

clk

afi_clk

add_cmd_clk

mem_clk
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–5
Block Description
Figure 1–3 illustrates a simplified write datapath of a typical half-rate interface. The
full-rate DQS write clock is sent to a DDIO_OUT cell. The output of DDIO_OUT feeds
an output buffer which creates a pair of pseudo differential clocks that connects to the
memory. In full-rate mode, only the SDR-DDR portion of the path is used; in half-rate
mode, the HDR-SDR circuitry is also required. The use of DDIO_OUT in both the
output strobe and output data generation path ensures that their timing
characteristics are as similar as possible. The <variation_name>_pin_assignments.tcl
script automatically specifies the logic option that associates all data pins to the
output strobe pin. The Fitter treats the pins as a DQS/DQ pin group.

Leveling Circuitry
Leveling circuitry is dedicated I/O circuitry to provide calibration support for fly-by
address and command networks. For DDR3, leveling is always invoked, whether the
interface targets a DIMM or a single component. For DDR3 implementations at higher
frequencies, a fly-by topology is recommended for optimal performance. For DDR2,
leveling circuitry is invoked automatically for frequencies above 240 MHz; no leveling
is used for frequencies below 240 MHz.

For DDR2 at frequencies below 240 MHz, you should use a tree-style layout. For
frequencies above 240 MHz, you can choose either a leveled or balanced-T or Y
topology, as the leveled PHY calibrates to either implementation. Regardless of
protocol, for devices without a levelling block—such as Arria II GZ, Arria V, and
Cyclone V—a balanced-T PCB topology for address/command/clock must be used
because fly-by topology is not supported.

Figure 1–3. Write Datapath

DDIO_OUT

DDIO_OUT
 0

DDIO_OUT
 1

DDIO_OUT
 0

DDIO_OUT
 2n-2

DDIO_OUT
 2n-1

DDIO_OUT
 n-1

ALTIOBUF

wdata[0]

wdata[1]

wdata[2]

wdata[3]

wdata[4n-4]

wdata[4n-3]

wdata[4n-2]

wdata[4n-1]

wdata[4n-1:0]

Half-rate clock

DQ write clock (full-rate, -90 degrees
from DQS write clock)

DQS write clock (full-rate)

gnd

vcc

Output data [0]

Output data [n-1]

Output strobe

Output strobe (n)

SDR DDR HDR SDR
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–6 Chapter 1: Functional Description—UniPHY
Block Description
For details about leveling delay chains, consult the memory interfaces hardware
section of the device handbook for your FPGA.

Figure 1–4 shows the write datapath for a leveling interface. The full-rate PLL output
clock phy_write_clk goes to a leveling delay chain block which generates all other
periphery clocks that are needed. The data signals that generate DQ and DQS signals
pass to an output phase alignment block. The output phase alignment block feeds an
output buffer which creates a pair of pseudo differential clocks that connect to the
memory. In full-rate designs, only the SDR-DDR portion of the path is used; in
half-rate mode, the HDR-SDR circuitry is also required. The use of DDIO_OUT in
both the output strobe and output data generation paths ensures that their timing
characteristics are as similar as possible. The <variation_name>_pin_assignments.tcl
script automatically specifies the logic option that associates all data pins to the
output strobe pin. The Quartus II Fitter treats the pins as a DQS/DQ pin group.

Figure 1–4. Write Datapath for a Leveling Interface

DDIO_OUT

DDIO_OUT
 0

DDIO_OUT
 1

DDIO_OUT
 0

DDIO_OUT
 2n-2

DDIO_OUT
 2n-1

DDIO_OUT
 n-1

ALTIOBUF

wdata[0]

wdata[1]

wdata[2]

wdata[3]

wdata[4n-4]

wdata[4n-3]

wdata[4n-2]

wdata[4n-1]

wdata[4n-1:0]

phy_write_clk

DQ[0]

DQ[n-1]

DQS

DQSn

Output Phase Alignment

DQ clock

DQS clock

0_Phase

Leveling Delay Chain

DDIO_OUT_
DQS_0

DDIO_OUT_
DQS_1

afi_data_valid

0

0

SDR - DDR HDR - SDR
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–7
Block Description
Read Datapath
Figure 1–5 shows the read datapath. This section describes the blocks and flow in the
read datapath.

For all protocols, the DQS logic block delays the strobe by 90 degrees to center-align
the rising strobe edge within the data window. For DDR2, DDR3, and LPDDR2
protocols, the logic block also performs strobe gating, holding the DQS enable signal
high for the entire period that data is received. One DQS logic block exists for each
data group.

One VFIFO buffer exists for each data group. For DDR2, DDR3, and LPDDR2
protocols, the VFIFO buffer generates the DQS enable signal, which is delayed (by an
amount determined during calibration) to align with the incoming DQS signal. For
QDR and RLDRAM protocols, the output of the VFIFO buffer serves as the write
enable signal for the Read FIFO buffer, signaling when to begin capturing data.

DDIO_IN receives data from memory at double-data rate and passes data on to the
Read FIFO buffer at single-data rate.

The Read FIFO buffer temporarily holds data read from memory; one Read FIFO
buffer exists for each data group. For half-rate interfaces, the Read FIFO buffer
converts the full-rate, single data-rate input to a half-rate, single data-rate output
which is then passed to the PHY core logic. In the case of a quarter-rate interface, soft
logic in the PHY performs an additional conversion from half-rate single data rate to
quarter-rate single data rate.

One LFIFO buffer exists for each memory interface; the LFIFO buffer generates the
read enable signal for all Read FIFO blocks in an interface. The read enable signal is
asserted when the Read FIFO blocks have buffered sufficient data from the memory to
be read. The timing of the read enable signal is determined during calibration.

Figure 1–5. Read Datapath

DQS Logic
Block

VFIFO
(one per group)

Memory
(Read

Capture)

DDIO_IN

Strobe

Data bus
DQS enable

(DDRx)

Read
FIFO

Data
in

Write
clk

Write
enable

LFIFO
(one per interface)

Read
enable

Half-rate
clk

Data
out

(QDR & RLDRAM)

PHY

Delayed
DQS/clock

Full-rate
double data rate

Full-rate
single data rate

Half-rate
single data rate

(or quarter-rate
single data rate)
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–8 Chapter 1: Functional Description—UniPHY
Block Description
Sequencer
Depending on the combination of protocol and IP architecture in your external
memory interface, you may have either an RTL-based sequencer or a Nios® II-based
sequencer. This section discusses the Nios II-based sequencer and the RTL-based
sequencer.

1 Table 1–3 in Volume 1 of this handbook shows the sequencer support for different
protocol-architecture combinations.

1 Be aware that RTL-based sequencer implementations and Nios II-based sequencer
implementations can have different pin requirements. You may not be able to migrate
from an RTL-based sequencer to a Nios II-based sequencer and maintain the same
pinout.

f For information on pin planning, refer to Planning Pin and FPGA
Resources in volume 2 of the External Memory Interface Handbook.

Nios II-Based Sequencer
The DDR2, DDR3, and LPDDR2 controllers with UniPHY employ a Nios II-based
sequencer that is parameterizable and is dynamically generated at run time. The
Nios II-based sequencer is also available with the QDR II and RLDRAM II controllers.

Function

The sequencer enables high-frequency memory interface operation by calibrating the
interface to compensate for variations in setup and hold requirements caused by
transmission delays.

The UniPHY converts the double-data rate interface of high-speed memory devices to
a full-rate or half-rate interface for use within an FPGA. To compensate for slight
variations in data transmission to and from the memory device, double-data rate is
usually center-aligned with its strobe signal; nonetheless, at high speeds, slight
variations in delay can result in setup or hold time violations. The sequencer
implements a calibration algorithm to determine the combination of delay and phase
settings necessary to maintain center-alignment of data and clock signals, even in the
presence of significant delay variations. Programmable delay chains in the FPGA
I/Os then implement the calculated delays to ensure that data remains centered.
Calibration also applies settings to the FIFO buffers within the PHY to minimize
latency and ensures that the read valid signal is generated at the appropriate time.

When calibration is completed, the sequencer returns control to the memory
controller.

f For more information about calibration, refer to UniPHY Calibration Stages.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–9
Block Description
Architecture

Figure 1–6 shows the sequencer block diagram. The sequencer is composed of a
Nios II processor and a series of hardware-based component managers, connected
together by an Avalon bus. The Nios II processor performs the high-level algorithmic
operations of calibration, while the component managers handle the lower-level
timing, memory protocol, and bit-manipulation operations.

The high-level calibration algorithms are specified in C code, which is compiled into
Nios II code that resides in the FPGA RAM blocks. The debug interface provides a
mechanism for interacting with the various managers and for tracking the progress of
the calibration algorithm, and can be useful for debugging problems that arise within
the PHY. The various managers are specified in RTL and implement operations that
would be slow or inefficient if implemented in software.

The C code that defines the calibration routines is available for your reference in the
\<name>_s0_software subdirectory. Altera does not recommend that you modify this
C code.

SCC Manager

The scan chain control (SCC) manager allows the sequencer to set various delays and
phases on the I/Os that make up the memory interface. The latest Altera device
families provide dynamic delay chains on input, output, and output enable paths
which can be reconfigured at runtime. The SCC manager provides the calibration
routines access to these chains to add delay on incoming and outgoing signals. A
master on the Avalon-MM interface may require the maximum allowed delay setting
on input and output paths, and may set a particular delay value in this range to apply
to the paths.

Figure 1–6. Sequencer Block Diagram

SCC
Manager

RW
Manager

RAM Debug
Interface

To Debug
Module

I/O
Scan Chain

AFI
Interface

PHY
Parameters

Avalon-MM InterfaceNios II
Processor

PHY
Manager

Data
Manager

Tracking
Manager

DQS enable
Samples
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–10 Chapter 1: Functional Description—UniPHY
Block Description
The SCC manager implements the Avalon-MM interface and the storage mechanism
for all input, output, and phase settings. It contains circuitry that configures a DQ- or
DQS-configuration block. The Nios II processor may set delay, phases, or register
settings; the sequencer scans the settings serially to the appropriate DQ or DQS
configuration block.

RW Manager

The read write (RW) manager encapsulates the protocol to read and write to the
memory device through the Altera PHY Interface (AFI). It provides a buffer that
stores the data to be sent to and read from memory, and provides the following
commands:

■ Write configuration—configures the memory for use. Sets up burst lengths, read
and write latencies, and other device specific parameters.

■ Refresh—initiates a refresh operation at the DRAM. The command does not exist
on SRAM devices. The sequencer also provides a register that determines whether
the RW manager automatically generates refresh signals.

■ Enable or disable multi-purpose register (MPR)—for memory devices with a
special register that contains calibration specific patterns that you can read, this
command enables or disables access to the register.

■ Activate row—for memory devices that have both rows and columns, this
command activates a specific row. Subsequent reads and writes operate on this
specific row.

■ Precharge—closes a row before you can access a new row.

■ Write or read burst—writes or reads a burst length of data.

■ Write guaranteed—writes with a special mode where the memory holds address
and data lines constant. Altera guarantees this type of write to work in the
presence of skew, but constrains to write the same data across the entire burst
length.

■ Write and read back-to-back—performs back-to-back writes or reads to adjacent
banks. Most memory devices have strict timing constraints on subsequent accesses
to the same bank, thus back-to-back writes and reads have to reference different
banks.

■ Protocol-specific initialization—a protocol-specific command required by the
initialization sequence.

PHY Manager

The PHY Manager provides access to the PHY for calibration, and passes relevant
calibration results to the PHY. For example, the PHY Manager sets the VFIFO and
LFIFO buffer parameters resulting from calibration, signals the PHY when the
memory initialization sequence finishes, and reports the pass/fail status of
calibration.

Data Manager

The Data Manager stores parameterization-specific data in RAM, for the software to
query.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–11
Block Description
Tracking Manager

The Tracking Manager detects the effects of voltage and temperature variations that
can occur on the memory device over time resulting in reduced margins, and adjusts
the DQS enable delay as necessary to maintain adequate operating margins.

The Tracking Manager briefly assumes control of the AFI interface after each memory
refresh cycle, issuing a read routine to the RW Manager, and then sampling the DQS
tracking. Ideally, the falling edge of the DQS enable signal would align to the last
rising edge of the raw DQS signal from the memory device. The Tracking Manager
determines whether the DQS enable signal is leading or trailing the raw DQS signal.

Each time a refresh occurs, the Tracking Manager takes a sample of the raw DQS
signal; any adjustments of the DQS enable signal occur only after sufficient samples of
raw DQS have been taken. When the Tracking Manager determines that the DQS
enable signal is either leading or lagging the raw DQS signal, it adjusts the DQS
enable appropriately.

Figure 1–7 shows the Tracking manager signals.

Some notes on Tracking Manager operation:

■ The time taken by the Tracking Manager is arbitrary; if the period taken exceeds
the refresh period, the Tracking Manager handles memory refresh.

■ afi_seq_busy should go high fewer than 10 clock cycles after
afi_ctl_refresh_done or afi_ctl_long_idle is asserted.

■ afi_refresh_done should deassert fewer than 10 clock cycles after afi_seq_busy
deasserts.

■ afi_ctl_long_idle causes the Tracking Manager to execute an algorithm different
than periodic refresh; use afi_ctl_long_idle when a long session has elapsed
without a periodic refresh.

Figure 1–7. Tracking Manager Signals

afi_clk

afi_ctl_refresh_done

afi_seq_busy

When the Refresh Completes, the
Controller Asserts the Signal & Waits
for the Tracking Manager’s Response

The Tracking Manager Responds by
Driving afi_seq_busy High & Can Begin
Taking Over the AFI Interface

When the Tracking Manager Is Done
with DQS Tracking, It Asserts the
afi_seq_busy Signal

After afi_seq_busy Goes Low, the
Controller Deasserts the Signal &
Continues with Normal Operation
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–12 Chapter 1: Functional Description—UniPHY
Block Description
■ The Tracking Manager is instantiated into the sequencer system when DQS Enable
Tracking is turned on. Table 1–1 summarizes configurations supporting DQS
tracking.

■ If you do not want to use DQS tracking, you can disable it (at your risk), by
opening the Verilog file <variant_name>_if0_c0.v in an editor, and changing the
value of the USE_DQS_TRACKING parameter from 1 to 0.

Nios II Processor

The Nios II processor manages the calibration algorithm; the Nios II processor is
unavailable after calibration is completed.

The same calibration algorithm supports all device families, with some differences.
The following sections describe the calibration algorithm for DDR3 SDRAM on
Stratix III devices. Calibration algorithms for other protocols and families are a subset
and significant differences are pointed out when necessary. As the algorithm is fully
contained in the software of the sequencer (in the C code) enabling and disabling
specific steps involves turning flags on and off.

Calibration consists of the following stages:

■ Initialize memory.

■ Calibrate read datapath.

■ Calibrate write datapath.

■ Run diagnostics.

Initialize Memory

Calibration must initialize all memory devices before they can operate properly. The
sequencer performs this memory initialization stage when it takes control of the PHY
at startup.

Calibrate Read Datapath

Calibrating the read datapath comprises the following steps:

■ Calibrate DQS enable cycle and phase.

■ Perform read per-bit deskew to center the strobe signal within data valid window.

■ Reduce LFIFO latency.

Calibrate Write Datapath

Calibrating the write datapath involves the following steps:

■ Center align DQS with respect to DQ.

■ Align DQS with mem_clk.

Table 1–1. Configurations Supporting DQS Tracking

Device Family Protocol Frequency

Arria V
Arria V GZ
Cyclone V
Stratix V

LPDDR2 All frequencies.

DDR3 (single rank) More than 450 MHz for speed grade
5, or more than 534 MHz.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–13
Block Description
Test Diagnostics

The sequencer estimates the read and write margins under noisy conditions, by
sweeping input and output DQ and DQS delays to determine the size of the data
valid windows on the input and output sides. The sequencer stores this information
in the local memory and you can access it through the debugging interface.

When the diagnostic test finishes, control of the PHY interface passes back to the
controller and the sequencer issues a pass or fail signal.

RTL-based Sequencer
The RTL-based sequencer is available for QDR II and RLDRAM II interfaces; it is a
state machine that processes the calibration algorithm. The sequencer assumes control
of the interface at reset (whether at initial startup or when the IP is reset) and
maintains control throughout the calibration process. The sequencer relinquishes
control to the memory controller only after successful calibration. Table 1–2 lists the
major states in the RTL-based sequencer.

Table 1–2. Sequencer States (Part 1 of 2)

State Description

RESET Remain in this state until reset is released.

LOAD_INIT Load any initialization values for simulation purposes.

STABLE Wait until the memory device is stable.

WRITE_ZERO Issue write command to address 0.

WAIT_WRITE_ZERO Write all 0xAs to address 0.

WRITE_ONE Issue write command to address 1.

WAIT_WRITE_ONE Write all 0x5s to address 1.

Valid Calibration States

V_READ_ZERO Issue read command to address 0 (expected data is all 0xAs).

V_READ_NOP This state represents the minimum number of cycles required between 2 back-to-back read
commands. The number of NOP states depends on the burst length.

V_READ_ONE Issue read command to address 1 (expected data is all 0x5s).

V_WAIT_READ Wait for read valid signal.

V_COMPARE_READ_ZER
O_READ_ONE Parameterizable number of cycles to wait before making the read data comparisons.

V_CHECK_READ_FAIL

When a read fails, the write pointer (in the AFI clock domain) of the valid FIFO buffer is
incremented. The read pointer of the valid FIFO buffer is in the DQS clock domain. The gap
between the read and write pointers is effectively the latency between the time when the PHY
receives the read command and the time valid data is returned to the PHY.

V_ADD_FULL_RATE Advance the read valid FIFO buffer write pointer by an extra full rate cycle.

V_ADD_HALF_RATE Advance the read valid FIFO buffer write pointer by an extra half rate cycle. In full-rate designs,
equivalent to V_ADD_FULL_RATE.

V_READ_FIFO_RESET Reset the read and write pointers of the read data synchronization FIFO buffer.

V_CALIB_DONE Valid calibration is successful.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–14 Chapter 1: Functional Description—UniPHY
Block Description
Shadow Registers
Shadow registers are a hardware feature of Arria V GZ and Stratix V devices that
enables high-speed multi-rank calibration for DDR3 quarter-rate and half-rate
memory interfaces, up to 667MHz for dual-rank interfaces and 533MHz for
quad-rank interfaces.

Description
Prior to the introduction of shadow registers, the data valid window of a multi-rank
interface was calibrated to the overlapping portion of the data valid windows of the
individual ranks. The resulting data valid window for the interface would be smaller
than the individual data valid windows, limiting overall performance.

Figure 1–8 illustrates the calibration of overlapping data valid windows, without
shadow registers.

Latency Calibration States

L_READ_ONE Issue read command to address 1 (expected data is all 0x5s).

L_WAIT_READ Wait for read valid signal from read datapath. Initial read latency is set to a predefined
maximum value.

L_COMPARE_READ_ONE Check returned read data against expected data. If data is correct, go to L_REDUCE_LATENCY;
otherwise go to L_ADD_MARGIN.

L_REDUCE_LATENCY Reduce the latency counter by 1.

L_READ_FLUSH Read from address 0, to flush the contents of the read data resynchronization FIFO buffer.

L_WAIT_READ_FLUSH Wait until the whole FIFO buffer is flushed, then go back to L_READ and try again.

L_ADD_MARGIN
Increment latency counter by 3 (1 cycle to get the correct data, 2 more cycles of margin for run
time variations). If latency counter value is smaller than predefined ideal condition minimum,
then go to CALIB_FAIL.

CALIB_DONE Calibration is successful.

CALIB_FAIL Calibration is not successful.

Table 1–2. Sequencer States (Part 2 of 2)

State Description

Figure 1–8. Calibration of Overlapping Data Valid Windows, without Shadow Registers

Rank 0 Window

Rank 1 Window

Actual Window
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–15
Block Description
Shadow registers allow the sequencer to calibrate each rank separately and fully, and
then to save the calibrated settings for each rank in its own set of shadow registers,
which are part of the IP scan chains. During a rank-to-rank switch, the rank-specific
set of calibration settings are restored just-in-time to optimize the data valid window
for each rank.

Figure 1–9 illustrates how the use of rank-specific calibration settings results in a data
valid window appropriate for the current rank.

The shadow registers and their associated rank-switching circuitry are part of the
device I/O periphery hardware.

Operation
The sequencer calibrates each rank individually and stores the resulting configuration
in shadow registers, which are part of the IP scan chains. UniPHY then selects the
appropriate configuration for the rank in use, switching between configurations as
necessary. Calibration results for deskew delay chains are stored in the shadow
registers. For DQS enable/disable, delay chain configurations come directly from the
FPGA core.

Arria V GZ and Stratix V devices provide two sets of shadow registers, allowing for
full support of a dual-rank interface, and support of additional ranks at reduced
frequency.

■ For a 2-rank interface, each rank is fully calibrated separately.

■ For a 4-rank interface, the first set of shadow registers stores calibration data for
the first and second rank, and the second set of shadow registers stores calibration
data for the third and fourth ranks.

Figure 1–9. Rank-Specific Calibration Settings, with Shadow Registers

Rank 0 Window

Rank 1 Window

Actual window when
accessing Rank 0

Actual window when
accessing Rank 1
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–16 Chapter 1: Functional Description—UniPHY
Interfaces
DLL Offset Control Block
For designs generated with HardCopy compatibility enabled, the UniPHY layer
includes DLL offset control blocks, which allow adjustment of the DLL control word
for modifying the DQS delay chains to compensate for variations in silicon.

A DLL offset control block can feed only one side of the chip, therefore the IP
instantiates two DLL offset control blocks for each DLL, to permit control of resources
on two sides of the chip, as in the case of wraparound designs. In non-wraparound
designs, where the second DLL offset control block is not needed, the second control
block remains unused and disappears during synthesis.

One complication of the dual DLL offset control block process, is that at generation
time it is impossible to know where resources are going to be placed, so the system
automatically connects the output of the first DLL offset control block to all DQS
groups. In the case of a wraparound design, you must modify the RTL code after pin
placement, to connect the second DLL offset control block.

To connect the second DLL offset control block, follow these steps:

1. Open the file <variation_name>_new_io_pads.v in an editor.

2. Find a line of a form similar to the following:

.dll_offsetdelay_in((i < 0) ?
hc_dll_config_dll_offset_ctrl_offsetctrlout :
hc_dll_config_dll_offset_ctrl_offsetctrlout),

This line connects the output of the first DLL offset control block
(hc_dll_config_dll_offset_ctrl_offsetctrlout) to the offset control input of
the DQS delay chain, for every DQS delay chain where i < 0.

3. Modify the above line to connect the second DLL offset control block. The
following example shows the correct syntax to connect groups 0 to 3 to the output
of the first DLL offset control block, and groups 4 and above to the output of the
second DLL offset control block:

.dll_offsetdelay_in((i < 4) ?
hc_dll_config_dll_offset_ctrl_offsetctrlout :
hc_dll_config_dll_offset_ctrl_b_offsetctrlout),

Interfaces
Figure 1–10 shows the major blocks of the UniPHY and how it interfaces with the
external memory device and the controller.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–17
Interfaces
1 Instantiating the delay-locked loop (DLL) and the phase-locked loop (PLL) on the
same level as the UniPHY eases DLL and PLL sharing.

The following interfaces are on the UniPHY top-level file:

■ AFI

■ Memory interface

■ DLL sharing interface

■ PLL sharing interface

■ OCT interface

AFI
The UniPHY datapath uses the Altera PHY interface (AFI). The AFI is in a simple
connection between the PHY and controller. The AFI is based on the DDR PHY
interface (DFI) specification, with some calibration-related signals not used and some
additional Altera-specific sideband signals added.

For more information about the AFI, refer to AFI 3.0 Specification.

The Memory Interface
For more information on the memory interface, refer to “UniPHY Signals” on
page 1–21.

Figure 1–10. UniPHY Interfaces with the Controller and the External Memory

UniPHY

UniPHY Top-Level File

Memory Interface

RUP and RDN

AFI

Reset Interface

DLL Sharing
 Interface

DLL

OCT

PLL

PLL Sharing
 Interface
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–18 Chapter 1: Functional Description—UniPHY
Interfaces
The DLL and PLL Sharing Interface
You can generate the UniPHY memory interface and configure it to share its PLL,
DLL, or both interfaces. By default, a UniPHY memory interface variant contains a
PLL and DLL; the PLL produces a variety of required clock signals derived from the
reference clock, and the DLL produces a delay codeword. In this case the PLL sharing
mode is "No sharing". A UniPHY variant can be configured as a PLL Master and/or
DLL Master, in which case the corresponding interfaces are exported to the UniPHY
top-level and can be connected to an identically configured UniPHY variant PLL
Slave and/or DLL Slave. The UniPHY slave variant is instantiated without a PLL
and/or DLL, which saves device resources.

1 For Arria II GX, Arria II GZ, Stratix III, and Stratix IV devices, the PLL and DLL must
both be shared at the same time—their sharing modes must match. This restriction
does not apply to Arria V, Arria V GZ, Cyclone V, or Stratix V devices.

1 For devices with hard memory interface components onboard, you cannot share PLL
or DLL resources between soft and hard interfaces.

To share PLLs or DLLs, follow these steps:

1. To create a PLL or DLL master, create a UniPHY memory interface IP core. To
make the PLL and/or DLL interface appear at the top-level in the core, on the PHY
Settings tab in the parameter editor, set the PLL Sharing Mode and/or DLL
Sharing Mode to Master.

2. To create a PLL or DLL slave, create a second UniPHY memory interface IP core.
To make the PLL and/or DLL interface appear at the top-level in the core, on the
PHY Settings tab set the PLL Sharing Mode and/or DLL Sharing Mode to
Slave.

3. Connect the PLL and/or DLL sharing interfaces by following the appropriate step,
below:

■ For cores generated with Megawizard Plug-in Manager: connect the PLL
and/or DLL interface ports between the master and slave cores in your
wrapper RTL. When using PLL sharing, connect the afi_clk, afi_half_clk,
and afi_reset_n outputs from the UniPHY PLL master to the afi_clk,
afi_half_clk, and afi_reset_in inputs on the UniPHY PLL slave

■ For cores generated with Qsys, connect the PLL and/or DLL interface in the
Qsys GUI. When using PLL sharing, connect the afi_clk, afi_half_clk, and
afi_reset interfaces from the UniPHY PLL master to the afi_clk_in,
afi_half_clk_in, and afi_reset_in interfaces on the UniPHY PLL slave.

Qsys supports only one-to-one conduit connections in the patch panel. To
share a PLL from a Uniphy PLL master with multiple slaves, you should
replicate the number of PLL sharing conduit interfaces in the Qsys patch panel
by choosing Number of PLL sharing interfaces in the parameter editor.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–19
Interfaces
1 You may connect a slave UniPHY instance to the clocks from a user-defined PLL
instead of from a UniPHY master. The general procedure for doing so is as follows:

a. Make a template, by generating your IP with PLL Sharing Mode set to No
Sharing, and then compiling the example project to determine the frequency
and phases of the clock outputs from the PLL.

b. Generate an external PLL using the MegaWizard flow, with the equivalent
output clocks.

c. Generate your IP with PLL Sharing Mode set to Slave, and connect the
external PLL to the PLL sharing interface.

You must be very careful when connecting clock signals to the slave. Connecting to
clocks with frequency or phase different than what the core expects may result in
hardware failure.

1 The signal dll_pll_locked is an internal signal from the PLL to the DLL which
ensures that the DLL remains in reset mode until the PLL becomes locked. This signal
is not available for use by customer logic.

1 The PLL and DLL sharing interfaces are available when using SOPC Builder, however
the PLL and/or DLL interfaces cannot be connected using the SOPC Builder GUI
interface. To complete master-slave connections when using SOPC Builder, you must
edit the generated RTL code manually.

About PLL Simulation
PLL frequencies may differ between the synthesis and simulation file sets. In either
case the achieved PLL frequencies and phases are calculated and reported in real time
in the parameter editor.

For the simulation file set, clocks are specified in the RTL, not in units of frequency
but by the period in picoseconds, thus avoiding clock drift due to picosecond
rounding error.

For the synthesis file set, there are two mechanisms by which clock frequencies are
specified in the RTL, based on the target device family:

■ For Arria V, Arria V GZ, Cyclone V, and Stratix V, clock frequencies are specified
in megahertz.

■ For Arria II GX, Arria II GZ, Stratix III, and Stratix IV, clock frequencies are
specified by integer multipliers and divisors. For these families, the real
simulation model—as opposed to the default abstract simulation model—also
uses clock frequencies specified by integer ratios.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–20 Chapter 1: Functional Description—UniPHY
Interfaces
The OCT Sharing Interface
By default, the UniPHY IP generates the required OCT control block at the top-level
RTL file for the PHY. If you want, you can instantiate this block elsewhere in your
code and feed the required termination control signals into the IP core by turning off
Master for OCT Control Block on the PHY Settings tab. If you turn off Master for
OCT Control Block, you must instantiate the OCT control block or use another
UniPHY instance as a master, and ensure that the parallel and series termination
control bus signals are connected to the PHY.

Figure 1–11 and Figure 1–12, respectively, show the PHY architecture with and
without Master for OCT Control Block.

1 The OCT sharing interface is available when using SOPC Builder, however the OCT
sharing interface cannot be connected using the SOPC Builder parameter editor. To
complete master-slave connections when using SOPC Builder, you must edit the
generated RTL code manually.

If you generate a QDR II or RLDRAM II slave IP core, you must modify the pin
assignment script to allow the fitter to correctly resolve the OCT termination block
name in the OCT master core.

Figure 1–11. PHY Architecture with Master for OCT Control Block

Figure 1–12. PHY Architecture without Master for OCT Control Block

UniPHY
OCT

DLL PLL

UniPHY Top-Level File
Memory Interface

RUP and RDN

PLL Sharing
Interface

AFI

Reset Interface

OCT
Sharing
Interface

DLL Sharing
Interface

UniPHY
OCT

DLL PLL

UniPHY Top-Level File
Memory Interface

RUP and RDN

DLL Sharing
Interface

AFI

Reset Interface

PLL Sharing
Interface

Series and Parallel
Termination Control
Buses
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–21
UniPHY Signals
To modify the pin assignment script for QDR II or RLDRAM II slaves, follow these
steps:

1. In a text editor, open your system’s Tcl pin assignments script file, as follows:

■ For systems generated with the MegaWizard Plug-In Manager:
Open the <IP core name>/<slave core name>_p0_pin_assignments.tcl file.

■ For systems generated with Qsys or SOPC Builder:
Open the <HDL Path>/<submodules>/<slave core
name>_p0_pin_assignments.tcl file.

2. Search for the following line:

■ set ::master_corename "_MASTER_CORE_"

3. Replace _MASTER_CORE_ with the instance name of the UniPHY master to which the
slave is connected. The instance name is determined from the pin assignments file
name, as follows:

■ For systems generated with Qsys or SOPC Builder, the instance name is the
<master core name> component of the pins assignments file name:
<HDL path>/<submodules>/<master core name>_p0_pin_assignments.tcl

■ For systems generated with the MegaWizard Plug-in Manager, the instance
name is the <master core name> component of the pins assignments file name:
<IP core name>/<master core name>_p0_pin_assignments.tcl

UniPHY Signals
This section describes the UniPHY signals.

Table 1–3 lists the clock and reset signals.

Table 1–4 lists the DDR2 and DDR3 SDRAM interface signals.

Table 1–3. Clock and Reset Signals

 Name Direction Width Description

pll_ref_clk Input 1 PLL reference clock input.

global_reset_n Input 1
Active low global reset for PLL and all logic in the PHY,
which causes a complete reset of the whole system.
Minimum pulse width is 40ns.

soft_reset_n Input 1

Holding soft_reset_n low holds the PHY in a reset state.
However it does not reset the PLL, which keeps running. It
also holds the afi_reset_n output low. Mainly for use by
SOPC Builder.

Table 1–4. DDR2 and DDR3 SDRAM Interface Signals (Part 1 of 2)

 Name Direction Width Description

mem_ck, mem_ck_n Output MEM_CK_WIDTH Memory clock.

mem_cke Output MEM_CLK_EN_WIDTH Clock enable.

mem_cs_n Output MEM_CHIP_SELECT_WIDTH Chip select..

mem_cas_n Output MEM_CONTROL_WIDTH Column address strobe.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–22 Chapter 1: Functional Description—UniPHY
UniPHY Signals
1 For information about the AFI signals, refer to AFI 3.0 Specification.

For information about top-level HardCopy migration signals, refer to HardCopy
Design Migration Guidelines in volume 2 of the External Memory Interface Handbook.

Table 1–5 lists parameters relating to UniPHY signals.

mem_ras_n Output MEM_CONTROL_WIDTH Row address strobe.

mem_we_n Output MEM_CONTROL_WIDTH Write enable.

mem_a Output MEM_ADDRESS_WIDTH Address.

mem_ba Output MEM_BANK_ADDRESS_WIDTH Bank address.

mem_dqs, mem_dqs_n Bidirectional MEM_DQS_WIDTH Data strobe.

mem_dq Bidirectional MEM_DQ_WIDTH Data.

mem_dm Output MEM_DM_WIDTH Data mask.

mem_odt Output MEM_ODT_WIDTH On-die termination.

mem_reset_n (DDR3 only) Output 1 Reset

mem_ac_parity (DDR3 only,
RDIMM/LRDIMM only)

Output MEM_CONTROL_WIDTH
Address/command parity bit. (Even
parity, per the RDIMM spec,
JESD82-29A.)

mem_err_out_n (DDR3 only,
RDIMM/LRDIMM only)

Input MEM_CONTROL_WIDTH Address/command parity error.

Table 1–4. DDR2 and DDR3 SDRAM Interface Signals (Part 2 of 2)

 Name Direction Width Description

Table 1–5. UniPHY Parameters (Part 1 of 2)

Parameter Name Description

AFI_RATIO

AFI_RATIO is 1 in full-rate designs.

AFI_RATIO is 2 for half-rate designs.

AFI_RATIO is 4 for quarter-rate designs.

MEM_IF_DQS_WIDTH The number of DQS pins in the interface.

MEM_ADDRESS_WIDTH The address width of the specified memory device.

MEM_BANK_WIDTH The bank width of the specified memory device.

MEM_CHIP_SELECT_WIDTH The chip select width of the specified memory device.

MEM_CONTROL_WIDTH The control width of the specified memory device.

MEM_DM_WIDTH The DM width of the specified memory device.

MEM_DQ_WIDTH The DQ width of the specified memory device.

MEM_READ_DQS_WIDTH The READ DQS width of the specified memory device.

MEM_WRITE_DQS_WIDTH The WRITE DQS width of the specified memory device.

OCT_SERIES_TERM_
CONTROL_WIDTH

—

OCT_PARALLEL_TERM_
CONTROL_WIDTH

—

AFI_ADDRESS_WIDTH The AFI address width, derived from the corresponding memory interface width.

AFI_BANK_WIDTH The AFI bank width, derived from the corresponding memory interface width.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–23
UniPHY Signals
AFI_CHIP_SELECT_WIDTH The AFI chip select width, derived from the corresponding memory interface width.

AFI_DATA_MASK_WIDTH The AFI data mask width.

AFI_CONTROL_WIDTH The AFI control width, derived from the corresponding memory interface width.

AFI_DATA_WIDTH The AFI data width.

AFI_DQS_WIDTH The AFI DQS width.

DLL_DELAY_CTRL_WIDTH The DLL delay output control width.

NUM_SUBGROUP_PER_READ_DQS A read datapath parameter for timing purposes.

QVLD_EXTRA_FLOP_STAGES A read datapath parameter for timing purposes.

READ_VALID_TIMEOUT_
WIDTH

A read datapath parameter; calibration fails when the timeout counter expires.

READ_VALID_FIFO_WRITE_ADDR
_WIDTH

A read datapath parameter; the write address width for half-rate clocks.

READ_VALID_FIFO_READ_
ADDR_WIDTH

A read datapath parameter; the read address width for full-rate clocks.

MAX_LATENCY_COUNT_
WIDTH

A latency calibration parameter; the maximum latency count width.

MAX_READ_LATENCY A latency calibration parameter; the maximum read latency.

READ_FIFO_READ_ADDR_
WIDTH

—

READ_FIFO_WRITE_ADDR_
WIDTH

—

MAX_WRITE_LATENCY_
COUNT_WIDTH

A write datapath parameter; the maximum write latency count width.

INIT_COUNT_WIDTH An initailization sequence.

MRSC_COUNT_WIDTH A memory-specific initialization parameter.

INIT_NOP_COUNT_WIDTH A memory-specific initialization parameter.

MRS_CONFIGURATION A memory-specific initialization parameter.

MRS_BURST_LENGTH A memory-specific initialization parameter.

MRS_ADDRESS_MODE A memory-specific initialization parameter.

MRS_DLL_RESET A memory-specific initialization parameter.

MRS_IMP_MATCHING A memory-specific initialization parameter.

MRS_ODT_EN A memory-specific initialization parameter.

MRS_BURST_LENGTH A memory-specific initialization parameter.

MEM_T_WL A memory-specific initialization parameter.

MEM_T_RL A memory-specific initialization parameter.

SEQ_BURST_COUNT_WIDTH The burst count width for the sequencer.

VCALIB_COUNT_WIDTH The width of a counter that the sequencer uses.

DOUBLE_MEM_DQ_WIDTH —

HALF_AFI_DATA_WIDTH —

CALIB_REG_WIDTH The width of the calibration status register.

NUM_AFI_RESET The number of AFI resets to generate.

Table 1–5. UniPHY Parameters (Part 2 of 2)

Parameter Name Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–24 Chapter 1: Functional Description—UniPHY
PHY-to-Controller Interfaces
PHY-to-Controller Interfaces
This section describes the typical modules that are connected to the UniPHY and the
port name prefixes each module uses. Also this section describes using a custom
controller and describes the AFI.

The AFI standardizes and simplifies the interface between controller and PHY for all
Altera memory designs, thus allowing you to easily interchange your own controller
code with Altera's high-performance controllers. The AFI PHY interface includes an
administration block that configures the memory for calibration and performs
necessary accesses to mode registers that configure the memory as required.

For half-rate designs, the address and command signals in the UniPHY are asserted
for one mem_clk cycle (1T addressing), such that there are two input bits per address
and command pin in half-rate designs. If you require a more conservative 2T
addressing (where signals are asserted for two mem_clk cycles), drive both input bits
(of the address and command signal) identically in half-rate designs.

Figure 1–13 shows the half-rate write operation.

Figure 1–14 shows a full-rate write.

After calibration is completed, the sequencer sends the write latency in number of
clock cycles to the controller.

Figure 1–15 and Figure 1–16 show writes and reads, where the IP core writes data to
and reads from the same address. In each example, afi_rdata and afi_wdata are
aligned with controller clock (afi_clk) cycles. All the data in the bit vector is valid at
once.

Figure 1–13. Half-Rate Write with Word-Aligned Data

Figure 1–14. Full-Rate Write

00 10 11 00

00 11 00

-- ba --dc

afi_clk

afi_dqs_burst

afi_wdata_valid

afi_wdata

-- a --b

afi_clk

afi_dqs_burst

afi_wdata_valid

afi_wdata
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–25
PHY-to-Controller Interfaces
The AFI has the following conventions:

■ With the AFI, high and low signals are combined in one signal, so for a single chip
select (afi_cs_n) interface, afi_cs_n[1:0], location 0 appears on the memory bus
on one mem_clk cycle and location 1 on the next mem_clk cycle.

1 This convention is maintained for all signals so for an 8 bit memory
interface, the write data (afi_wdata) signal is afi_wdata[31:0], where the
first data on the DQ pins is afi_wdata[7:0], then afi_wdata[15:8], then
afi_wdata[23:16], then afi_wdata[31:24].

■ Spaced reads and writes have the following definitions:

■ Spaced writes—write commands separated by a gap of one controller clock
(afi_clk) cycle.

■ Spaced reads—read commands separated by a gap of one controller clock
(afi_clk) cycle.

Figure 1–15 and Figure 1–16 assume the following general points:

■ The burst length is four.

■ An 8-bit interface with one chip select.

■ The data for one controller clock (afi_clk) cycle represents data for two memory
clock (mem_clk) cycles (half-rate interface).
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–26 Chapter 1: Functional Description—UniPHY
PHY-to-Controller Interfaces
Figure 1–15. Word-Aligned Writes

Notes to Figure 1–15:

(1) To show the even alignment of afi_cs_n, expand the signal (this convention applies for all other signals).
(2) The afi_dqs_burst must go high one memory clock cycle before afi_wdata_valid. Compare with the word-unaligned case.
(3) The afi_wdata_valid is asserted two afi_wlat controller clock (afi_clk) cycles after chip select (afi_cs_n) is asserted. The afi_wlat

indicates the required write latency in the system. The value is determined during calibration and is dependant upon the relative delays in the
address and command path and the write datapath in both the PHY and the external DDR SDRAM subsystem. The controller must drive afi_cs_n
and then wait afi_wlat (two in this example) afi_clks before driving afi_wdata_valid.

(4) Observe the ordering of write data (afi_wdata). Compare this to data on the mem_dq signal.
(5) In all waveforms a command record is added that combines the memory pins ras_n, cas_n and we_n into the current command that is issued.

This command is registered by the memory when chip select (mem_cs_n) is low. The important commands in the presented waveforms are WR
= write, ACT = activate.

afi_clk

Note 4Note 2Note 1

afi_wlat

afi_ras_n

afi_cas_n

afi_we_n

afi_cs_n

afi_dqs_burst

afi_wdata_valid

afi_wdata

afi_addr

Memory
Interface

mem_clk

command
(Note 5)

mem_cs_n

mem_dqs

mem_dq

Note 3

 00 00 11

2

1111 00

1111 00

1111 01 11 01 11

 00 00 10 11 10 11 00

 00 00 11 00 11

 00000000 00000000 03020100 07060504 0b0a0908 0f0e0d0c

 00000000 00000000 0020008

ACTACT WR
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–27
PHY-to-Controller Interfaces
Figure 1–16. Word-Aligned Reads

Notes to Figure 1–16:

(1) For AFI, afi_rdata_en is required to be asserted one memory clock cycle before chip select (afi_cs_n) is asserted. In the half-rate afi_clk
domain, this requirement manifests as the controller driving 11 (as opposed to the 01) on afi_rdata_en.

(2) AFI requires that afi_rdata_en is driven for the duration of the read. In this example, it is driven to 11 for two half-rate afi_clks, which equates
to driving to 1, for the four memory clock cycles of this four-beat burst.

(3) The afi_rdata_valid returns 15 (afi_rlat) controller clock (afi_clk) cycles after afi_rdata_en is asserted. Returned is when the
afi_rdata_valid signal is observed at the output of a register within the controller. A controller can use the afi_rlat value to determine when
to register to returned data, but this is unnecessary as the afi_rdata_valid is provided for the controller to use as an enable when registering
read data.

(4) Observe the alignment of returned read data with respect to data on the bus.

afi_clk

afi_rlat

afi_ras_n

afi_cas_n

afi_we_n

afi_cs_n

afi_rdata_en

afi_rdata_valid

afi_rdata

afi_ba

afi_addr

afi_dm

Memory
Interface

mem_clk

command

mem_cs_n

mem_dqs

mem_dq

15

11

0

 00 00 11

1111 01 11 01 11

 00 00 11 00 11 00

 00 00 11 00 11 00

FFFFFFFFFFFFFFFF

 00

 0000000 0020008

ACT RD

Note 1
Note 2 Note 2

Note 3
Note 4
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–28 Chapter 1: Functional Description—UniPHY
Using a Custom Controller
Using a Custom Controller
By default, the UniPHY-based external memory interface IP cores are delivered with
both the PHY and the memory controller integrated, as depicted in Figure 1–17.

If you want to use your own custom controller with the UniPHY PHY, check the
Generate PHY only box on the PHY Settings tab of the parameter editor and generate
the IP. The resulting top-level IP consists of only the sequencer, UniPHY datapath,
and PLL/DLL — the shaded area in Figure 1–17.

The AFI interface is exposed at the top-level of the generated IP core; you can connect
the AFI interface to your custom controller.

When you enable Generate PHY only, the generated example designs include the
memory controller appropriately instantiated to mediate read/write commands from
the traffic generator to the PHY-only IP.

1 For information on the AFI protocol, refer to the AFI 3.0 Specification.

1 For information on the example designs, refer to Traffic Generator and BIST Engine in
chapter 7 of this section.

Figure 1–17. Memory Controller with UniPHY

Memory
Device

Sequencer

UniPHY
Datapath

PLL/DLL

Controller

PHY Only

Controller with UniPHY

AFI
Memory
InterfaceAvalonController

Front End

Managers
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–29
Using a Vendor-Specific Memory Model
Using a Vendor-Specific Memory Model
You can replace the Altera-supplied memory model with a vendor-specific memory
model. In general, you may find vendor-specific models to be standardized, thorough,
and well supported, but sometimes more complex to setup and use.

If you do want to replace the Altera-supplied memory model with a vendor-supplied
memory model, observe the following guidelines:

■ Ensure that the vendor-supplied memory model that you have is correct for your
memory device.

■ Disconnect all signals from the default memory model and reconnect them to the
vendor-supplied memory model.

■ If you intend to run simulation from the Quartus II software, ensure that the .qip
file points to the vendor-supplied memory model.

f For related information, refer to Simulating Memory IP in volume 2 of the External
Memory Interface Handbook.

AFI 3.0 Specification
The Altera AFI interface defines communication between the controller and physical
layer (PHY) in the external memory interface. The following sections describe the AFI
implementation and the AFI signals.

Implementation
The AFI interface is a single-data-rate interface, meaning that data is transferred on
the rising edge of each clock cycle. Most memory interfaces, however, operate at
double-data-rate, transferring data on both the rising and falling edges of the clock
signal. If the AFI interface is to directly control a double-data-rate signal, two
single-data-rate bits must be transmitted on each clock cycle; the PHY then sends out
one bit on the rising edge of the clock and one bit on the falling edge.

The AFI convention is to send the low part of the data first and the high part second,
as shown in Figure 1–18.

Bus Width and AFI Ratio
In cases where the AFI clock frequency is one-half or one-quarter of the memory clock
frequency, the AFI data must be twice or four times as wide, respectively, as the
corresponding memory data. The ratio between AFI clock and memory clock
frequencies is referred to as the AFI ratio. (A half-rate AFI interface has an AFI ratio of
2, while a quarter-rate interface has an AFI ratio of 4.)

Figure 1–18. Single versus Double Data Rate Transfer

clock

Single-data-rate

Double-data-rate

A

Low High BA A

, A B

B

, BLow

Low

LowHigh

High

High
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–30 Chapter 1: Functional Description—UniPHY
AFI 3.0 Specification
In general, the width of the AFI signal depends on the following three factors:

■ The size of the equivalent signal on the memory interface. For example, if a[15:0]
is a DDR3 address input and the AFI clock runs at the same speed as the memory
interface, the equivalent afi_addr bus will be 16-bits wide.

■ The data rate of the equivalent signal on the memory interface. For example, if
d[7:0] is a double-data-rate QDR II input data bus and the AFI clock runs at the
same speed as the memory interface, the equivalent afi_write_data bus will be
16-bits wide.

■ The AFI ratio. For example, if cs_n is a single-bit DDR3 chip select input and the
AFI clock runs at half the speed of the memory interface, the equivalent afi_cs_n
bus will be 2-bits wide.

The following formula summarizes the three factors described above:

AFI_width = memory_width * signal_rate * AFI_RATE_RATIO

1 The above formula is a general rule, but not all signals obey it. For definite signal-size
information, refer to the specific table.

AFI Parameters
Table 1–6 through Table 1–14 list the AFI parameters grouped according to their
functions.

Not all parameters are used for all protocols.

Parameters Affecting Bus Width
The following parameters affect the width of AFI signal buses. Parameters prefixed by
MEM_IF_ refer to the signal size at the interface between the PHY and memory device.

Table 1–6. Ratio Parameters

Parameter Name Description

AFI_RATE_RATIO

The ratio between the AFI clock frequency and the memory
clock frequency. For full-rate interfaces this value is 1, for
half-rate interfaces the value is 2, and for quarter-rate
interfaces the value is 4.

DATA_RATE_RATIO
The number of data bits transmitted per clock cycle. For
single-date rate protocols this value is 1, and for double-data
rate protocols this value is 2.

ADDR_RATE_RATIO
The number of address bits transmitted per clock cycle. For
single-date rate address protocols this value is 1, and for
double-data rate address protocols this value is 2.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–31
AFI 3.0 Specification
Table 1–7. Memory Interface Parameters

Parameter Name Description

MEM_IF_ADDR_WIDTH The width of the address bus on the memory device(s).

MEM_IF_BANKADDR_WIDTH The width of the bank address bus on the interface to the
memory device(s). Typically, the log2 of the number of banks.

MEM_IF_CS_WIDTH The number of chip selects on the interface to the memory
device(s).

MEM_IF_WRITE_DQS_WIDTH The number of DQS (or write clock) signals on the write
interface. For example, the number of DQS groups.

MEM_IF_CLK_PAIR_COUNT The number of CK/CK# pairs.

MEM_IF_DQ_WIDTH
The number of DQ signals on the interface to the memory
device(s). For single-ended interfaces such as QDR II, this
value is the number of D or Q signals.

MEM_IF_DM_WIDTH The number of data mask pins on the interface to the memory
device(s).

MEM_IF_READ_DQS_WIDTH The number of DQS signals on the read interface. For example,
the number of DQS groups.

Table 1–8. Derived AFI Parameters

Parameter Name Derivation Equation

AFI_ADDR_WIDTH MEM_IF_ADDR_WIDTH * AFI_RATE_RATIO * ADDR_RATE_RATIO

AFI_BANKADDR_WIDTH MEM_IF_BANKADDR_WIDTH * AFI_RATE_RATIO *
ADDR_RATE_RATIO

AFI_CONTROL_WIDTH AFI_RATE_RATIO * ADDR_RATE_RATIO

AFI_CS_WIDTH MEM_IF_CS_WIDTH * AFI_RATE_RATIO

AFI_DM_WIDTH MEM_IF_DM_WIDTH * AFI_RATE_RATIO * DATA_RATE_RATIO

AFI_DQ_WIDTH MEM_IF_DQ_WIDTH * AFI_RATE_RATIO * DATA_RATE_RATIO

AFI_WRITE_DQS_WIDTH MEM_IF_WRITE_DQS_WIDTH * AFI_RATE_RATIO

AFI_LAT_WIDTH 6

AFI_RLAT_WIDTH AFI_LAT_WIDTH

AFI_WLAT_WIDTH AFI_LAT_WIDTH * MEM_IF_WRITE_DQS_WIDTH

AFI_CLK_PAIR_COUNT MEM_IF_CLK_PAIR_COUNT

AFI_WRANK_WIDTH Number of ranks * MEM_IF_WRITE_DQS_WIDTH *
AFI_RATE_RATIO

AFI_RRANK_WIDTH Number of ranks * MEM_IF_READ_DQS_WIDTH *
AFI_RATE_RATIO
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–32 Chapter 1: Functional Description—UniPHY
AFI 3.0 Specification
AFI Signals
The following tables list the AFI signals grouped according to their functions.

In each table, the direction column denotes the direction of the signal relative to the
PHY. For example, a signal defined as an output passes out of the PHY to the
controller. The AFI specification does not include any bidirectional signals.

Not all signals are used for all protocols.

Clock and Reset Signals
The AFI interface provides up to two clock signals and an asynchronous reset signal.

Address and Command Signals
The address and command signals encode read/write/configuration commands to
send to the memory device. The address and command signals are single-data rate
signals.

Table 1–9. Clock and Reset Signals

Signal Name Direction Width Description

afi_clk Output 1

Clock with which all data exchanged on the
AFI bus is synchronized. In general, this clock
is referred to as full-rate, half-rate, or
quarter-rate, depending on the ratio between
the frequency of this clock and the frequency
of the memory device clock.

afi_half_clk Output 1

Clock signal that runs at half the speed of the
afi_clk. The controller uses this signal when
the half-rate bridge feature is in use. This
signal is optional.

afi_reset_n Output 1
Asynchronous reset output signal. You must
synchronize this signal to the clock domain in
which you use it.

Table 1–10. Address and Command Signals (Part 1 of 2)

Signal Name Direction Width Description

afi_ba Input AFI_BANKADDR_WIDTH Bank address.

afi_cke Input AFI_CLK_EN_WIDTH Clock enable.

afi_cs_n Input AFI_CS_WIDTH

Chip select signal. (The number of chip
selects may not match the number of
ranks; for example, RDIMMs and
LRDIMMs require a minimum of 2 chip
select signals for both single-rank and
dual-rank configurations. Consult your
memory device datasheet for information
about chip select signal width.)

afi_ras_n Input AFI_CONTROL_WIDTH RAS# (for DDR2 and DDR3 memory
devices.)
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–33
AFI 3.0 Specification
afi_we_n Input AFI_CONTROL_WIDTH WE# (for DDR2, DDR3, and RLDRAM II
memory devices.)

afi_cas_n Input AFI_CONTROL_WIDTH CAS# (for DDR2 and DDR3 memory
devices.)

afi_ref_n Input AFI_CONTROL_WIDTH REF# (for RLDRAM II memory devices.)

afi_rst_n Input AFI_CONTROL_WIDTH RESET# (for DDR3 memory devices.)

afi_odt Input AFI_CLK_EN_WIDTH

On-die termination signal for DDR2 and
DDR3 memory devices. (Do not confuse
this memory device signal with the
FPGA’s internal on-chip termination
signal.)

afi_mem_clk_
disable Input AFI_CLK_PAIR_COUNT

When this signal is asserted, mem_clk
and mem_clk_n are disabled. This signal
is used in low-power mode.

afi_wps_n Output AFI_CS_WIDTH WPS (for QDR II/II+ memory devices.)

afi_rps_n Output AFI_CS_WIDTH RPS (for QDR II/II+ memory devices.)

Table 1–10. Address and Command Signals (Part 2 of 2)

Signal Name Direction Width Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–34 Chapter 1: Functional Description—UniPHY
AFI 3.0 Specification
Write Data Signals
The signals described in this section control the data, data mask, and strobe signals
passed to the memory device during write operations.

Table 1–11. Write Data Signals

Signal Name Direction Width Description

afi_dqs_burst Input AFI_WRITE_DQS_WIDTH

Controls the enable on the strobe
(DQS) pins for DDR2, DDR3, and
LPDDR2 memory devices. When this
signal is asserted, mem_dqs and
mem_dqsn are driven.

This signal must be asserted before
afi_wdata_valid to implement the write
preamble, and must be driven for the
correct duration to generate a correctly
timed mem_dqs signal.

afi_wdata_valid Input AFI_WRITE_DQS_WIDTH
Write data valid signal. This signal
controls the output enable on the data
and data mask pins.

afi_wdata Input AFI_DQ_WIDTH

Write data signal to send to the
memory device at double-data rate.
This signal controls the PHY’s
mem_dq output.

afi_dm Input AFI_DM_WIDTH

Data mask. This signal controls the
PHY’s mem_dm signal for DDR2,
DDR3, LPDDR2, and RLDRAM II
memory devices.)

afi_bws_n Input AFI_DM_WIDTH
Data mask. This signal controls the
PHY’s mem_bws_n signal for
QDR II/II+ memory devices.

afi_wrank Input AFI_WRANK_WIDTH

Shadow register signal. Signal
indicating the rank to which the
controller is writing, so that the PHY
can switch to the appropriate setting.
Signal timing is identical to
afi_dqs_burst; that is, afi_wrank must
be asserted at the same time as
afi_dqs_burst, and must be of the
same duration.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–35
AFI 3.0 Specification
Read Data Signals
The signals described in this section control the data sent from the memory device
during read operations.

Calibration Status Signals
The PHY instantiates a sequencer which calibrates the memory interface with the
memory device and some internal components such as read FIFOs and valid FIFOs.
The sequencer reports the results of the calibration process to the controller through
the AFI interface. This section describes the calibration status signals.

Table 1–12. Read Data Signals

Signal Name Direction Width Description

afi_rdata_en Input AFI_RATE_RATIO

Read data enable. Indicates that the
memory controller is currently
performing a read operation. This
signal is held high only for cycles of
relevant data (read data masking).

If this signal is aligned to even clock
cycles, it is possible to use 1-bit even
in half-rate mode (i.e., AFI_RATE=2).

afi_rdata_en_full Input AFI_RATE_RATIO

Read data enable full. Indicates that
the memory controller is currently
performing a read operation. This
signal is held high for the entire read
burst.

If this signal is aligned to even clock
cycles, it is possible to use 1-bit even
in half-rate mode (i.e., AFI_RATE=2).

afi_rdata Output AFI_DQ_WIDTH

Read data from the memory device.
This data is considered valid only
when afi_rdata_valid is asserted by the
PHY.

afi_rdata_valid Output AFI_RATE_RATIO

Read data valid. When asserted, this
signal indicates that the afi_rdata bus
is valid.

If this signal is aligned to even clock
cycles, it is possible to use 1-bit even
in half-rate mode (i.e., AFI_RATE=2).

afi_rrank Input AFI_RRANK_WIDTH

Shadow register signal. Signal
indicating the rank from which the
controller is reading, so that the PHY
can switch to the appropriate setting.
Must be asserted at the same time as
afi_rdata_en when issuing a read
command, and once asserted, must
remain unchanged until the controller
issues a new read command to
another rank.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–36 Chapter 1: Functional Description—UniPHY
AFI 3.0 Specification
Tracking Management Signals
When tracking management is enabled, the sequencer can take control over the AFI
interface at given intervals, and issue commands to the memory device to track the
internal DQS Enable signal alignment to the DQS signal returning from the memory
device. The tracking management portion of the AFI interface provides a means for
the sequencer and the controller to exchange handshake signals.

Table 1–13. Calibration Status Signals

Signal Name Direction Width Description

afi_cal_success Output 1 Asserted to indicate that calibration
has completed successfully.

afi_cal_fail Output 1 Asserted to indicate that calibration
has failed.

afi_cal_req Input 1

Effectively a synchronous reset for the
sequencer. When this signal is
asserted, the sequencer returns to the
reset state; when this signal is
released, a new calibration sequence
begins.

afi_wlat Output AFI_WLAT_WIDTH

The required write latency in afi_clk
cycles, between address/command
and write data being issued at the
PHY/controller interface. The afi_wlat
value can be different for different
groups; each group’s write latency can
range from 0 to 63. If write latency is
the same for all groups, only the
lowest 6 bits are required.

afi_rlat Output AFI_RLAT_WIDTH

The required read latency in afi_clk
cycles between address/command and
read data being returned to the
PHY/controller interface. Values can
range from 0 to 63.

Table 1–14. Tracking Management Signals

Signal Name Direction Width‘ Description

afi_ctl_refresh_
done Input MEM_IF_CS_WIDTH

Handshaking signal from controller to
tracking manager, indicating that a
refresh has occurred and waiting for a
response.

afi_seq_busy Output MEM_IF_CS_WIDTH
Handshaking signal from sequencer to
controller, indicating when DQS
tracking is in progress.

afi_ctl_long_idle Input MEM_IF_CS_WIDTH

Handshaking signal from controller to
tracking manager, indicating that it has
exited low power state without a
periodic refresh, and waiting for
response.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–37
Register Maps
Register Maps
Table 1–15 lists the overall register mapping for the DDR2, DDR3, and LPDDR2
SDRAM Controllers with UniPHY.

UniPHY Register Map
The UniPHY register map allows you to control the memory components’ mode
register settings. Table 1–16 lists the register map for UniPHY.

Table 1–15. Register Map

Address Description

UniPHY Register Map

0x001 Reserved.

0x004 UniPHY status register 0.

0x005 UniPHY status register 1.

0x006 UniPHY status register 2.

0x007 UniPHY memory initialization parameters register 0.

Controller Register Map

0x100 Reserved.

0x110 Controller status and configuration register.

0x120 Memory address size register 0.

0x121 Memory address size register 1.

0x122 Memory address size register 2.

0x123 Memory timing parameters register 0.

0x124 Memory timing parameters register 1.

0x125 Memory timing parameters register 2.

0x126 Memory timing parameters register 3.

0x130 ECC control register.

0x131 ECC status register.

0x132 ECC error address register.

Table 1–16. UniPHY Register Map (Part 1 of 3)

Address Bit Name Default Access Description

0x001
15:0 Reserved. 0 — Reserved for future use.

31:16 Reserved. 0 — Reserved for future use.

0x002
15:0 Reserved. 0 — Reserved for future use.

31:16 Reserved. 0 — Reserved for future use.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–38 Chapter 1: Functional Description—UniPHY
Register Maps
0x004

0 SOFT_RESET — Write
only

Initiate a soft reset of the interface. This bit is
automatically deasserted after reset.

23:1 Reserved. 0 — Reserved for future use.

24 AFI_CAL_SUCCESS — Read only Reports the value of the UniPHY
afi_cal_success. Writing to this bit has no effect.

25 AFI_CAL_FAIL — Read only Reports the value of the UniPHY afi_cal_fail.
Writing to this bit has no effect.

26 Reserved. 0 — Reserved for future use.

31:27 Reserved. 0 — Reserved for future use.

0x005

7:0 Reserved. 0 — Reserved for future use.

15:8 Reserved. 0 — Reserved for future use.

23:16 Reserved. 0 — Reserved for future use.

31:24 Reserved. 0 — Reserved for future use.

0x006

7:0 INIT_FAILING_STAGE — Read only Initial failing error stage of calibration. Only
applicable if AFI_CAL_FAIL=1.

15:8 INIT_FAILING_SUBSTAGE — Read only Initial failing error substage of calibration. Only
applicable if AFI_CAL_FAIL=1.

23:16 INIT_FAILING_GROUP — Read only

Initial failing error group of calibration. Only
applicable if AFI_CAL_FAIL=1.

Returns failing DQ pin instead of failing group, if:

INIT_FAILING_STAGE=1 and
INIT_FAILING_SUBSTAGE=3.

Or

INIT_FAILING_STAGE=4 and
INIT_FAILING_SUBSTAGE=1.

31:24 Reserved. 0 — Reserved for future use.

0x007 31:0 DQS_DETECT — Read only
Identifies if DQS edges have been identified for each
of the groups. Each bit corresponds to one DQS
group.

0x008
(DDR2)

1:0 RTT_NOM — Read only Rtt (nominal) setting of the DDR2 Extended Mode
Register used during memory initialization.

31:2 Reserved. 0 — Reserved for future use.

0x008
(DDR3)

2:0 RTT_NOM — Rtt (nominal) setting of the DDR3 MR1 mode
register used during memory initialization.

4:3 Reserved. 0 Reserved for future use.

6:5 ODS —
Output driver impedence control setting of the
DDR3 MR1 mode register used during memory
initialization.

8:7 Reserved. 0 Reserved for future use.

10:9 RTT_WR — Rtt (writes) setting of the DDR3 MR2 mode register
used during memory initialization.

31:11 Reserved. 0 Reserved for future use.

Table 1–16. UniPHY Register Map (Part 2 of 3)

Address Bit Name Default Access Description
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–39
Ping Pong PHY
Controller Register Map
The controller register map allows you to control the memory controller settings.

For information on the controller register map, refer to “Controller Register Map” on
page 5–29 of this volume.

Ping Pong PHY
Ping Pong PHY is an implementation of UniPHY that allows two memory interfaces
to share address and command buses through time multiplexing. Compared to
having two independent interfaces, Ping Pong PHY uses fewer pins and less logic,
while maintaining equivalent throughput.

The Ping Pong PHY supports only quarter-rate configurations of the DDR3 protocol
on Arria V GZ and Stratix V devices.

Feature Description
In conventional UniPHY, the address and command buses of a DDR3 quarter-rate
interface use 2T time—meaning that they are issued for two full-rate clock cycles, as
illustrated in Figure 1–19.

0x008
(LPDDR

2)

3:0 DS Driver impedence control for MR3 during
initialization.

31:4 Reserved. Reserved for future use.

Table 1–16. UniPHY Register Map (Part 3 of 3)

Address Bit Name Default Access Description

Figure 1–19. 2T Command Timing

CK

CSn

Addr, ba

2T Command Issued
Extra Setup Time Active Period
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–40 Chapter 1: Functional Description—UniPHY
Ping Pong PHY
With the Ping Pong PHY, address and command signals from two independent
controllers are multiplexed onto shared buses by delaying one of the controller
outputs by one full-rate clock cycle. The result is 1T timing, with a new command
being issued on each full-rate clock cycle. Figure 1–20 shows address and command
timing for the Ping Pong PHY.

Architecture
Figure 1–21 shows a top-level block diagram of the Ping Pong PHY. Functionally, the
IP looks like two independent memory interfaces. The two controller blocks are
referred to as right-hand side (RHS) and left-hand side (LHS), respectively. A gasket
block located between the controllers and the PHY merges the AFI signals. The PHY
is double data width and supports both memory devices. The sequencer is the same
as with regular UniPHY, and calibrates the entire double-width PHY.

Figure 1–20. 1T Command Timing Use by Ping Pong PHY

CK

CSn[0]

CSn[1]

Addr, ba

Cmd
Dev1

Cmd
Dev0

Figure 1–21. Ping Pong PHY Architecture

Driver 0

Driver 1

Ping Pong
Gasket

AFI
Multiplexer

Sequencer
x2n

LHS
Controller

RHS
Controller

PHY
x2n

Dev 0
xn

Dev 1
xn

xn

xnPing Pong PHY DQ, DQS, DM

CS, ODT, CKE

CAS, RAS, WE, ADDR, BA

CAS, RAS, WE, ADDR, BA

CS, ODT, CKE

DQ, DQS, DM
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–41
Ping Pong PHY
Ping Pong Gasket
Figure 1–22 shows the gasket architecture. The gasket delays and remaps quarter-rate
signals so that they are correctly time-multiplexed at the full-rate PHY output. The
gasket also merges address and command buses ahead of the PHY.

AFI interfaces at the input and output of the gasket provide compatibility with the
PHY and with memory controllers.

Table 1–17 shows how the gasket processes key AFI signals.

Figure 1–22. Ping Pong PHY Gasket Architecture

RHS
Controller

LHS
Controller

ADD/CMD, WDATA

RDATA

To AFI Multiplexer & PHY

From AFI Multiplexer & PHY

ADD/CMD, WDATA

RDATA

ADD/CMD, WDATA

RDATA

2x AFI AFI

1T Delay Reorder &
Merge

Reorder &
Split

Ping Pong Gasket

Table 1–17. Key AFI Signals Processed by Ping Pong PHY Gasket (Part 1 of 2)

Signal Direction
(Width multiplier) Description Gasket Conversions

cas, ras, we, addr,
ba

Controller (1x) to
PHY (1x)

Address and command buses
shared between devices.

Delay RHS by 1T;
merge.

cs, odt, cke Controller (1x) to
PHY (2x)

Chip select, on-die termination,
and clock enable, one per
device.

Delay RHS by 1T;
reorder, merge.

wdata,
wdata_valid,
dqs_burst, dm

Controller (1x) to
PHY (2x)

Write datapath signals, one per
device.

Delay RHS by 1T;
reorder, merge.

rdata_en_rd,
rdata_en_rd_full

Controller (1x) to
PHY (2x)

Read datapath enable signals
indicating controller performing
a read operation, one per
device.

Delay RHS by 1T.

rdata_rdata_valid PHY (2x) to
Controller (1x) Read data, one per device. Reorder; split.

cal_fail,
cal_success,
seq_busy, wlat,
rlat

PHY (1x) to
Controller (1x)

Calibration result, one per
device. Pass through.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–42 Chapter 1: Functional Description—UniPHY
Efficiency Monitor and Protocol Checker
Calibration
The sequencer treats the Ping Pong PHY as a regular interface of double the width.
For example, in the case of two x16 devices, the sequencer calibrates both devices
together as a x32 interface. The sequencer chip select signal fans out to both devices so
that they are treated as a single interface. The VFIFO calibration process is unchanged.
For LFIFO calibration, the LFIFO buffer is duplicated for each interface and the
worst-case read datapath delay of both interfaces is used.

Operation
To use the Ping Pong PHY, you configure a single memory interface according to
your requirements, and then select the Enable Ping Pong PHY option in the
Advanced PHY Options section of the PHY Settings tab in the DDR3 parameter
editor.

The Quartus II software then replicates the interface, resulting in two memory
controllers and a shared PHY, with the gasket block inserted between the controllers
and PHY. The system makes the necessary modifications to top-level component
connections, as well as the PHY read and write datapaths, and the AFI mux, without
further input from you.

Efficiency Monitor and Protocol Checker
The Efficiency Monitor and Protocol Checker is a feature available with the DDR2,
DDR3, and LPDDR2 SDRAM controllers with UniPHY and the RLDRAM II
Controller with UniPHY. The Efficiency Monitor and Protocol Checker allows
measurement of traffic efficiency on the Avalon-MM bus between the controller and
user logic, measures read latencies, and checks the legality of Avalon commands
passed from the master. The following sections describe the parts of this feature.

Efficiency Monitor
The Efficiency Monitor reports read and write throughput on the controller input, by
counting command transfers and wait times, and making that information available
to the External Memory Interface Toolkit via an Avalon slave port. This information
may be useful to you when experimenting with advanced controller settings, such as
command look ahead depth and burst merging.

rst_n,
mem_clk_disable,
ctl_refresh_done,
ctl_long_idle

Controller (1x) to
PHY (1x)

Reset and DQS tracking signals,
one per PHY. AND (&)

cal_req, init_req Controller (1x) to
PHY (1x)

Controller to sequencer
requests. OR (|)

wrank, rrank Controller (1x) to
PHY (2x) Shadow register support. Delay RHS by 1T;

reorder; merge.

Table 1–17. Key AFI Signals Processed by Ping Pong PHY Gasket (Part 2 of 2)

Signal Direction
(Width multiplier) Description Gasket Conversions
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–43
Efficiency Monitor and Protocol Checker
Protocol Checker
The Protocol Checker checks the legality of commands on the controller’s input
interface against Altera’s Avalon interface specification, and sets a flag in a register on
an Avalon slave port if an illegal command is detected.

Read Latency Counter
The Read Latency Counter measures the minimum and maximum wait times for read
commands to be serviced on the Avalon bus. Each read command is time-stamped
and placed into a FIFO buffer upon arrival, and latency is determined by comparing
that timestamp to the current time when the first beat of the returned read data is
provided back to the master.

Using the Efficiency Monitor and Protocol Checker
To include the Efficiency Monitor and Protocol Checker when you generate your IP
core, on the Diagnostics tab in the parameter editor, turn on Enable the Efficiency
Monitor and Protocol Checker on the Controller Avalon Interface.

To see the results of the data compiled by the Efficiency Monitor and Protocol
Checker, use the External Memory Interface Toolkit.

f For information on the External Memory Interface Toolkit, refer to UniPHY External
Memory Interface Debug Toolkit, in section 2 of this volume. For information about
the Avalon interface, refer to Avalon Interface Specifications.

Avalon CSR Slave and JTAG Memory Map
Table 1–18 lists the memory map of registers inside the Efficiency Monitor and
Protocol Checker; this information is only of interest if you want to communicate
directly with the Efficiency Monitor and Protocol Checker without using the External
Memory Interface Toolkit. This CSR map is not part of the UniPHY CSR map.

Table 1–18. Avalon CSR Slave and JTAG Memory Map (Part 1 of 3)

Address Bit Name Default Access Description

0x01 31:0 Reserved 0 — Used internally by EMIF Toolkit to
identify Efficiency Monitor type.

0x02 31:0 Reserved 0 — Used internally by EMIF Toolkit to
identify Efficiency Monitor version.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

1–44 Chapter 1: Functional Description—UniPHY
Efficiency Monitor and Protocol Checker
0x08

0 Efficiency Monitor reset — Write only Write a 0 to reset.

7:1 Reserved — — Reserved for future use.

8 Protocol Checker reset — Write only Write a 0 to reset.

15:9 Reserved — — Reserved for future use.

16 Start/stop Efficiency Monitor — Read/Write Starting and stopping stastics
gathering.

23:17 Reserved — — Reserved for future use.

31:24 Efficiency Monitor status — Read Only

bit 0: Efficiency Monitor stopped
bit 1: Waiting for start of pattern
bit 2: Running
bit 3: Counter saturation

0x10
15:0 Efficiency Monitor address

width — Read Only Address width of the Efficiency
Monitor.

31:16 Efficiency Monitor data width — Read Only Data Width of the Efficiency
Monitor.

0x11
15:0 Efficiency Monitor byte

enable — Read Only Byte enable width of the Efficiency
Monitor.

31:16 Efficiency Monitor burst
count width — Read Only Burst count width of the Efficiency

Monitor.

0x14 31:0 Cycle counter — Read Only

Clock cycle counter for the
Efficiency Monitor. Lists the
number of clock cycles elapsed
before the Efficiency Monitor
stopped.

0x18 31:0 Transfer counter — Read Only Counts any read or write data
transfer cycle.

0x1C 31:0 Write counter — Read Only Counts write requests, including
those during bursts.

0x20 31:0 Read counter — Read Only Counts read requests.

0x24 31:0 Readtotal counter — Read Only Counts read requests (total burst
requests).

0x28 31:0 NTC waitrequest counter — Read Only Counts Non Transfer Cycles (NTC)
due to slave wait request high.

0x2C 31:0 NTC noreaddatavalid counter — Read Only Counts Non Transfer Cycles (NTC)
due to slave not having read data.

0x30 31:0 NTC master write idle
counter — Read Only

Counts Non Transfer Cycles (NTC)
due to master not issuing
command, or pause in write burst.

0x34 31:0 NTC master idle counter — Read Only
Counts Non Transfer Cycles (NTC)
due to master not issuing
command anytime.

0x40 31:0 Read latency min — Read Only The lowest read latency value.

0x44 31:0 Read latency max — Read Only The highest read latency value.

0x48 31:0 Read latency total [31:0] — Read Only The lower 32 bits of the total read
latency.

Table 1–18. Avalon CSR Slave and JTAG Memory Map (Part 2 of 3)

Address Bit Name Default Access Description
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–45
UniPHY Calibration Stages
UniPHY Calibration Stages
This section describes the calibration stages performed by the DDR2, DDR3, and
LPDDR2 SDRAM, QDR II and QDR II+ SRAM, and RLDRAM II Controllers with
UniPHY, and the RLDRAM 3 PHY-only IP. This information is useful in debugging
calibration failures. The section includes an overview of calibration, explanation of the
calibration stages, and a list of generated calibration signals. The information in this
section applies only to the Nios II-based sequencer used in the DDR2, DDR3, and
LPDDR2 SDRAM Controllers with UniPHY versions 10.0 and later, and, optionally,
in the QDR II and QDR II+ SRAM and RLDRAM II Controllers with UniPHY version
11.0 and later, and the RLDRAM 3 PHY-only IP. The information in this section
applies to the Arria II GZ, Arria V, Arria V GZ, Cyclone V, Stratix III, Stratix IV, and
Stratix V device families.

1 For QDR II and QDR II+ SRAM and RLDRAM II Controllers with UniPHY version
11.0 and later, you have the option to select either the RTL-based sequencer or the
Nios II-based sequencer. Generally, choose the RTL-based sequencer when area is the
major consideration, and choose the Nios II-based sequencer when performance is the
major consideration.

1 For RLDRAM 3, write leveling is not performed. The sequencer does not attempt to
optimize margin for the tCKDK timing requirement.

Overview
Calibration configures the memory interface (PHY and I/Os) so that data can pass
reliably to and from memory. The sequencer illustrated in Figure 1–23 calibrates the
PHY and the I/Os. To correctly transmit data between a memory device and the
FPGA at high speed, the data must be center-aligned with the data clock.

0x49 31:0 Read latency total [63:32] — Read Only The upper 32 bits of the total read
latency.

0x50
7:0 Illegal command — Read Only

Bits used to indicate which illegal
command has occurred. Each bit
represents a unique error.

31:8 Reserved — Reserved for future use.

Table 1–18. Avalon CSR Slave and JTAG Memory Map (Part 3 of 3)

Address Bit Name Default Access Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–46 Chapter 1: Functional Description—UniPHY
UniPHY Calibration Stages
Calibration also determines the delay settings needed to center-align the various data
signals with respect to their clocks. I/O delay chains implement the required delays in
accordance with the computed alignments. The Nios II-based sequencer performs
two major tasks: FIFO buffer calibration and I/O calibration. FIFO buffer calibration
adjusts FIFO lengths and I/O calibration adjusts any delay chain and phase settings to
center-align data signals with respect to clock signals for both reads and writes. When
the calibration process completes, the sequencer shuts off and passes control to the
memory controller.

Calibration Stages
The calibration process begins when the PHY reset signal deasserts and the PLL and
DLL lock. The following stages of calibration take place:

1. Read calibration part one—DQS enable calibration (only for DDR2 and DDR3
SDRAM Controllers with UniPHY) and DQ/DQS centering

2. Write calibration part one—Leveling

3. Write calibration part two—DQ/DQS centering

4. Read calibration part two—Read latency minimization

1 For multirank calibration, the sequencer transmits every read and write command to
each rank in sequence. Each read and write test is successful only if all ranks pass the
test. The sequencer calibrates to the intersection of all ranks.

Assumptions
The calibration process assumes the following conditions; if either of these conditions
is not true, calibration likely fails in its early stages:

■ The address and command paths must be functional; calibration does not tune the
address and command paths. (The Quartus II software fully analyzes the timing
for the address and command paths, and the slack report is accurate, assuming the
correct board timing parameters.)

■ At least one bit per group must work before running per-bit-deskew calibration.
(This assumption requires that DQ-to-DQS skews be within the recommended
20 ps.)

Figure 1–23. Sequencer in Memory Interface Logic
M

em
or
y

D
ev

ic
e

U
se

r I
nt

er
fa

ce
(A

va
lo

n-
M

M
)

External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–47
UniPHY Calibration Stages
Memory Initialization
The memory is powered up according to protocol initialization specifications. All
ranks power up simultaneously. Once powered, the device is ready to receive mode
register load commands. This part of initialization occurs separately for each rank.
The sequencer issues mode register set commands on a per-chip-select basis and
initializes the memory to the user-specified settings.

Stage 1: Read Calibration Part One—DQS Enable Calibration and DQ/DQS
Centering

Read calibration occurs in two parts. Part one is DQS enable calibration with
DQ/DQS centering, which happens during stage 1 of the overall calibration process;
part two is read latency minimization, which happens during stage 4 of the overall
calibration process.

The objectives of DQS enable calibration and DQ/DQS centering are as follows:

■ To calculate when the read data is received after a read command is issued to
setup the Data Valid Prediction FIFO (VFIFO) cycle

■ To align the input data (DQ) with respect to the clock (DQS) to maximize the read
margins (DDR2 and DDR3 only)

DQS enable calibration and DQ/DQS centering consists of the following actions:

■ Guaranteed Write

■ DQS Enable Calibration

■ DQ/DQS Centering

Figure 1–24 illustrates the components in the read data path that the sequencer
calibrates in this stage. (The round knobs in the figure represent configurable
hardware over which the sequencer has control.)

Figure 1–24. Read Data Path Calibration Model

mem_clk afi_clk
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–48 Chapter 1: Functional Description—UniPHY
UniPHY Calibration Stages
Guaranteed Write
Since initially no communication can be reliably performed with the memory device,
the sequencer uses a guaranteed write mechanism to write data into the memory
device. (For the QDR II protocol, guaranteed write is not necessary, a simple write
mechanism is sufficient.)

The guaranteed write is a write command issued with all data pins, all address and
bank pins, and all command pins (except chip select) held constant. The sequencer
begins toggling DQS well before the expected latch time at memory and continues to
toggle DQS well after the expected latch time at memory. DQ-to-DQS relationship is
not a factor at this stage because DQ is held constant. Figure 1–25 illustrates a
guaranteed write of zeros.

The guaranteed write consists of a series of back-to-back writes to alternating columns
and banks. For example, for DQ[0] for the DDR3 protocol, the guaranteed write
performs the following operations:

a. Writes a full burst of zeros to bank 0, column 0

b. Writes a full burst of zeros to bank 0, column 1

c. Writes a full burst of ones to bank 3, column 0

d. Writes a full burst of ones to bank 3, column 1

(Different protocols may use different combinations of banks and columns.)

The guaranteed write is followed by back-to-back read operations at alternating
banks, effectively producing a stream of zeros followed by a stream of ones, or vice
versa. The sequencer uses the zero-to-one and one-to-zero transitions in between the
two bursts to identify a correct read operation, as shown in Figure 1–26.

Although the approach described above for pin DQ[0] would work by writing the
same pattern to all DQ pins, it is more effective and robust to write (and read)
alternating ones and zeros to alternating DQ bits. The value of the DQ bit is still
constant across the burst, and the back-to-back read mechanism works exactly as
described above, except that odd DQ bits have ones instead of zeros, or vice versa.

Figure 1–25. Guaranteed Write of Zeros

0000000000DQ[0]

DQS
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–49
UniPHY Calibration Stages
The guaranteed write does not ensure a correct DQS-to-memory clock alignment at
the memory device—DQS-to-memory clock alignment is performed later, in stage 2 of
the calibration process. However, the process of guaranteed write followed by read
calibration is repeated several times for different DQS-to-memory clock alignments,
to ensure at least one correct alignment is found.

DQS Enable Calibration

1 The full DQS enable calibration is applicable only for DDR2 and DDR3 protocols;
QDR II and RLDRAM protocols use only the VFIFO-based cycle-level calibration,
described below.

1 Delay and phase values used in this section are examples, for illustrative purposes.
Your exact values may vary depending on device and configuration.

DQS enable calibration ensures reliable capture of the DQ signal without glitches on
the DQS line. At this point LFIFO is set to its maximum value to guarantee a reliable
read from read capture registers to the core. Read latency is minimized later.

DQS enable calibration controls the timing of the enable signal using 3 independent
controls: a cycle-based control (the VFIFO), a phase control, and a delay control. The
VFIFO selects the cycle by shifting the controller-generated read data enable signal,
rdata_en, by a number of full-rate clock cycles. The phase is controlled using the DLL,
while the delays are adjusted using a sequence of individual delay taps. The
resolution of the phase and delay controls varies with family and configuration, but is
approximately 45° for the phase, and between 10 and 50 picoseconds for the delays.

The sequencer finds the two edges of the DQS enable window by searching the space
of cycles, phases, and delays (an exhaustive search can usually be avoided by initially
assuming the window is at least one phase wide). During the search, to test the
current settings, the sequencer issues back-to-back reads from column 0 of bank 0 and
bank 3, and column 1 of bank 0 and bank 3, as shown in Figure 1–26. Two full bursts
are read and compared with the reference data for each phase and delay setting.

Once the sequencer identifies the two edges of the window, it center-aligns the falling
edge of the DQS enable signal within the window. At this point, per-bit deskew has
not yet been performed, therefore not all bits are expected to pass the read test;
however, for read calibration to succeed, at least one bit per group must pass the read
test.

Figure 1–26. Back to Back Reads on pin DQ[0]

00000000 11111111

0000000011111111

Column 0

Column 1

Bank 0 Bank 3

Bank 0Bank 3
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–50 Chapter 1: Functional Description—UniPHY
UniPHY Calibration Stages
Figure 1–27 shows the DQS and DQS enable signal relationship. The goal of DQS
enable calibration is to find settings that satisfy the following conditions:

■ The DQS enable signal rises before the first rising edge of DQS.

■ The DQS enable signal is at one after the second-last falling edge of DQS.

■ The DQS enable signal falls before the last falling edge of DQS.

The ideal position for the falling edge of the DQS enable signal is centered between
the second-last and last falling edges of DQS.

The following points describe each row of Figure 1–27:

■ Row 1 shows the DQS signal shifted by 90° to center-align it to the DQ data.

■ Row 2 shows the raw DQS enable signal from the VFIFO.

■ Row 3 shows the effect of sweeping DQS enable phases. The first two settings
(shown in red) fail to properly gate the DQS signal because the enable signal turns
off before the second-last falling edge of DQS. The next six settings (shown in
green) gate the DQS signal successfully, with the DQS signal covering DQS from
the first rising edge to the second-last falling edge.

■ Row 4 shows the raw DQS enable signal from the VFIFO, increased by one clock
cycle relative to Row 2.

■ Row 5 shows the effect of sweeping DQS enable, beginning from the initial DQS
enable of Row 4. The first setting (shown in green) successfully gates DQS, with
the signal covering DQS from the first rising edge to the second-last falling edge.
The second signal (shown in red), does not gate DQS successfully because the
enable signal extends past the last falling edge of DQS. Any further adjustment
would show the same failure.

Centering DQ/DQS
The centering DQ/DQS stage attempts to align DQ and DQS signals on reads within a
group. Each DQ signal within a DQS group might be skewed and consequently arrive
at the FPGA at a different time. At this point, the sequencer sweeps each DQ signal in
a DQ group to align them, by adjusting DQ input delay chains (D1).

Figure 1–27. DQS and DQS Enable Signal Relationships

DQS + 90

dqs_enable (inside I/O) VFIFO Latency

dqs_enable aligned

dqs_enable (inside I/O) VFIFO Latency + 1

dqs_enable aligned

Search for first
working setting

Search for last
working setting

Row 1

Row 2

Row 3

Row 4

Row 5

DQS Enable

DQS Enable
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–51
UniPHY Calibration Stages
Figure 1–28 illustrates a four DQ/DQS group per-bit-deskew and centering.

To align and center DQ and DQS, the sequencer finds the right edge of DQ signals
with respect to DQS by sweeping DQ signals within a DQ group to the right until a
failure occurs. In Figure 1–28, DQ0 and DQ3 fail after six taps to the right; DQ1 and
DQ2 fail after 5 taps to the right. To align the DQ signals, DQ0 and DQ3 are shifted to
the right by 1 tap.

To find the center of DVW, the DQS signal is shifted to the right until a failure occurs.
In Figure 1–28, a failure occurs after 3 taps, meaning that there are 5 taps to the right
edge and 3 taps to the left edge. To center-align DQ and DQS, the sequencer shifts the
aligned DQ signal by 1 more tap to the right.

1 The sequencer does not adjust DQS directly; instead, the sequencer center-aligns DQS
with respect to DQ by delaying the DQ signals.

Stage 2: Write Calibration Part One
The objectives of the write calibration stage are to align DQS to the memory clock at
each memory device, and to compensate for address, command, and memory clock
skew at each memory device. This stage is important because the address, command,
and clock signals for each memory component arrive at different times.

1 This stage applies only to DDR2, DDR3, LPDDR2, and RLDRAM II protocols; it does
not apply to the QDR II and QDR II+ protocols.

Memory clock signals and DQ/DM and DQS signals have specific relationships
mandated by the memory device. The PHY must ensure that these relationships are
met by skewing DQ/DM and DQS signals. The relationships between DQ/DM and
DQS and memory clock signals must meet the tDQSS, tDSS, and tDSH timing
constraints.

Figure 1–28. Per-bit Deskew

Original DQ relationship
in a DQ group

DQ signals aligned to left
by tuning D1 delay chains

DQS centered with respect to
DQ by adjusting DQ signals

DQ0

DQ1

DQ3

DQ4

DQ2
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–52 Chapter 1: Functional Description—UniPHY
UniPHY Calibration Stages
The sequencer calibrates the write data path using a variety of random burst patterns
to compensate for the jitter on the output data path. Simple write patterns are
insufficient to ensure a reliable write operation because they might cause imprecise
DQS-to-CK alignments, depending on the actual capture circuitry on a memory
device. The write patterns in the write leveling stage have a burst length of 8, and are
generated by a linear feedback shift register in the form of a pseudo-random binary
sequence.

The write data path architecture is the same for DQ, DM, and DQS pins. Figure 1–29
illustrates the write data path for a DQ signal. The phase coming out of the Output
Phase Alignment block can be set to different values to center-align DQS with respect
to DQ, and it is the same for data, OE, and OCT of a given output.

In write leveling, the sequencer performs write operations with different delay and
phase settings, followed by a read. The sequencer can implement any phase shift
between 0° and 720° (depending on device and configuration). The sequencer uses the
Output Phase Alignment for coarse delays and D5 and D6 for fine delays; D5 has 15
taps of 50 ps each, and D6 has 7 taps of 50 ps each. The DQS signal phase is held at
+90° with respect to DQ signal phase (Stratix IV example).

1 Coarse delays are called phases, and fine delays are called delays; phases are process,
voltage, and temperature (PVT) compensated, delays are not (depending on family).

1 Delay and phase values used in this section are examples, for illustrative purposes.
Your exact values may vary depending on device and configuration.

Figure 1–29. Write Data Path

DDIO ? ?

DDIO ? ?

OE

data 2

T9 T10

T9 T10

DDIO ? ?
?

OCT

write_ck

T9 T10

Output
Phase Alignment

OCT

2

2

External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–53
UniPHY Calibration Stages
The sequencer writes and reads back several burst-length-8 patterns. Because the
sequencer has not performed per-bit deskew on the write data path, not all bits are
expected to pass the write test. However, for write calibration to succeed, at least one
bit per group must pass the write test. The test begins by shifting the DQ/DQS phase
until the first write operation completes successfully. The DQ/DQS signals are then
delayed to the left by D5 and D6 to find the left edge for that working phase. Then
DQ/DQS phase continues the shift to find the last working phase. For the last
working phase, DQ/DQS is delayed in 50 ps steps to find the right edge of the last
working phase.

The sequencer sweeps through all possible phase and delay settings for each DQ
group where the data read back is correct, to define a window within which the PHY
can reliably perform write operations. The sequencer picks the closest value to the
center of that window as the phase/delay setting for the write data path.

Stage 3: Write Calibration Part Two—DQ/DQS Centering
The process of DQ/DQS centering in write calibration is similar to that performed in
read calibration, except that write calibration is performed on the output path, using
D5 and D6 delay chains.

Stage 4: Read Calibration Part Two—Read Latency Minimization
At this stage of calibration the sequencer adjusts LFIFO latency to determine the
minimum read latency that guarantees correct reads.

Read Latency Tuning
In general, DQ signals from different DQ groups may arrive at the FPGA in a
staggered fashion. In a DIMM or multiple memory device system, the DQ/DQS
signals from the first memory device arrive sooner, while the DQ/DQS signals from
the last memory device arrive the latest at the FPGA.

LFIFO transfers data from the capture registers in IOE to the core and aligns read data
to the AFI clock. Up to this point in the calibration process, the read latency has been a
maximum value set initially by LFIFO; now, the sequencer progressively lowers the
read latency until the data can no longer be transferred reliably. The sequencer then
increases the latency by one cycle to return to a working value and adds an additional
cycle of margin to assure reliable reads.

Calibration Signals
Table 1–19 lists signals produced by the calibration process.

Table 1–19. Calibration Signals

Signal Description

afi_cal_fail Asserts high if calibration fails.

afi_cal_success Asserts high if calibration is successful.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–54 Chapter 1: Functional Description—UniPHY
UniPHY Calibration Stages
Calibration Time
The time needed for calibration varies, depending on many factors including the
interface width, the number of ranks, frequency, board layout, and difficulty of
calibration. In general, designs using the Nios II-based sequencer will take longer to
calibrate than designs using the RTL-based sequencer.

Table 1–20 lists approximate typical and maximum calibration times for various
protocols.

Table 1–20. Approximate Calibration Times

Protocol Typical Maximum

DDR2, DDR3, LPDDR2,
RLDRAM 3 50-250 ms

Can take several minutes if the interface is
difficult to calibrate, or if calibration initially
fails and exhausts multiple retries.

QDR II/II+, RLDRAM II
(with Nios II-based sequencer) 50-100 ms

Can take several minutes if the interface is
difficult to calibrate, or if calibration initially
fails and exhausts multiple retries.

QDR II/II+, RLDRAM II
(with RTL-based sequencer) <5 ms <5 ms
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 1: Functional Description—UniPHY 1–55
Document Revision History
Document Revision History
Table 1–21 lists the revision history for this document.

Table 1–21. Document Revision History

Date Version Changes

November 2012 3.1

■ Moved Controller Register Map to Functional Description—HPC II Controller chapter.

■ Updated Sequencer States information in Table 1–2.

■ Enhanced Using a Custom Controller information.

■ Enhanced Tracking Manager information.

■ Added Ping Pong PHY information.

■ Added RLDRAM 3 support.

■ Added LRDIMM support.

■ Added Arria V GZ support.

June 2012 3.0

■ Added Shadow Registers section.

■ Added LPDDR2 support.

■ Added new AFI signals.

■ Added Calibration Time section.

■ Added Feedback icon.

November 2011 2.1

■ Consolidated UniPHY information from 11.0 DDR2 and DDR3 SDRAM Controller with
UniPHY User Guide, QDR II and QDR II+ SRAM Controller with UniPHY User Guide, and
RLDRAM II Controller with UniPHY IP User Guide.

■ Revised Reset and Clock Generation and Dedicated Clock Networks sections.

■ Revised Figure 1–3 and Figure 1–5.

■ Added Tracking Manager to Sequencer section.

■ Revised Interfaces section for DLL, PLL, and OCT sharing interfaces.

■ Revised Using a Custom Controller section.

■ Added UniPHY Calibration Stages section; reordered stages 3 and 4, removed stage 5.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

1–56 Chapter 1: Functional Description—UniPHY
Document Revision History
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_002-3.3

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_002-3.3
2. Functional Description—ALTMEMPHY
The ALTMEMPHY megafunction creates the datapath between the memory device
and the memory controller, and user logic in various Altera devices. The
ALTMEMPHY megafunction GUI helps you configure multiple variations of a
memory interface. You can then connect the ALTMEMPHY megafunction variation
with either a user-designed controller or with the Altera high-performance controller.
In addition, the ALTMEMPHY megafunction and the Altera high-performance
controller are available for half-rate DDR3 SDRAM interfaces.

1 If the ALTMEMPHY megafunction does not meet your requirements, you can also
create your own memory interface datapath using the ALTDLL and ALTDQ_DQS
megafunctions, available in the Quartus II software. However, you are then
responsible for every aspect of the interface, including timing analysis and
debugging.

This chapter describes the DDR3 SDRAM ALTMEMPHY megafunction, which uses
AFI as the interface between the PHY and the controller.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_002
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_002-3.3 (EMI HB, Vol 3, Ch2: Functional Description - ALTMEMPHY)

2–2 Chapter 2: Functional Description—ALTMEMPHY
Block Description
Block Description
Figure 2–1 shows the major blocks of the ALTMEMPHY megafunction and how it
interfaces with the external memory device and the controller. The ALTPLL
megafunction is instantiated inside the ALTMEMPHY megafunction, so that you do
not need to generate the clock to any of the ALTMEMPHY blocks.

The ALTMEMPHY megafunction comprises the following blocks:

■ Write datapath

■ Address and command datapath

■ Clock and reset management, including DLL and PLL

■ Sequencer for calibration

■ Read datapath

Figure 2–1. ALTMEMPHY Megafunction Interfacing with the Controller and the External Memory

External
Memory
Device

ALTMEMPHY

Write
Datapath

Address
and

Command
Datapath

Clock
and Reset

Management

Sequencer

Read
Datapath

Memory
Controller

User
Logic

PLL

FPGA

DLL
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–3
Block Description
The major advantage of the ALTMEMPHY megafunction is that it supports an initial
calibration sequence to remove process variations in both the Altera device and the
memory device. In Arria series devices, the DDR3 SDRAM ALTMEMPHY calibration
process centers the resynchronization clock phase into the middle of the captured data
valid window to maximize the resynchronization setup and hold margin. During the
user operation, the VT tracking mechanism eliminates the effects of VT variations on
resynchronization timing margin.

Calibration
The sequencer performs calibration to find the optimal clock phase for the memory
interface.

For information about calibration, refer to ALTMEMPHY Calibration Stages.

Address and Command Datapath
This topic discusses the address and command datapath.

Arria II GX Devices
The address and command datapath is responsible for taking the address and
command outputs from the controller and converting them from half-rate clock to
full-rate clock. Two types of addressing are possible:

■ 1T (full rate)—the duration of the address and command is a single memory clock
cycle (mem_clk_2x, Figure 2–2). This applies to all address and command signals in
full-rate designs or mem_cs_n, mem_cke, and mem_odt signals in half-rate designs.

■ 2T (half rate)—the duration of the address and command is two memory clock
cycles. For half-rate designs, the ALTMEMPHY megafunction supports only a
burst size of four, which means the burst size on the local interface is always set to
1. The size of the data is 4n-bits wide on the local side and is n-bits wide on the
memory side. To transfer all the 4n-bits at the double data rate, two memory-clock
cycles are required. The new address and command can be issued to memory
every two clock cycles. This scheme applies to all address and command signals,
except for mem_cs_n, mem_cke, and mem_odt signals in half-rate mode.

1 Refer to Table 2–1 on page 2–6 to see the frequency relationship of mem_clk_2x with
the rest of the clocks.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–4 Chapter 2: Functional Description—ALTMEMPHY
Block Description
Figure 2–2 shows a 1T chip select signal (mem_cs_n), which is active low, and disables
the command in the memory device. All commands are masked when the chip-select
signal is inactive. The mem_cs_n signal is considered part of the command code.

The command interface is made up of the signals mem_ras_n, mem_cas_n, mem_we_n,
mem_cs_n, mem_cke, and mem_odt.

The waveform in Figure 2–2 shows a NOP command followed by five back-to-back
write commands. The following sequence corresponds with the numbered items in
Figure 2–2.

1. The commands are asserted either on the rising edge of ac_clk_2x. The ac_clk_2x
is derived from either mem_clk_2x (0°), write_clk_2x (270°), or the inverted
variations of those two clocks (for 180° and 90° phase shifts). This depends on the
setting of the address and command clock in the ALTMEMPHY parameter editor.
Refer to “Address and Command Datapath” on page 2–3 for illustrations of this
clock in relation to the mem_clk_2x or write_clk_2x signals.

2. All address and command signals (except for mem_cs_ns, mem_cke, and mem_odt
signals) remain asserted on the bus for two clock cycles, allowing sufficient time
for the signals to settle.

3. The mem_cs_n, mem_cke, and mem_odt signals are asserted during the second cycle
of the address/command phase. By asserting the chip-select signal in alternative
cycles, back-to-back read or write commands can be issued.

4. The address is incremented every other ac_clk_2x cycle.

1 The ac_clk_2x clock is derived from either mem_clk_2x (when you choose 0° or 180°
phase shift) or write_clk_2x (when you choose 90° or 270° phase shift).

1 The address and command clock can be 0, 90, 180, or 270° from the system clock.

Figure 2–2. Arria II GX Address and Command Datapath

Command

ac_clk_2x

mem_addr

mem_ba

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_dq

[1] [2] [4] [4] [4]

NOP NOP

[3]

mem-dqs

PHY Command Outputs

[3][1]

NOP NOPPCH ACT WR

0000

00

0001 0000 0004 0008 000C 0010 0000
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–5
Block Description
Clock and Reset Management
The clocking and reset block is responsible for clock generation, reset management,
and phase shifting of clocks. It also has control of clock network types that route the
clocks, which is handled in the <variation_name>_alt_mem_phy_clk_reset module in
the <variation_name>_alt_mem_phy.v/.vhd file.

Clock Management
The clock management feature allows the ALTMEMPHY megafunction to work out
the optimum phase during calibration, and to track voltage and temperature variation
relies on phase shifting the clocks relative to each other.

1 Certain clocks require phase shifting during the ALTMEMPHY megafunction
operation.

You can implement clock management circuitry using PLLs and DLLs.

The ALTMEMPHY MegaWizard Plug-In Manager automatically generates an
ALTPLL megafunction instance. The ALTPLL megafunction generates the different
clock frequencies and relevant phases used within the ALTMEMPHY megafunction.

The available device families have different PLL capabilities. The minimum PHY
requirement is to have 16 phases of the highest frequency clock. The PLL uses With
No Compensation option to minimize jitter. Changing the PLL compensation to a
different operation mode may result in inaccurate timing results.

The input clock to the PLL does not have any other fan-out to the PHY, so you do not
have to use a global clock resource for the path between the clock input pin to the
PLL. You must use the PLL located in the same device quadrant or side as the
memory interface and the corresponding clock input pin for that PLL, to ensure
optimal performance and accurate timing results from the Quartus II software.

You must choose a PLL and PLL input clock pin that are located on the same side of
the device as the memory interface to ensure minimal jitter. Also, ensure that the input
clock to the PLL is stable before the PLL locks. If not, you must perform a manual PLL
reset (by driving the global_reset_n signal low) and relock the PLL to ensure that the
phase relationship between all PLL outputs is properly set.

1 If the design cascades PLLs, the source (upstream) PLL should have a low-bandwidth
setting, and the destination (downstream) PLL should have a high-bandwidth setting.
Adjacent PLLs cascading is recommended to reduce clock jitter.

f For more information about the VCO frequency range and the available phase shifts,
refer to the Clock Networks and PLLs chapter in the respective device family handbook.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–6 Chapter 2: Functional Description—ALTMEMPHY
Block Description
Table 2–1 shows the clock outputs that Arria II GX devices use.

Table 2–1. DDR3 SDRAM Clocking in Arria II GX Devices (Part 1 of 2)

Clock Name (1) Postscale
Counter

Phase
(Degrees)

Clock
Rate

Clock Network Type

NotesAll
Quadra

nts

Any 3
Quadrants (2)

phy_clk_1x

and

aux_half_rate_clk

C0 0° Half-Rate Global Global

The only clocks parameterizable
for the ALTMEMPHY
megafunction. These clocks
also feed into a divider circuit to
provide the PLL scan_clk
signal (for reconfiguration) that
must be lower than 100 MHz.

mem_clk_2x

and

aux_full_rate_clk

C1 0° Full-Rate Global
Regional (3)

Global (4)

This clock is for clocking DQS
and as a reference clock for the
memory devices.

mem_clk_1x C2 0° Half-Rate Global Regional
This clock is for clocking DQS
and as a reference clock for the
memory devices.

write_clk_2x C3 –90° Full-Rate Global Regional

This clock is for clocking the
data out of the DDR I/O (DDIO)
pins in advance of the DQS
strobe (or equivalent). As a
result, its phase leads that of the
mem_clk_2x by 90°.

ac_clk_2x C3 –90° Full-Rate Global Regional

Address and command clock.

The ac_clk_2x clock is derived
from either mem_clk_2x (when
you choose 0° or 180° phase
shift) or write_clk_2x (when
you choose 90° or 270° phase
shift). Refer to “Address and
Command Datapath” on
page 2–3 for illustrations of the
address and command clock
relationship with the
mem_clk_2x or write_clk_2x
signals.

cs_n_clk_2x C3 –90° Full-Rate Global Global
Memory chip-select clock.

The cs_n_clk_2x clock is
derived from ac_clk_2x.

resync_clk_2x C4 Calibrated Full-Rate Global Regional

Clocks the resynchronization
registers after the capture
registers. Its phase is adjusted
to the center of the data valid
window across all the
DQS-clocked DDIO groups.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–7
Block Description
Reset Management
Figure 2–3 shows the main features of the reset management block for the DDR3
SDRAM PHY. You can use the pll_ref_clk input to feed the optional
reset_request_n edge detect and reset counter module. However, this requires the
pll_ref_clk signal to use a global clock network resource.

There is a unique reset metastability protection circuit for the clock divider circuit
because the phy_clk domain reset metastability protection registers have fan-in from
the soft_reset_n input so these registers cannot be used.

measure_clk_2x C5 Calibrated Full-Rate Global Regional

This clock is for VT tracking.
This free-running clock
measures relative phase shifts
between the internal clock(s)
and those being fed back
through a mimic path. As a
result, the ALTMEMPHY
megafunction can track VT
effects on the FPGA and
compensate for the effects.

Note to Table 2–1:

(1) The _1x clock represents a frequency that is half of the memory clock frequency; the _2x clock represents the memory clock frequency.
(2) The default clock network type is Global, however you can specify a regional clock network to improve clock jitter if your design uses any three

quadrants.
(3) For mem_clk2x.
(4) For aux_full_rate_clk.

Table 2–1. DDR3 SDRAM Clocking in Arria II GX Devices (Part 2 of 2)

Clock Name (1) Postscale
Counter

Phase
(Degrees)

Clock
Rate

Clock Network Type

NotesAll
Quadra

nts

Any 3
Quadrants (2)
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–8 Chapter 2: Functional Description—ALTMEMPHY
Block Description
Read Datapath
This topic discusses the read datapath.

Arria II GX Devices
The read datapath logic captures data sent by the memory device and subsequently
aligns the data back to the system clock domain. The read datapath for DDR3 SDRAM
consists of the following three main blocks:

■ Data capture

■ Data resynchronization

■ Data demultiplexing and alignment

As the DQS/DQSn signal is not continuous, the PHY also has postamble protection
logic to ensure that any glitches on the DQS input signals at the end of the read
postamble time do not cause erroneous data to be captured as a result of postamble
glitches.

Figure 2–4 shows the order of the functions performed by the read datapath and the
frequency at which the read data is handled.

Figure 2–3. ALTMEMPHY Reset Management Block for Arria II GX Devices

PLL

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

soft_reset_n

global_reset_n

pll_ref_clk

phy_clk_out

reset_request_n

phy_internal_reset_n

areset
(active HIGH)

pll_reconfig_reset_ams_n

pll_reprogram_request_long_pulse

seq_pll_start_reconfig

pll_reconfig_
reset_

ams_n_r

pll_
reprogram_

request

refclk
scan_clk
phaseupdown
phasestep

c0

locked
reset_master_ams

global_pre_clear

Reset
Pipes

PHY resets

pll_reset

pll_locked

pll_new_dir

Optional
reset_request_n
edge detect and
reset counter

Another
system
clock

clk_divider_reset_n

clk
Divider
Circuit

phy_clk

scan_clk

reset_n

clk_div_reset_ams_n

clk_div_reset_ams_n_r

pll_reconfig_reset_n

global_or_soft_reset_n

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–9
Block Description
Data Capture and Resynchronization

The data capture and resynchronization registers for Arria II GX devices are
implemented in the I/O element (IOE) to achieve maximum performance. Data
capture and resynchronization is the process of capturing the read data (DQ) with the
DQS/DQSn strobes and resynchronizing the captured data to an internal
free-running full-rate clock supplied by the enhanced PLL. The resynchronization
clock is an intermediate clock whose phase shift is determined during the calibration
stage. The captured data (rdata_p_captured and rdata_n_captured) is synchronized
to the resynchronization clock (resync_clk_2x), refer to Figure 2–4. For Arria II GX
devices, the ALTMEMPHY instances an ALTDQ_DQS megafunction that instantiates
the required IOEs for all the DQ and DQS pins.

Data Demultiplexing

Data demultiplexing is the process of changing the SDR data into HDR data. Data
demultiplexing is required to bring the frequency of the resynchronized data down to
the frequency of the system clock, so that data from the external memory device can
ultimately be brought into the FPGA controller clock domain. Before data capture, the
data is DDR and n-bit wide. After data capture, the data is SDR and 2n-bit wide. After
data demuxing, the data is HDR of width 4n-bits wide. The system clock frequency is
half the frequency of the memory clock. Demultiplexing is achieved using a dual-port
memory with a 2n-bit wide write-port operating on the resynchronization clock (SDR)
and a 4n-bit wide read-port operating on the PHY clock (HDR). The basic principle of
operation is that data is written to the memory at the SDR rate and read from the
memory at the HDR rate while incrementing the read- and write-address pointers. As
the SDR and HDR clocks are generated, the read and write pointers are continuously
incremented by the same PLL, and the 4n-bit wide read data follows the 2n-bit wide
write data with a constant latency

Read Data Alignment

Data alignment is the process controlled by the sequencer to ensure the correct
captured read data is present in the same half-rate clock cycle at the output of the read
data DPRAM. Data alignment is implemented using memory blocks in the core of
devices.

Figure 2–4. DDR3 SDRAM Read Datapath in Arria II GX Devices

SDR SDR/HDRDDR

D Q D Q

Data Capture
IOE

D Q D Q

D Q

Data Resynchronization
IOE

Data Demux and Alignment

RAM Block

wr_data[2n] rd_data[4n]

wr_clk rd_clk

FIFO

phy_clk_1x

resync_clk_2x

DQ[n]

DQS
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–10 Chapter 2: Functional Description—ALTMEMPHY
ALTMEMPHY Signals
Postamble Protection

A dedicated postamble register controls the gating of the shifted DQS signal that
clocks the DQ input registers at the end of a read operation. Any glitches on the DQS
input signals at the end of the read postamble time do not cause erroneous data to be
captured as a result of postamble glitches. The postamble path is also calibrated to
determine the correct clock cycle, clock phase shift, and delay chain settings.

ALTMEMPHY Signals
This section describes the ALMEMPHY megafunction signals for DDR3 SDRAM
variants.

Table 2–2 through Table 2–4 show the signals.

1 Signals with the prefix mem_ connect the PHY with the memory device; ports with the
prefix ctl_ connect the PHY with the controller.

The signal lists include the following signal groups:

■ I/O interface to the SDRAM devices

■ Clocks and resets

■ External DLL signals

■ User-mode calibration OCT control

■ Write data interface

■ Read data interface

■ Address and command interface

■ Calibration control and status interface

■ Debug interface

Table 2–2. Interface to the DDR3 SDRAM Devices (Part 1 of 2) (1)

Signal Name Type Width (2) Description

mem_addr Output MEM_IF_ROWADDR_WIDTH The memory row and column address bus.

mem_ba Output MEM_IF_BANKADDR_WIDTH The memory bank address bus.

mem_cas_n Output 1 The memory column address strobe.

mem_cke Output MEM_IF_CS_WIDTH The memory clock enable.

mem_clk Bidirectional MEM_IF_CLK_PAIR_COUNT The memory clock, positive edge clock. (3)

mem_clk_n Bidirectional MEM_IF_CLK_PAIR_COUNT The memory clock, negative edge clock.

mem_cs_n Output MEM_IF_CS_WIDTH The memory chip select signal.

mem_dm Output MEM_IF_DM_WIDTH The optional memory DM bus.

mem_dq Bidirectional MEM_IF_DWIDTH The memory bidirectional data bus.

mem_dqs Bidirectional MEM_IF_DWIDTH/
MEM_IF_DQ_PER_DQS

The memory bidirectional data strobe bus.

mem_dqs_n Bidirectional MEM_IF_DWIDTH/
MEM_IF_DQ_PER_DQS

The memory bidirectional data strobe bus.

mem_odt Output MEM_IF_CS_WIDTH The memory on-die termination control signal.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–11
ALTMEMPHY Signals
mem_ras_n Output 1 The memory row address strobe.

mem_reset_n Output 1

The memory reset signal. This signal is derived
from the PHY’s internal reset signal, which is
generated by gating the global reset, soft reset,
and the PLL locked signal.

mem_we_n Output 1 The memory write enable signal.

mem_ac_parity (4) Output 1 The address or command parity signal
generated by the PHY and sent to the DIMM.

parity_error_n (4) Output 1
The active-low signal that is asserted when a
parity error occurs and stays asserted until the
PHY is reset.

mem_err_out_n (4) Input 1
The signal sent from the DIMM to the PHY to
indicate that a parity error has occured for a
particular cycle.

Notes to Table 2–2:

(1) Connected to I/O pads.
(2) Refer to Table 2–5 for parameter description.
(3) Output is for memory device, and input path is fed back to ALTMEMPHY megafunction for VT tracking.
(4) This signal is for Registered DIMMs only.

Table 2–2. Interface to the DDR3 SDRAM Devices (Part 2 of 2) (1)

Signal Name Type Width (2) Description

Table 2–3. AFI Signals (Part 1 of 4)

Signal Name Type Width (1) Description

Clocks and Resets

pll_ref_clk Input 1 The reference clock input to the PHY PLL.

global_reset_n Input 1

Active-low global reset for PLL and all logic in the
PHY. A level set reset signal, which causes a
complete reset of the whole system. The PLL may
maintain some state information.

soft_reset_n Input 1

Edge detect reset input intended for SOPC Builder
use or to be controlled by other system reset logic.
Causes a complete reset of PHY, but not the PLL
used in the PHY.

reset_request_n Output 1

Directly connected to the locked output of the PLL
and is intended for optional use either by automated
tools such as SOPC Builder or could be manually
ANDed with any other system-level signals and
combined with any edge detect logic as required
and then fed back to the global_reset_n input.

Reset request output that indicates when the PLL
outputs are not locked. Use this as a reset request
input to any system-level reset controller you may
have. This signal is always low while the PLL is
locking (but not locked), and so any reset logic
using it is advised to detect a reset request on a
falling-edge rather than by level detection.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–12 Chapter 2: Functional Description—ALTMEMPHY
ALTMEMPHY Signals
ctl_clk Output 1 Half-rate clock supplied to controller and system
logic. The same signal as the non-AFI phy_clk.

ctl_reset_n Output 1 Reset output on ctl_clk clock domain.

Other Signals

aux_half_rate_clk Output 1
In half-rate designs, a copy of the phy_clk_1x
signal that you can use in other parts of your
design, same as phy_clk port.

aux_full_rate_clk Output 1
In full-rate designs, a copy of the mem_clk_2x
signal that you can use in other parts of your
design.

aux_scan_clk Output 1
Low frequency scan clock supplied primarily to
clock any user logic that interfaces to the PLL and
DLL reconfiguration interfaces.

aux_scan_clk_reset_n Output 1

This reset output asynchronously asserts (drives
low) when global_reset_n is asserted and
de-assert (drives high) synchronous to
aux_scan_clk when global_reset_n is
de-asserted. It allows you to reset any external
circuitry clocked by aux_scan_clk.

Write Data Interface

ctl_dqs_burst Input MEM_IF_DQS_WIDTH ×
DWIDTH_RATIO / 2

When asserted, mem_dqs is driven. The
ctl_dqs_burst signal must be asserted before the
ctl_wdata_valid signal and must be driven for
the correct duration to generate a correctly timed
mem_dqs signal.

ctl_wdata_valid Input MEM_IF_DQS_WIDTH ×
DWIDTH_RATIO / 2

Write data valid. Generates ctl_wdata and ctl_dm
output enables.

ctl_wdata Input MEM_IF_DWIDTH ×
DWIDTH_RATIO

Write data input from the controller to the PHY to
generate mem_dq.

ctl_dm Input MEM_IF_DM_WIDTH ×
DWIDTH_RATIO

DM input from the controller to the PHY.

ctl_wlat Output 5

Required write latency between address/command
and write data that is issued to ALTMEMPHY
controller local interface.

This signal is only valid when the ALTMEMPHY
sequencer successfully completes calibration, and
does not change at any point during normal
operation.

The legal range of values for this signal is 0 to 31;
and the typical values are between 0 and ten, 0
mostly for low CAS latency DDR memory types.

Table 2–3. AFI Signals (Part 2 of 4)

Signal Name Type Width (1) Description
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–13
ALTMEMPHY Signals
Read Data Interface

ctl_doing_rd Input MEM_IF_DQS_WIDTH ×
DWIDTH_RATIO / 2

Doing read input. Indicates that the DDR3 SDRAM
controller is currently performing a read operation.

The controller generates ctl_doing_rd to the
ALTMEMPHY megafunction. The ctl_doing_rd
signal is asserted for one phy_clk cycle for every
read command it issues. If there are two read
commands, ctl_doing_rd is asserted for two
phy_clk cycles. The ctl_doing_rd signal also
enables the capture registers and generates the
ctl_mem_rdata_valid signal. The
ctl_doing_rd signal should be issued at the same
time the read command is sent to the ALTMEMPHY
megafunction.

ctl_rdata Output DWIDTH_RATIO ×
MEM_IF_DWIDTH

Read data from the PHY to the controller.

ctl_rdata_valid Output DWIDTH_RATIO/2

Read data valid indicating valid read data on
ctl_rdata. This signal is two-bits wide (as only
half-rate or DWIDTH_RATIO = 4 is supported) to
allow controllers to issue reads and writes that are
aligned to either the half-cycle of the half-rate clock.

ctl_rlat Output READ_LAT_WIDTH

Contains the number of clock cycles between the
assertion of ctl_doing_rd and the return of valid
read data (ctl_rdata). This signal is unused by
the Altera high-performance controller.

Address and Command Interface

ctl_addr Input MEM_IF_ROWADDR_WIDTH
× DWIDTH_RATIO / 2 Row address from the controller.

ctl_ba Input MEM_IF_BANKADDR_WIDT
H × DWIDTH_RATIO / 2 Bank address from the controller.

ctl_cke Input MEM_IF_CS_WIDTH ×
DWIDTH_RATIO / 2 Clock enable from the controller.

ctl_cs_n Input MEM_IF_CS_WIDTH
×DWIDTH_RATIO / 2 Chip select from the controller.

ctl_odt Input MEM_IF_CS_WIDTH ×
DWIDTH_RATIO / 2 On-die-termination control from the controller.

ctl_ras_n Input DWIDTH_RATIO / 2 Row address strobe signal from the controller.

ctl_we_n Input DWIDTH_RATIO / 2 Write enable.

ctl_cas_n Input DWIDTH_RATIO / 2 Column address strobe signal from the controller.

ctl_rst_n Input DWIDTH_RATIO / 2 Reset from the controller.

Calibration Control and Status Interface

ctl_mem_clk_disable Input MEM_IF_CLK_PAIR_
COUNT

When asserted, mem_clk and mem_clk_n are
disabled.

ctl_cal_success Output 1 A 1 indicates that calibration was successful.

ctl_cal_fail Output 1 A 1 indicates that calibration has failed.

Table 2–3. AFI Signals (Part 3 of 4)

Signal Name Type Width (1) Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–14 Chapter 2: Functional Description—ALTMEMPHY
ALTMEMPHY Signals
ctl_cal_req Input 1 When asserted, a new calibration sequence is
started. Currently not supported.

ctl_cal_byte_lane_
sel_n

Input MEM_IF_DQS_WIDTH ×
MEM_CS_WIDTH

Indicates which DQS groups should be calibrated.
Not supported.

Note to Table 2–2:

(1) Refer to Table 2–5 for parameter descriptions.

Table 2–3. AFI Signals (Part 4 of 4)

Signal Name Type Width (1) Description

Table 2–4. Other Interface Signals (Part 1 of 2)

Signal Name Type Width Description

External DLL Signals

dqs_delay_ctrl_expor
t

Output
DQS_DELA
Y_CTL_WI
DTH

Allows sharing DLL in this ALTMEMPHY instance with another
ALTMEMPHY instance. Connect the dqs_delay_ctrl_export port
on the ALTMEMPHY instance with a DLL to the
dqs_delay_ctrl_import port on the other ALTMEMPHY instance.

dqs_delay_ctrl_impor
t

Input
DQS_DELA
Y_CTL_WI
DTH

Allows the use of DLL in another ALTMEMPHY instance in this
ALTMEMPHY instance. Connect the dqs_delay_ctrl_export port
on the ALTMEMPHY instance with a DLL to the
dqs_delay_ctrl_import port on the other ALTMEMPHY instance.

dqs_offset_delay_ctr
l_ width

Input
DQS_DELA
Y_CTL_WI
DTH

Connects to the DQS delay logic when dll_import_export is set
to IMPORT. Only connect if you are using a DLL offset, which can
otherwise be tied to zero. If you are using a DLL offset, connect this
input to the offset_ctrl_out output of the dll_offset_ctrl
block.

dll_reference_ clk Output 1
Reference clock to feed to an externally instantiated DLL. This clock
is typically from one of the PHY PLL outputs.

User-Mode Calibration OCT Control Signals

oct_ctl_rs_value Input 14 OCT RS value port for use with ALT_OCT megafunction if you want
to use OCT with user-mode calibration.

oct_ctl_rt_value Input 14 OCT RT value port for use with ALT_OCT megafunction if you want to
use OCT with user-mode calibration.

Debug Interface Signals (1), (2)

dbg_clk Input 1 Debug interface clock.

dbg_reset_n Input 1 Debug interface reset.

dbg_addr Input DBG_A_WI
DTH

Address input.

dgb_wr Input 1 Write request.

dbg_rd Input 1 Read request.

dbg_cs Input 1 Chip select.

dbg_wr_data Input 32 Debug interface write data.

dbg_rd_data Output 32 Debug interface read data.

dbg_waitrequest Output 1 Wait signal.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–15
ALTMEMPHY Signals
Table 2–5 shows the parameters to which Table 2–2 through Table 2–4 refer.

Calibration Interface Signals—without leveling only

rsu_codvw_phase Output —

The sequencer sweeps the phase of a resynchronization clock across
360° or 720° of a memory clock cycle. Data reads from the DIMM
are performed for each phase position, and a data valid window is
located, which is the set of resynchronization clock phase positions
where data is successfully read. The final resynchronization clock
phase is set at the center of this range: the center of the data valid
window or CODVW. This output is set to the current calculated value
for the CODVW, and represents how many phase steps were
performed by the PLL to offset the resynchronization clock from the
memory clock.

rsu_codvw_size Output —

The final centre of data valid window size (rsu_codvw_size) is the
number of phases where data was successfully read in the
calculation of the resynchronization clock centre of data valid
window phase (rsu_codvw_phase).

rsu_read_latency Output —

The rsu_read_latency output is then set to the read latency (in
phy_clk cycles) using the rsu_codvw_phase resynchronization
clock phase. If calibration is unsuccessful then this signal is
undefined.

rsu_no_dvw_err Output —
If the sequencer sweeps the resynchronization clock across every
phase and does not see any valid data at any phase position, then
calibration fails and this output is set to 1.

rsu_grt_one_dvw_
err

Output —

If the sequencer sweeps the resynchronization clock across every
phase and sees multiple data valid windows, this is indicative of
unexpected read data (random bit errors) or an incorrectly
configured PLL that must be resolved. Calibration has failed and this
output is set to 1.

Notes to Table 2–4:

(1) The debug interface uses the simple Avalon-MM interface protocol.
(2) These ports exist in the Quartus II software, even though the debug interface is for Altera’s use only.

Table 2–4. Other Interface Signals (Part 2 of 2)

Signal Name Type Width Description

Table 2–5. Parameters (Part 1 of 2)

Parameter Name Description

DWIDTH_RATIO
The data width ratio from the local interface to the memory interface. DWIDTH_RATIO of
2 means full rate, while DWIDTH_RATIO of 4 means half rate.

LOCAL_IF_DWIDTH
The width of the local data bus must be quadrupled for half-rate and doubled for
full-rate.

MEM_IF_DWIDTH
The data width at the memory interface. MEM_IF_DWIDTH can have values that are
multiples of MEM_IF_DQ_PER_DQS.

MEM_IF_DQS_WIDTH The number of DQS pins in the interface.

MEM_IF_ROWADDR_WIDTH The row address width of the memory device.

MEM_IF_BANKADDR_WIDTH The bank address with the memory device.

MEM_IF_CS_WIDTH
The number of chip select pins in the interface. The sequencer only calibrates one chip
select pin.

MEM_IF_DM_WIDTH The number of mem_dm pins on the memory interface.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–16 Chapter 2: Functional Description—ALTMEMPHY
PHY-to-Controller Interfaces
PHY-to-Controller Interfaces
The following section describes the typical modules that are connected to the
ALTMEMPHY variation and the port name prefixes each module uses. This section
also describes using a custom controller. This section describes the AFI.

The AFI standardizes and simplifies the interface between controller and PHY for all
Altera memory designs, thus allowing you to easily interchange your own controller
code with Altera's high-performance controller. The AFI PHY includes an
administration block that configures the memory for calibration and performs
necessary mode registers accesses to configure the memory as required (these
calibration processes are different). Figure 2–5 shows an overview of the connections
between the PHY, the controller, and the memory device.

1 Altera recommends that you use the AFI for new designs.

For half-rate designs, the address and command signals in the ALTMEMPHY
megafunction are asserted for one mem_clk cycle (1T addressing), such that there are
two input bits per address and command pin in half-rate designs. If you require a
more conservative 2T addressing, drive both input bits (of the address and command
signal) identically in half-rate designs.

MEM_IF_DQ_PER_DQS The number of mem_dq[] pins per mem_dqs pin.

MEM_IF_CLK_PAIR_COUNT The number of mem_clk/mem_clk_n pairs in the interface.

Table 2–5. Parameters (Part 2 of 2)

Parameter Name Description

Figure 2–5. AFI PHY Connections

AFI
Controller

local_wdata

local_rdata

ctl_addr
ctl_cas_n
ctl_we_n

ctl_rdata

Admin

Sequencer

AFI PHY

mem_dqs
mem_dq

DDR3
SDRAM

Altera Device
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–17
PHY-to-Controller Interfaces
For DDR3 SDRAM with the AFI, the read and write control signals are on a per-DQS
group basis. The controller can calibrate and use a subset of the available DDR3
SDRAM devices. For example, the controller can calibrate and use two devices out of
a 64- or 72-bit DIMM for better debugging mechanism.

For half-rate designs, the AFI allows the controller to issue reads and writes that are
aligned to either half-cycle of the half-rate phy_clk, which means that the datapaths
can support multiple data alignments—word-unaligned and word-aligned writes and
reads. Figure 2–6 and Figure 2–7 display the half-rate write operation.

After calibration process is complete, the sequencer sends the write latency in number
of clock cycles to the controller.

Figure 2–8 and Figure 2–9 show word-aligned writes and reads. In the following read
and write examples the data is written to and read from the same address. In each
example, ctl_rdata and ctl_wdata are aligned with controller clock (ctl_clk) cycles.
All the data in the bit vector is valid at once. For comparison, refer Figure 2–10 and
Figure 2–11 that show the word-unaligned writes and reads.

Figure 2–6. Half-Rate Write with Word-Unaligned Data

Figure 2–7. Half-Rate Write with Word-Aligned Data

00 11 0001

00
11 0110 00

-- a x cb xd

ctl_clk

ctl_dqs_burst

ctl_wdata_valid

ctl_wdata

00 10 11 00

00 11 00

-- ba --dc

afi_clk

afi_dqs_burst

afi_wdata_valid

afi_wdata
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–18 Chapter 2: Functional Description—ALTMEMPHY
PHY-to-Controller Interfaces
1 The ctl_doing_rd is represented as a half-rate signal when passed into the PHY.
Therefore, the lower half of this bit vector represents one memory clock cycle and the
upper half the next memory clock cycle. Figure 2–11 on page 2–22 shows separated
word-unaligned reads as an example of two ctl_doing_rd bits are different.
Therefore, for each x16 device, at least two ctl_doing_rd bits need to be driven, and
two ctl_rdata_valid bits need to be interpreted.

The AFI has the following conventions:

■ With the AFI, high and low signals are combined in one signal, so for a single chip
select (ctl_cs_n) interface, ctl_cs_n[1:0], where location 0 appears on the
memory bus on one mem_clk cycle and location 1 on the next mem_clk cycle.

1 This convention is maintained for all signals so for an 8 bit memory
interface, the write data (ctl_wdata) signal is ctl_wdata[31:0], where the
first data on the DQ pins is ctl_wdata[7:0], then ctl_wdata[15:8], then
ctl_wdata[23:16], then ctl_wdata[31:24].

■ Word-aligned and word-unaligned reads and writes have the following
definitions:

■ Word-aligned for the single chip select is active (low) in location 1 (_l).
ctl_cs_n[1:0] = 01 when a write occurs. This alignment is the easiest
alignment to design with.

■ Word-unaligned is the opposite, so ctl_cs_n[1:0] = 10 when a read or write
occurs and the other control and data signals are distributed across consecutive
ctl_clk cycles.

1 The Altera high-performance controller uses word-aligned data only.

1 The timing analysis script does not support word-unaligned reads and
writes.

■ Spaced reads and writes have the following definitions:

■ Spaced writes—write commands separated by a gap of one controller clock
(ctl_clk) cycle

■ Spaced reads—read commands separated by a gap of one controller clock
(ctl_clk) cycle

Figure 2–8 through Figure 2–11 assume the following general points:

■ The burst length is four. A DDR2 SDRAM is used—the interface timing is identical
for DDR3 devices.

■ An 8-bit interface with one chip select.

■ The data for one controller clock (ctl_clk) cycle represents data for two memory
clock (mem_clk) cycles (half-rate interface).
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–19
PHY-to-Controller Interfaces
Figure 2–8. Word-Aligned Writes

Notes to Figure 2–8:

(1) To show the even alignment of ctl_cs_n, expand the signal (this convention applies for all other signals).
(2) The ctl_dqs_burst must go high one memory clock cycle before ctl_wdata_valid. Compare with the word-unaligned case.
(3) The ctl_wdata_valid is asserted two ctl_wlat controller clock (ctl_clk) cycles after chip select (ctl_cs_n) is asserted. The ctl_wlat

indicates the required write latency in the system. The value is determined during calibration and is dependant upon the relative delays in the
address and command path and the write datapath in both the PHY and the external DDR SDRAM subsystem. The controller must drive ctl_cs_n
and then wait ctl_wlat (two in this example) ctl_clks before driving ctl_wdata_valid.

(4) Observe the ordering of write data (ctl_wdata). Compare this to data on the mem_dq signal.
(5) In all waveforms a command record is added that combines the memory pins ras_n, cas_n and we_n into the current command that is issued.

This command is registered by the memory when chip select (mem_cs_n) is low. The important commands in the presented waveforms are WR
= write, ACT = activate.

afi_clk

Note 4Note 2Note 1

afi_wlat

afi_ras_n

afi_cas_n

afi_we_n

afi_cs_n

afi_dqs_burst

afi_wdata_valid

afi_wdata

afi_addr

Memory
Interface

mem_clk

command
(Note 5)

mem_cs_n

mem_dqs

mem_dq

Note 3

 00 00 11

2

1111 00

1111 00

1111 01 11 01 11

 00 00 10 11 10 11 00

 00 00 11 00 11

 00000000 00000000 03020100 07060504 0b0a0908 0f0e0d0c

 00000000 00000000 0020008

ACTACT WR
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–20 Chapter 2: Functional Description—ALTMEMPHY
PHY-to-Controller Interfaces
Figure 2–9. Word-Aligned Reads

Notes to Figure 2–9:

(1) For AFI, ctl_doing_rd is required to be asserted one memory clock cycle before chip select (ctl_cs_n) is asserted. In the half-rate ctl_clk
domain, this requirement manifests as the controller driving 11 (as opposed to the 01) on ctl_doing_rd.

(2) AFI requires that ctl_doing_rd is driven for the duration of the read. In this example, it is driven to 11 for two half-rate ctl_clks, which equates
to driving to 1, for the four memory clock cycles of this four-beat burst.

(3) The ctl_rdata_valid returns 15 (ctl_rlat) controller clock (ctl_clk) cycles after ctl_doing_rd is asserted. Returned is when the
ctl_rdata_valid signal is observed at the output of a register within the controller. A controller can use the ctl_rlat value to determine when
to register to returned data, but this is unnecessary as the ctl_rdata_valid is provided for the controller to use as an enable when registering
read data.

(4) Observe the alignment of returned read data with respect to data on the bus.

afi_clk

afi_rlat

afi_ras_n

afi_cas_n

afi_we_n

afi_cs_n

afi_rdata_en

afi_rdata_valid

afi_rdata

afi_ba

afi_addr

afi_dm

Memory
Interface

mem_clk

command

mem_cs_n

mem_dqs

mem_dq

15

11

0

 00 00 11

1111 01 11 01 11

 00 00 11 00 11 00

 00 00 11 00 11 00

FFFFFFFFFFFFFFFF

 00

 0000000 0020008

ACT RD

Note 1
Note 2 Note 2

Note 3
Note 4
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–21
PHY-to-Controller Interfaces
Figure 2–10 and Figure 2–11 show spaced word-unaligned writes and reads.

Figure 2–10. Word-Unaligned Writes

Notes to Figure 2–10:

(1) Alternative word-unaligned chip select (ctl_cs_n).
(2) As with word- aligned writes, ctl_dqs_burst is asserted one memory clock cycle before ctl_wdata_valid. You can see ctl_dqs_burst is

11 in the same cycle where ctl_wdata_valid is 10. The LSB of these two becomes the first value the signal takes in the mem_clk domain. You
can see that ctl_dqs_burst has the necessary one mem_clk cycle lead on ctl_wdata_valid.

(3) The latency between ctl_cs_n being asserted and ctl_wdata_valid going high is effectively ctl_wlat (in this example, two) controller clock
(ctl_clk) cycles. This can be thought of in terms of relative memory clock (mem_clk) cycles, in which case the latency is four mem_clk cycles.

(4) Only the upper half is valid (as the ctl_wdata_valid signal demonstrates, there is one ctl_wdata_valid bit to two 8-bit words). The write
data bits go out on the bus in order, least significant byte first. So for a continuous burst of write data on the DQ pins, the most significant half of
write data is used, which goes out on the bus last and is therefore contiguous with the following data. The converse is true for the end of the burst.
Write data is spread across three controller clock (ctl_clk) cycles, but still only four memory clock (mem_clk) cycles. However, in relative
memory clock cycles the latency is equivalent in the word-aligned and word-unaligned cases.

(5) The 0504 here is residual from the previous clock cycle. In the same way that only the upper half of the write data is used for the first beat of the
write, only the lower half of the write data is used in the last beat of the write. These upper bits can be driven to any value in this alignment.

ctl_clk

ctl_wlat

ctl_ras_n

ctl_cas_n

ctl_we_n

ctl_cs_n

ctl_dqs_burst

ctl_wdata_valid

ctl_wdata

ctl_ba

ctl_addr

Memory
Interface

mem_clk

command

mem_cs_n

mem_dqs

mem_dq

(4)(2)(1) (5)(3)

1010

2

 01 01 00

 01 01 00

1111 10 11 10 11

 00 00

 00

11 01 11 01 00

 00 00 10 11 01 10 11 01 00

 00000000 00000000 01000000 05040302 05040706 09080706 0d0c0b0a 0d0c0f0e

 0000000 0000000 020000 020008

ACTACT WR
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–22 Chapter 2: Functional Description—ALTMEMPHY
PHY-to-Controller Interfaces
Figure 2–11. Word-Unaligned Reads

Notes to Figure 2–11:

(1) Similar to word-aligned reads, ctl_doing_rd is asserted one memory clock cycle before chip select (ctl_cs_n) is asserted, which for a
word-unaligned read is in the previous controller clock (ctl_clk) cycle. In this example the ctl_doing_rd signal is now spread over three
controller clock (ctl_clk) cycles, the high bits in the sequence '10','11','01','10','11','01' providing the required four memory clock cycles of
assertion for ctl_doing_rd for the two 4-beat reads in the full-rate memory clock domain, '011110','011110'.

(2) The return pattern of ctl_rdata_valid is a delayed version of ctl_doing_rd. Advertised read latency (ctl_rlat) is the number of controller
clock (ctl_clk) cycles delay inserted between ctl_doing_rd and ctl_rdata_valid.

(3) The read data (ctl_rdata) is spread over three controller clock cycles and in the pointed to vector only the upper half of the ctl_rdata bit vector
is valid (denoted by ctl_rdata_valid).

ctl_clk

ctl_rlat

ctl_ras_n

ctl_cas_n

ctl_we_n

ctl_cs_n

ctl_doing_rd

ctl_rdata_valid

ctl_rdata

ctl_ba

ctl_addr

ctl_dm

Memory
Interface

mem_clk

command

mem_cs_n

mem_dqs

mem_dq

(2)(1) (3)

 00 00 10

15

1111 10 11 10 11

 00 00 10 11 01 10 11 01 0

 00 00

 00

10 11 01 10 11 01 00

FFFFFFFFFFFFFFFF 0f0e0f0e

 0000000

ACT RD
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–23
Using a Custom Controller
Using a Custom Controller
The ALTMEMPHY megafunction can be integrated with your own controller. This
section describes the interface requirement and the handshake mechanism for
efficient read and write transactions.

Preliminary Steps
Perform the following steps to generate the ALTMEMPHY megafunction:

1. If you are creating a custom DDR3 SDRAM controller, generate the Altera
high-performance controller targeting your chosen Altera and memory devices.

2. Compile and verify the timing. This step is optional.

3. If targeting a DDR3 SDRAM device, simulate the high-performance controller
design so you can determine how to drive the PHY signals using your own
controller.

4. Integrate the top-level ALTMEMPHY design with your controller. If you started
with the high-performance controller, the PHY variation name is
<controller_name>_phy.v/.vhd. Details about integrating your controller with
Altera’s ALTMEMPHY megafunction are described in the following sections.

5. Compile and simulate the whole interface to ensure that you are driving the PHY
properly and that your commands are recognized by the memory device.

Design Considerations
This section discuss the important considerations for implementing your own
controller with the ALTMEMPHY megafunction. This section describes the design
considerations for AFI variants.

1 Simulating the high-performance controller is useful if you do not know how to drive
the PHY signals.

Clocks and Resets
The ALTMEMPHY megafunction automatically generates a PLL instance, but you
must still provide the reference clock input (pll_ref_clk) with a clock of the
frequency that you specified in the MegaWizard Plug-In Manager. An active-low
global reset input is also provided, which you can deassert asynchronously. The clock
and reset management logic synchronizes this reset to the appropriate clock domains
inside the ALTMEMPHY megafunction.

A clock output, half the memory clock frequency for a half-rate controller, is provided
and all inputs and outputs of the ALTMEMPHY megafunction are synchronous to
this clock. For AFIs, this signal is called ctl_clk.

There is also an active-low synchronous reset output signal provided, ctl_reset_n.
This signal is synchronously de-asserted with respect to the ctl_clk or phy_clk clock
domain and it can reset any additional user logic on that clock domain.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–24 Chapter 2: Functional Description—ALTMEMPHY
Using a Custom Controller
Calibration Process Requirements
When the global reset_n is released the ALTMEMPHY handles the initialization and
calibration sequence automatically. The sequencer calibrates memory interfaces by
issuing reads to multiple ranks of DDR3 SDRAM (multiple chip select). Timing
margins decrease as the number of ranks increases. It is impractical to supply one
dedicated resynchronization clock for each rank of memory, as it consumes PLL
resources for the relatively small benefit of improved timing margin. When
calibration is complete ctl_cal_success goes high if successful; ctl_cal_fail goes
high if calibration fails. Calibration can be repeated by the controller using the
soft_reset_n signal, which when asserted puts the sequencer into a reset state and
when released the calibration process begins again.

Other Local Interface Requirements
The memory burst length for DDR3 SDRAM devices can be set at either four or eight;
but when using the Altera high-performance controller, only burst length eight is
supported. For a half-rate controller, the memory clock runs twice as fast as the clock
provided to the local interface, so data buses on the local interface are four times as
wide as the memory data bus.

Address and Command Interfacing
Address and command signals are automatically sized for 1T operation, such that for
full-rate designs there is one input bit per pin (for example, one cs_n input per
chip select configured); for half-rate designs there are two. If you require a more
conservative 2T address and command scheme, use a full-rate design and drive the
address/command inputs for two clock cycles, or in a half-rate design drive both
address/command bits for a given pin identically.

1 Although the PHY inherently supports 1T addressing, the high-performance
controller supports only 2T addressing, so PHY timing analysis is performed
assuming 2T address and command signals.

Handshake Mechanism Between Read Commands and Read Data
When performing a read, a high-performance controller with the AFI asserts
ctl_doing_read to indicate that a read command is requested and the byte lanes that
it expects valid data to return on. ALTMEMPHY uses ctl_doing_read for the
following actions:

■ Control of the postamble circuit

■ Generation of ctl_rdata_valid

■ Dynamic termination (Rt) control timing

The read latency, ctl_rlat, is advertised back to the controller. This signal indicates
how long it takes in ctl_clk clock cycles from assertion of ctl_doing_read to valid
read data returning on ctl_rdata. The ctl_rlat signal is only valid when calibration
has successfully completed and never changes values during normal user mode
operation.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–25
Using a Custom Controller
The ALTMEMPHY provides a signal, ctl_rdata_valid, to indicate that the data on
read data bus is valid. The width of this signal varies between half-rate and full-rate
designs to support the option to indicate that the read data is not word aligned.
Figure 2–12 and Figure 2–13 show these relationships.

Handshake Mechanism Between Write Commands and Write Data
In the AFI, the ALTMEMPHY output ctl_wlat gives the number of ctl_clk cycles
between the write command that is issued ctl_cs_n asserted and ctl_dqs_burst
asserted. The ctl_wlat signal considers the following actions to provide a single
value in ctl_clk clock cycles:

■ CAS write latency

■ Additive latency

■ Datapath latencies and relative phases

■ Board layout

■ Address and command path latency and 1T register setting, which is dynamically
setup to take into account any leveling effects

Figure 2–12. Address and Command and Read-Path Timing—Full-Rate Design

Figure 2–13. Second Read Alignment—Half-Rate Design

ctl_clk

ctl_addr

ctl_cs_n

ctl_doing_read

mem_dqs

mem_dq

ctl_rdata_valid

ctl_rdata

ctl_rlat = 9

1 2 3 4 5 6 7 8 9

ctl_clk

1 2 3 4 5 6 7 8 9

ctl_rlat = 9

ctl_addr

ctl_cs_n

ctl_doing_read

mem_dqs

mem_dq

ctl_rdata_valid

ctl_rdata

A XA

1010

10 0101

10 0101

DX XD
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–26 Chapter 2: Functional Description—ALTMEMPHY
Controller Register Map
The ctl_wlat signal is only valid when the calibration has been successfully
completed by the ALTMEMPHY sequencer and does not change at any point during
normal user mode operation. Figure 2–14 shows the operation of ctl_wlat port.

For a half-rate design ctl_cs_n is 2 bits, not 1. Also the ctl_dqs_burst and
ctl_wdata_valid waveforms indicate a half-rate design. This write results in a burst
of 8 at the DDR. Where ctl_cs_n is driven 2'b01, the LSB (1) is the first value driven
out of mem_cs_n, and the MSB (0) follows on the next mem_clk. Similarly, for
ctl_dqs_burst, the LSB is driven out of mem_dqs first (0), then a 1 follows on the next
clock cycle. This sequence produces the continuous DQS pulse as required. Finally,
the ctl_addr bus is twice MEM_IF_ADDR_WIDTH bits wide and so the address is
concatenated to result in an address phase two mem_clk cycles wide.

Partial Writes
As part of the DDR3 SDRAM memory specifications, you have the option for partial
write operations by asserting the DM pins for part of the write signal.

For designs targeting the Arria II devices, deassert the ctl_wdata_valid signal during
partial writes, when the write data is invalid, to save power by not driving the DQ
outputs.

For designs targeting other devices, use only the DM pins if you require partial writes.
Assert the ctl_dqs_burst and ctl_wdata_valid signals as for full write operations, so
that the DQ and DQS pins are driven during partial writes.

Controller Register Map
The controller register map allows you to control the memory controller settings.

1 For information on the controller register map, refer to “Controller Register Map” on
page 5–29 of this volume.

Figure 2–14. Timing for ctl_dqs_burst, ctl_wdata_valid, Address, and Command—Half-Rate
Design

ctl_clk

ctl_addr

ctl_cs_n

ctl_dqs_burst

ctl_wdata_valid

ctl_wdata

AdAdAdAd

0101

10 1111

ctl_wlat = 2

1 2
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–27
ALTMEMPHY Calibration Stages
ALTMEMPHY Calibration Stages
In all configurations, the noncalibrated address, command and control interfaces
must be correctly constrained and meet timing.

If calibration fails at a specific stage, use this chapter to understand what functionally
happens at that stage, to assist with the debug.

The ALTMEMPHY IP performs the following calibration stages:

1. Enter Calibration (s_reset)

2. Initialize PHY (s_phy_initialize)

3. Initialize DRAM

4. Write Header Information in the internal RAM (s_write_ihi)

5. Load Training Patterns

6. Test More Pattern Writes

7. Calibrate Read Resynchronization Phase

8. Advertize Write Latency (s_was)

9. Calculate Read Latency (s_adv_rlat)

10. Output Write Latency (s_adv_wlat)

11. Calibrate Postamble (s_poa)

12. Set Up Address and Command Clock Cycle

13. Write User Mode Register Settings (s_prep_customer_mr_setup)

14. Voltage and Temperature Tracking

This chapter discusses these stages. Figure 2–15 on page 2–28 shows a flow chart of
the calibration stages for the ALTMEMPHY IP.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–28 Chapter 2: Functional Description—ALTMEMPHY
ALTMEMPHY Calibration Stages
Figure 2–15. Calibration Stages

[

Enter
Calibration

Initialize PHY

Initialize DRAM
Power-UP
Sequence

Write Header
Information in

the IRAM

s_cal
Start of

Calibration

Calibrate?

Write Burst
Training Pattern

Write More
Training
Patterns

Calculate Read
Data Valid
Window

Calculate Read
Data Valid Window

Advertize Write
Latency

Write User Mode
Register Settings

Write Datapath
Setup

yes

no

)

s_non_
operational

Calibration not
successful

Calibration Error
Detected

s_operational
Calibration
successful

Tracking
Due?

yes

Calculate Read
Resynchronization

Phase

All CS
Swept? no

yes

All CS
written?

BTP Write
to all CS?

no

yes

Program Mode
Registers for
Calibration

All CS
MR prog? no

yes

no
yes

All CS
MR prog?

yes

no

Initialization

Load Training Patterns

Setup Read Datapath

Calculate Read
Resynchronization

Phase

Inititialize Read
Resynchronization

Phase
Calculation

Setup the Mimic
Wndow

Calculate Read
Resynchronization

Phase

Inititialize Read
Resynchronization

Phase
Calculation

 Both
Alignments
Checked? no

yes

Setup Write Datapath

Setup Tracking

User Mode

ac_1t
setting ok?

yes
no

all ac_1t
alignments
checked?

yes

no

change ac_1t
alignment

Calculate Read
Latency

Calibrate
Postamble

Perform Tracking

no
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–29
ALTMEMPHY Calibration Stages
Enter Calibration (s_reset)
Calibration starts when the ALTMEMPHY IP deasserts the PHY reset signal and the
AFI signal ctl_cal_req is low.

Initialize PHY (s_phy_initialize)
This stage holds off calibration until the DLL has locked, and (if debug toolkit is
enabled) internal RAM contents are all reset to zero.

Initialize DRAM
Initializing the DRAM has the following two stages:

■ Initialize DRAM Power Up Sequence (s_int_dram)

■ Program Mode Registers for Calibration (s_prog_mr)

Initialize DRAM Power Up Sequence (s_int_dram)
This stage brings the SDRAM out of a reset state (from any previous state) through the
initialization sequence specified in the JEDEC specification for each device type, up to
but not including mode register set commands. At the end of this stage, the SDRAM is
ready to receive mode register load commands, which must occur (on each rank)
before refreshes can occur.

1 This calibration stage applies to all chip selects in parallel.

Program Mode Registers for Calibration (s_prog_mr)
The ALTMEMPHY IP issues mode register set commands on a per chip select basis,
which allows you great flexibility to issue different mode register settings to different
chip selects. When all chip selects have mode registers programmed (the initialization
of that chip select is complete), refreshes are enabled.

The following overrides apply to user settings:

■ For DDR and DDR2 SDRAM:

■ DLL enable

■ Burst length 4

■ OCD calibration (DDR2 only)

■ For DDR3 SDRAM:

■ DLL enable

■ Output buffer enable

■ Disable write leveling

■ Runtime burst length select

■ Test mode disabled

■ DLL reset
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–30 Chapter 2: Functional Description—ALTMEMPHY
ALTMEMPHY Calibration Stages
1 For DDR3 SDRAM this stage also includes a ZQ-cal long operation (refer to
the JEDEC specification).

Write Header Information in the internal RAM (s_write_ihi)
In this stage, the ALTMEMPHY IP loads the internal header information in the first
eight locations in the internal RAM through the parameterization of the
ALTMEMPHY IP. The debug toolkit uses this information to provide the current
ALTMEMPHY IP parameterization and IP version numbers.

1 The ALTMEMPHY IP only executes this stage when you enable debug toolkit.

f For information about the debug toolkit, refer to the ALTMEMPHY External Memory
Interface Debug Toolkit.

Load Training Patterns
In this stage, the ALTMEMPHY IP writes training patterns to the memory to be read
in later calibration stages. Because of the matched trace lengths to DDR SDRAM
components, after memory initialization, you can assume write capture works.

You can divide the training pattern writes into the following two stages:

■ Write Block Training Pattern (s_write_btp)

■ Write More Training Patterns (s_write_mtp)

f The ALTMEMPHY IP writes further training pattern in the calibration of the write
datapath, refer to Advertize Write Latency (s_was).

Write Block Training Pattern (s_write_btp)
This stage applies to read data valid alignment (s_rdv), advertise read latency
(s_adv_rd_lat) and postamble calibration (s_poa). For these calibration stages a
pattern of all 1s and all 0s is sufficient to set up the PHY.

Writing of these two patterns is trivial and requires all DDIO outputs (high and low
phases (bits)) to be held at either 1 or 0, for all 1 and all 0 patterns, respectively. To
write these patterns, the ALTMEMPHY IP holds the DDIO outputs low (or high) and
toggles DQS for a predetermined length of time and issues a single write command.
The ALTMEMPHY IP tests a full range of memory write latencies.

To support DDR3 SDRAM discrete components (burst of eight reads), the
ALTMEMPHY IP loads eight memory locations with 1s and eight with 0s.

The following memory locations contain the following patterns:

■ Locations [7.:0], all 0s

■ Locations [15:8], all 1s

1 You need patterns of all 1s and all 0s for calibrating the read resynchronization phase.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–31
ALTMEMPHY Calibration Stages
Write More Training Patterns (s_write_mtp)
This stage calculates the read resynchronization phase (s_rrp_sweep).

The pattern is 0x30F5 and comprises separately written patterns. Th e ALTMEMPHY
IP requires this pattern to match the characterization behavior for nonDQS capture
based schemes (for example, Cyclone III devices). All device families use the
following pattern:

■ All 0: 'b0000 to DDIO high and low bits held at 0

■ All 1: 'b1111 to DDIO high and low bits held at 1

■ Toggle: 'b0101 to DDIO high bits held at 0 and DDIO low bits held at 1

■ Mixed: 'b0011 to DDIO high and low bits have to toggle

While you can ensure that all zeros, all ones, or toggle are written into a burst of
memory locations (output DDIO bits are held at constant values), it is challenging to
ensure that a pattern of 0011 is written into memory. The challenge occurs because the
write latency is unknown at this time. For example, if this pattern is repeated on DQ
pins (0011 0011 0011) and a single write command issued (as for the other patterns),
it is not known whether the memory location contains the pattern 0011 or 1100.

The ALTMEMPHY IP provides a methodology to robustly write these patterns (Test
More Pattern Writes). For this section two locations (X and Y) are populated with
write data, one contains the pattern 0011; the other contains 1100.

The memory locations contain the following patterns:

■ x30 alignment 0 to location (X): 23..16

■ x30 alignment 1 to location (Y): 31..24

■ xF5 to location: 39..32

The ALTMEMPHY IP writes these patterns in bursts of four beats, so in the pattern
xF5, F is written separately to 5. The ALTMEMPHY IP writes patterns F and 0 as a part
of the writing of the block training pattern (Write Block Training Pattern
(s_write_btp)).

Test More Pattern Writes
This stage comprises a number of calibration stages of the PHY, but the stage is
described as one entity. This stage comprises:

■ Initialize read resynchronization phase calculation (s_rrp_reset)

■ Calculate read resynchronization phase (s_rrp_sweep)

■ Calculate read data valid window (s_read_mtp)

The algorithm ensures the pattern 0011 is written to a known location in memory. The
following assumptions and PHY settings apply to this stage:
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–32 Chapter 2: Functional Description—ALTMEMPHY
ALTMEMPHY Calibration Stages
■ Assumptions:

■ Burst length of 4 writes

■ Write capture in the memory device works. Data can be safely written to
memory. No write leveling is required. (Refer to JEDEC specification for more
information on DDR3 SDRAM).

■ Writes are aligned on a clock cycle basis. You know which beats of DQ data to
write on the low and high phases of DQS (ultimately DQ and DQS board
delays are well matched).

■ Settings:

■ Address and command 1T setting. You can add additional latency to the
address and command path (specified as a maximum of one memory clock
cycles (t)). This setting aligns write data to address and command signals
relative to the controller clock domain, where address and command signals
are issued in a given alignment. This setting is not required (0t) for a full-rate
PHY.

■ Read data 1T alignment. Additional delay of captured read data to align with
read commands in the half rate controller cock domain. The interpretation of
1T is the same as for address and command, but applied to read data. This
setting does not apply to a full-rate PHY.

■ Read resynchronization phase setting. This setting is the primary task of the
training pattern to correctly set the resynchronization phase in the middle of
data valid window for the read data (on DQ pins) to be captured.

From this algorithm, to determine PHY settings B and C, given that A is not set,
follow these steps:

1. Try to write the pattern and indistinguishable variations of it to different memory
locations. For example, write to different locations with the following two patterns
on the DQ bus (timed to a local controller rate clock), refer to Write More Training
Patterns (s_write_mtp):

a. 0011 0011 0011 (try to write 0011) in location X

b. 1100 1100 1100 (try to write 1100) in location Y

2. Perform two single-pin DQ pin and single-chip select read resynchronization
phase calibrations using location X and location Y, as part of the larger training
pattern (0x30F5). You do not know at this time which locations X and Y contain the
pattern 0011. This stage iterates through the following stages:

■ Initialize read resynchronization phase calculation (s_rrp_reset)

■ Calculate read resynchronization phase (s_rrp_sweep)

■ Calculate read data valid window (s_read_mtp)

f Calculate read data valid window (s_read_mtp) is a special case of calibrate
read resynchronization phase (s_rrp_sweep), refer to Calibrate Read
Resynchronization Phase (s_rrp_sweep). This stage reports the size of the
returned window without setting up the PLL phase or producing an error if
no window is observed.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–33
ALTMEMPHY Calibration Stages
3. The single pin read resynchronization calibration (using pattern X or Y), which
results in the largest data valid window, contains the optimal pattern. The read
resynchronization calibration with the largest window indicates the location (X or
Y) that contains the correct alignment (0011). Read resynchronization phase
calibration uses this alignment (X or Y) , to perform the full resynchronization
phase calibration across all pins and chip selects.

1 During calibration of the read resynchronization phase, the ALTMEMPHY IP
captures the DQ pin using a free running clock, phase shifted through a given number
of steps. You should try to match a training pattern against read data, for each phase
shift, and a window of valid phases is composed.

In waveforms, you observe two resynchronization phase sweeps, over single pins,
before the larger phase sweep. However in fast simulation mode, you observe two
resynchronization phase sweeps when the duration of all three sweeps is equal. For
half-rate interfaces, you may observe a total of six phase sweeps, where the entire
calibration is repeated when the address and command 1T setting is toggled.

Calibrate Read Resynchronization Phase
This stage encompasses the following calibration stages:

■ Initialize Read Resynchronisation Phase Calibration (s_rrp_reset)

■ Calibrate Read Resynchronization Phase (s_rrp_sweep)

■ Calculate Read Resynchronization Phase (s_rrp_seek)

This stage adjusts the phase of the resynchronization (or capture) clock to determine
the optimal phase that gives the greatest margin. For DQS based capture schemes the
resynchronization clock captures the outputs of DQS capture registers (DQS is the
capture clock). In a non-DQS capture based scheme, the capture clock captures the
input DQ pin data (the DQS signal is unused).

For all half-rate PHY interfaces, a 720° resynchronization or capture clock phase
sweep is performed. For a half-rate PHY this sweep is effectively 360° of the half-rate
clock, because resynchronization or capture clock is at the memory clock rate. A 720°
sweep is required, so that read data can be presented to a controller aligned to one
half-rate controller clock cycle.

For full-rate DQS based capture, because the DQ pins are captured using the DQS
signal, in a 360° phase sweep, all resynchronization clock phases may pass. In this
case the correct resynchronization phase to set cannot be determined. The correct
phase is the one in the center of a valid window, where returned read data is correct.
Thus a 720° phase sweep is performed. From 360 to 720°, a clock cycle of latency may
be added to a 0 to 360° sweep. The returned read data is compared to a training
pattern pseudo half-rate (at half the clock rate of the sequencer), so data can only be
valid for 360° of the sweep. This method introduces edges to the data valid window
such that a correct phase can be chosen.

For non-DQS capture in general, up to half (180°) of the swept capture clock phases
can result in correct capture data, because the DDR to SDR conversion is performed
by the capture clock, and thus high and low phases of DQ are captured in the
incorrect alignment for half of the capture clock phases. Therefore, only 360° of
capture clock need be swept for full-rate non-DQS capture based PHYs.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–34 Chapter 2: Functional Description—ALTMEMPHY
ALTMEMPHY Calibration Stages
The pseudo half-rate case potentially adds one clock cycle of latency into the read
datapath because of the 720° sweep. The ALTMEMPHY IP detects this occurrence and
removes the clock cycle of latency in the calculate read resynchronization phase
(s_rrp_seek).

Initialize Read Resynchronisation Phase Calibration (s_rrp_reset)
This stage returns the PLL to a nominal zero phase shift.

Calibrate Read Resynchronization Phase (s_rrp_sweep)
This stage performs a sweep through a parameterised 360° or 720° of
resynchronization clock phase. The ALTMEMPHY IP optionally stores these results in
the internal RAM.

The command has the following attributes:

■ Single_pin to indicate just to sweep DQ pin 0 as for the use in testing the write
more training patterns stage.

■ mtp_alignment to say which location (X/Y) to use from the write more training
patterns stage.

Calculate Read Resynchronization Phase (s_rrp_seek)
This stage calculates the size and center (in phase steps) of the largest data valid
window found during the calibrate read resynchronization phase and sets PLL phase
to the center phase.

Calculate read data valid window (s_read_mtp) is a special case of this stage which
reports no errors for an invalid window (a failure is expected in one case) and does
not setup the PLL.

Calculate Read Data Valid Window (s_rdv)
This stage sets the latency on a delayed version of the doing_rd signal, so that it is
aligned with the rdata_valid signal for the read data it is incident with the read
command for.

This stage has the following process:

1. Reads a continuous stream of 1s followed by one read of zeros. The sequencer only
asserts doing_rd when read command for zeros is issued.

2. Checks for alignment of read data valid signal (delayed version of doing_rd) to the
zeros (rdata = 0, rdata_valid = 1).

3. If not aligned, reduces latency between doing_rd and rdata_valid signal and
loop.

1 Read data valid latency is reset to a high value (before calibration) and then
reduced until it matches the correct alignment.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–35
ALTMEMPHY Calibration Stages
Advertize Write Latency (s_was)
This stage writes a suitable pattern to the DRAM to calculate the write latency.

A write command is issued to a memory address 48 (Figure 2–16) while driving a
count of frequency controller clock rate to the DQ pins (Figure 2–16), using the write
datapath observed by the controller. For half-rate interfaces, each four beats of write
data on DQ are identical. For full-rate interfaces, each two beats of write data are
identical. In general, the write latency is written into addresses A... A + (n – 1), where
n is two times the ratio of controller to memory clock rate and each n bits of write data
must be identical. The pattern is written into memory locations 48 to 55.

Calculate Read Latency (s_adv_rlat)
In addition to read data valid window calculation (s_rdv), the advertised read latency
is calculated in this stage in the following way:

■ Issues a read command (with doing_rd) and starts a counter at PHY clock rate

■ When rdata_valid returns, outputs the value of the counter to ctl_rlat signal.

This signal is redundant, because a controller can use the rdata_valid signal to
determine when valid read data is returned.

1 The read data from the DRAM is not important here. The count is performed between
the issue of doing_rd and rdata_valid returning.

Figure 2–16. Description of Write Pattern

____ 48 ____

NOP write NOP

-two -one zero one twowrite data

command

address

controller
clock
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–36 Chapter 2: Functional Description—ALTMEMPHY
ALTMEMPHY Calibration Stages
Output Write Latency (s_adv_wlat)
To calibrate a PHY write datapath to a minimum latency, a robust process is required
to determine the write latency (WL) between a memory controller write command
and the associated write data. Factors that can contribute to WL include memory CAS
latency, arbitrary additive delays in the PHY, and board trace lengths. The presented
approach extends from calibrating a PHY, where the controller operates at the
memory clock frequency, to controller operation at half or a quarter of the memory
clock frequency.

After a predetermined maximum read latency clock cycles have passed, the contents
of the chosen memory address (0x48 in Figure 2–16) are read to recover the write
latency. The first n beats of read data contain the write latency.

While this method recovers the write latency it can determine the address and
command 1T setting in half rate mode.

The returned read data, in the controller clock domain, should be equal across the first
four read data beats, as aligned to the controller clock domain. For this check to work
an alternate read location must be read immediately before and after that containing
the write latency.

If read data is not correctly aligned then the address and command 1T setting is
toggled and calibration is rerun from write training patterns stage.

Calibrate Postamble (s_poa)
The ALTMEMPHY IP only implements this stage for DQS capture based PHYs (not
used for Cyclone III and Cyclone IV devices).

For this stage, the PHY reads the pattern 0x30 from memory, so that the deassertion of
the postamble protection signal (poa_enable) can be aligned to the 1's in this pattern.

This stage sets the correct clock cycle for the postamble path. The aim of the
postamble path is to eliminate false DQ data capture because of postamble glitches on
the DQS signal, through an override on DQS. This stage ensures the correct clock
cycle timing of the postamble enable (override) signal.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 2: Functional Description—ALTMEMPHY 2–37
ALTMEMPHY Calibration Stages
The delay on the postamble enable signal starts off too large. It is then iteratively
reduced until postamble enable de-asserts in the clock cycle before the last falling
edge on DQS. Figure 2–17 shows the calibration timing diagram.

Set Up Address and Command Clock Cycle
For half-rate interfaces, this stage also optionally adds an additional memory clock
cycle of delay from the address and command path. This stage aligns write data to
memory commands given in the controller clock domain. You see this stage in the
waveform as a rerun of calibration (from the writing of training patterns) to calibrate
to the new setting.

This stage is detected in the advertise write latency stage (s_adv_wlat)

Write User Mode Register Settings (s_prep_customer_mr_setup)
User mode register setting applies on a per chip select basis without the overrides in
the program mode registers for calibration (s_prog_mr) stage.

Voltage and Temperature Tracking
Voltage and temperature tracking is a background process that tracks the voltage and
temperature variations to maintain the relationship between the resynchronization or
capture clock and the data valid window that were achieved at calibration. When the
data calibration phase completes, the sequencer issues the mimic calibration sequence
every 128 ms (in user mode).

Figure 2–17. Calibration Timing

Note to Figure 2–17:

(1) The poa_enable signal is late, and the zeros on mem_dq after here are captured.
(2) The poa_enable signal is aligned. Zeros following here are not captured and rdata remains at 1.

mem_dq(0)

c_read_burst_t

Note 1 Note 2

poa_enable

rdata(0)

poa_match

dec_poa_latency

c_read_burst_t
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

2–38 Chapter 2: Functional Description—ALTMEMPHY
Document Revision History
Setup the Mimic Window (s_tracking_setup)
During initial calibration, the mimic path is sampled using the measure clock. The
measure_clk signal has a _1x or _2x suffix, depending whether the ALTMEMPHY IP
is a full-rate or half-rate design. The sampled value is then stored by the sequencer.
After a sample value is stored, the sequencer uses the PLL reconfiguration logic to
change the phase of the measure clock by one voltage-controlled oxcillator (VCO)
phase tap. The sequencer then stores the sampled value for the new mimic path clock
phase. This sequence continues until all mimic path clock phase steps are swept. After
the sequencer stores all the mimic path sample values, it calculates the phase which
corresponds to the center of the high period of the mimic path waveform. This
reference mimic path sampling phase is used during the voltage and temperature
tracking phase.

Perform Tracking (s_tracking)
In user mode, the sequencer periodically performs a tracking operation. At the end of
the tracking calibration, the sequencer compares the most recent optimum tracking
phase against the reference sampling phase. If the sampling phases do not match, the
mimic path delays have changed because of voltage and temperature variations.
When the sequencer detects that the mimic path reference and most recent sampling
phases do not match, the sequencer uses the PLL reconfiguration logic to change the
phase of the resynchronization clock by the VCO taps in the same direction. This
procedure allows the tracking process to maintain the near-optimum capture clock
phase setup during data tracking calibration as voltage and temperature vary over
time. The relationship between the resynchronization or capture clock and the data
valid window is maintained by measuring the mimic path variations because of the
voltage and temperature variations and applying the same variation to the
resynchronization clock.

Document Revision History
Table 2–6 lists the revision history for this document.

Table 2–6. Document Revision History

Date Version Changes

November 2012 3.3 ■ Added Controller Register Map information.

June 2012 3.2 ■ Added Feedback icon

November 2011 3.1

■ Consolidated ALTMEMPHY FD information from 11.0 version DDR and DDR2 SDRAM
Controller with ALTMEMPHY IP User Guide and DDR3 SDRAM Controller with
ALTMEMPHY IP User Guide.

■ Added ALTMEMPHY Calibration Stages information.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_003-2.1

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_003-2.1
3. Functional Description—Hard Memory
Interface
This chapter describes the hard (on-chip) memory interface components available in
the Arria V and Cyclone V device families.

Hard Memory Interface
The Arria V device family includes hard memory interface components supporting
DDR2 and DDR3 SDRAM, LPDDR2, QDR II SRAM, and RLDRAM II memory
protocols at speeds of up to 533 MHz. For the Quartus II software version 12.0 and
later, the Cyclone V device family supports both hard and soft interface support.

High-Level Feature Description
The hard memory interface consists of three main parts, as follows:

■ The multi-port front end (MPFE), which allows multiple independent accesses to
the hard memory controller.

■ The hard memory controller, which initializes, refreshes, manages, and
communicates with the external memory device.

■ The hard PHY, which provides the physical layer interface to the external memory
device.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_003
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_003-2.1 (EMI HB, Vol 3, Ch3: Functional Description - Hard Memory Interface)

3–2 Chapter 3: Functional Description—Hard Memory Interface
Multi-Port Front End (MPFE)
Figure 3–1 shows the architecture of the Arria V hard memory interface.

Multi-Port Front End (MPFE)
The multi-port front end and its associated fabric interface provide up to six
command ports, four read-data ports and four write-data ports, through which user
logic can access the hard memory controller. Each port can be configured as read only
or write only, or read and write ports may be combined to form bidirectional data
ports. Ports can be 32, 64, 128, or 256 data bits wide, depending on the number of
ports used and the type (unidirectional or bidirectional) of the port.

Fabric Interface
The fabric interface provides communication between the Avalon-ST-like internal
protocol of the hard memory interface and the external Avalon-MM protocol. The
fabric interface supports frequencies in the range of 10 MHz to one-half of the
memory interface frequency. For example, for an interface running at 533 MHz, the
maximum user logic frequency is 267 MHz. The MPFE handles the clock crossing
between user logic and the hard memory interface.

Figure 3–1. Hard Memory Interface Architecture

 Transaction
FIFO

 DRAM Burst State Machine

Command
Port 1

Data
FIFO

Data
Port 1

Write Data
Handling

Read Data

Data

Command
Arbitration

Write Data Read Data

Command
Port 1

Data
Port 1

Command
Arbitration

Avalon-MM
Memory Mapped

Register
Single-Port
Controller

Multi-Port
Front End

Avalon-MM / ST
Adaptor

Hard Memory Interface Architecture

Command
Port 2

Command
Port 6

Data
Port 4

Data
Port 1

Data
Port 4

Write Data

FPGA Fabric

Register
Interface

Register
Control

Bus Transaction

Bus Transaction

Register
Port

Hard PHY

DRAM
Command

DRAM Burst
Command

ECC
Check

ECC
Calc

FIFO FIFO
Data
FIFO

Data
FIFO

Data
FIFO

Read Data
Handling

Slot 1
Slot 2
Slot 3

Slot 8

Data

 Transaction Transaction

Write Data Read Data
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 3: Functional Description—Hard Memory Interface 3–3
Multi-Port Front End (MPFE)
Table 3–1 lists the types of ports available in the fabric interface.

Operation Ordering
Requests arriving at a given port are executed in the order in which they are received.

Requests arriving at different ports have no guaranteed order of service, except when
a first transaction has completed before the second arrives.

Multi-port Scheduling
User-configurable priority and weight settings determine the absolute and relative
scheduling policy for each port.

Port Scheduling
Multi-port scheduling is governed by two considerations: the absolute priority of a
request and the weighting of a port.

The evaluation of absolute priority ensures that ports carrying higher-priority traffic
are served ahead of ports carrying lower-priority traffic. The scheduler recognizes
eight priority levels, with higher values representing higher priorities. Priority is
absolute; for example, any transaction with priority seven will always be scheduled
before transactions of priority six or lower.

When ports carry traffic of the same absolute priority, relative priority is determined
based on port weighting. Port weighting is a five-bit value, and is determined by a
weighted round robin (WRR) algorithm.

The scheduler can alter priority if the latency target for a transaction is exceeded. The
scheduler tracks latency on a per-port basis, and counts the cycles that a transaction is
pending. Each port has a priority escalation register and a pending counter
engagement register. If the number of cycles in the pending counter engagement
register elapse without a pending transaction being served, that transaction’s priority
is esclated.

Table 3–1. Fabric Interface Port Types

Port Type Description

Fabric command ports Accept both read and write commands.

Fabric 64-bit read data ports
Read and write data ports can be concatenated to form wider
interfaces in power-of-two sizes (128-, 256-bit busses). Application
which require only 32-bit interface can connect a 32-bit interface to
the lower 32 bits of 64-bit port and configure that interface to be
32-bits wide. The remaining 32 nets to the hard memory controller
are not usable when a port is configured to be 32-bits wide. 32-bit
interfaces cannot be concatenated.

Fabric 64-bit write data ports

Fabric register port
Provides access to address registers that control operation of the
memory controller. Register values written across this interface can
override values loaded during FPGA configuration.

Fabric write response port

Paired with the fabric write data ports to provide return
acknowledgement of write operations being committed. A read
operation received after the write acknowledgement on any
controller port for the same address will see the updated data.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

3–4 Chapter 3: Functional Description—Hard Memory Interface
Multi-Port Front End (MPFE)
To ensure that high-priority traffic is served quickly and that long and short bursts are
effectively interleaved on ports, bus transactions longer than a single DRAM burst are
scheduled as a series of DRAM bursts, with each burst arbitrated separately.

The scheduler uses a form of deficit round robin (DRR) scheduling algorithm which
corrects for past over-servicing or under-servicing of a port. Each port has an
associated weight which is updated every cycle, with a user-configured weight added
to it and the amount of traffic served subtracted from it. The port with the highest
weighting is considered the most eligible.

To ensure that lower priority ports do not build up large running weights while
higher priority ports monoplize bandwidth, the hard memory controller’s DRR
weights are updated only when a port matches the scheduled priority. Hence, if three
ports have traffic, two being priority 7 and one being priority 4, the weights for both
ports at priority 7 are updated but the port with priority 4 remains unchanged.

The scheduler can be configured to lock onto a given port for a specified number of
transactions when the scheduler schedules traffic at that priority level. The number of
transactions is configurable on a per-port basis. For ports with large numbers of
sequential addresses, you can use this feature to allow efficient open page accesses
without risk of the open page being pushed out by other transactions.

DRAM Burst Scheduling
DRAM burst scheduling recognizes addresses that access the same column/row
combination—also known as open page accesses. Such operations are always served
in the order in which they are received in the single-port controller.

Selection of DRAM operations is a two-stage process; first, each pending transaction
must wait for its timers to be eligible for execution, then the transaction arbitrates
against other transactions that are also eligible for execution.

The following rules govern transaction arbitration:

■ High priority operations take precedence over lower priority operations

■ If multiple operations are in arbitration, read operations have precedence over
write operations

■ If multiple operations still exist, the oldest is served first

A high-priority transaction in the DRAM burst scheduler wins arbitration for that
bank immediately if the bank is idle and the high-priority transaction’s chip
select/row/column address does not match an address already in the single-port
controller. If the bank is not idle, other operations to that bank yield until the
high-priority operation is finished. If the address matches another chip
select/row/column, the high-priority transaction yeilds until the earlier transaction is
completed.

You can force the DRAM burst scheduler to serve transactions in the order that they
are received, by setting a bit in the register set.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 3: Functional Description—Hard Memory Interface 3–5
Multi-Port Front End (MPFE)
DRAM Power Saving Modes
The hard memory controller supports two DRAM power-saving modes: self-refresh,
and fast/slow all-bank precharge powerdown exit.

Engagement of a DRAM power saving mode can occur due to inactivity, or in
response to a user command.

The user command to enter power-down mode forces the DRAM burst-scheduling
bank-management logic to close all banks and issue the power-down command. You
can program the controller to power down when the DRAM burst-scheduling queue
is empty for a specified number of cycles; the DRAM is reactivated when an active
DRAM command is received.

MPFE Signal Descriptions
Table 3–2 describes the signals for the multi-port front end.

Every input interface (command, read data, and write data) has its own clock domain.
Each command port can be connected to a different clock, but the read data and write
data ports associated with a command port must connect to the same clock as that
command port. Each input interface uses the same reset signal as its clock.

Table 3–2. MPFE Signals

Signal Directi
on Description

avl_<signal_name>_# (1) — Local interface signals.

mp_cmd_clk_#_clk (1) Input

Clock for the command FIFO buffer. Follow
Avalon-MM master frequency. Maximum frequency is
one-half of the interface frequency, and subject to
timing closure.

mp_cmd_reset_n_#_reset_n (1) Input Reset signal for command FIFO buffer.

mp_rfifo_clk_#_clk (2) Input
Clock for the read data FIFO buffer. Follow Avalon-MM
master frequency. Maximum frequency is one-half of
the interface frequency, and subject to timing closure.

mp_rfifo_reset_n_#_reset_n (2) Input Reset signal for read data FIFO buffer.

mp_wfifo_clk_#_clk (2) Input

Clock for the write data FIFO buffer. Follow
Avalon-MM master frequency. Maximum frequency is
one-half of the interface frequency, and subject to
timing closure.

mp_wfifo_reset_n_#_reset_n (2) Input Reset signal for write data FIFO buffer.

bonding_in_1/2/3 Input
Bonding interface input port. Connect second
controller bonding output port to this port according
to the port sequence.

bonding_out_1/2/3 Output
Bonding interface output port. Connect this port to the
second controller bonding intput port according to the
port sequence.

Note:

(1) # represents the number of the slave port. Values are 0—5.
(2) # represents the number of the slave port. Values are 0—3.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

3–6 Chapter 3: Functional Description—Hard Memory Interface
Multi-Port Front End (MPFE)
By default, the IP generates all clock signals regardless of the MPFE settings, but all
unused ports and FIFO buffers are connected to ground.

The command ports can be used only in unidirectional configurations, with either 4
write and 2 read, 3 write and 3 read, or 2 write and 4 read scenarios. For bidirectional
ports, the number of clocks is reduced from 6 to a maximum of 4.

For the scenario depicted in Figure 3–2:

■ command port 0 is associated with read and write data FIFO 0 and 1

■ command port 1 is associated with read data FIFO 2

■ command port 2 is associated with write data FIFO 2

Figure 3–2. Sample MPFE Configuration
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 3: Functional Description—Hard Memory Interface 3–7
Hard Memory Controller
Therefore, if port 0 (avl_0) is clocked by a 100 MHz clock signal, mp_cmd_clk_0,
mp_rfifo_clk_0, mp_rfifo_clk_1, mp_wfifo_clk_o, and mp_wfifo_clk_1 must all be
connected to the same 100 MHz clock, as illustrated in Figure 3–3.

Hard Memory Controller
The following sections describe the memory controller portion of the hard memory
interface.

1 The hard memory controller is functionally similar to the High Performance
Controller II (HPC II). For information on signals, refer to the Functional
Description—HPC II Controller chapter.

Clocking
The ports on the MPFE can be clocked at different frequencies, and synchronization is
maintained by cross-domain clocking logic in the MPFE. Command ports can connect
to different clocks, but the data ports associated with a given command port must be
attached to the same clock as that command port. For example, a bidirectional
command port that performs a 64-bit read/write function has its read port and write
port connected to the same clock as the command port. Note that these clocks are
separate from the EMIF core generated clocks.

Figure 3–3. Sample Connection Mapping
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

3–8 Chapter 3: Functional Description—Hard Memory Interface
Hard Memory Controller
DRAM Interface
The DRAM interface is 40 bits wide, and can accommodate 8-bit, 16-bit, 16-bit plus
ECC, 32-bit, or 32-bit plus ECC configurations. Any unused I/Os in the DRAM
interface can be reused as user I/Os. The DRAM interface supports DDR2 and DDR3
memory protocols, and LPDDR2 for Cyclone V only. Fast and medium speed grade
devices are supported to 533 MHz for Arria V and 400 MHz for Cyclone V.

ECC
The hard controller supports both error-correcting code (ECC) calculated by the
controller and by the user.

Controller ECC code employs standard Hamming logic which can detect and correct
single-bit errors and detect double-bit errors. The controller ECC is available for 16-bit
and 32-bit widths, each requiring an additional 8 bits of memory, resulting in an
actual memory width of 24-bits and 40-bits, respectively.

In user ECC mode, all bits are treated as data bits, and are written to and read from
memory. User ECC can implement nonstandard memory widths such as 24-bit or
40-bit, where ECC is not required.

Controller ECC
Controller ECC provides the following features:

Byte Writes—The memory controller performs a read/modify/write operation to
keep ECC valid when a subset of the bits of a word is being written. If an entire word
is being written (but less than a full burst) and the DM pins are connected, no read is
necessary and only that word is updated. If controller ECC is disabled, byte-writes
have no performance impact.

ECC Write Backs—When a read operation detects a correctable error, the memory
location is scheduled for a read/modify/write operation to correct the single-bit error.

User ECC—User ECC is 24-bits or 40-bits wide; with user ECC, the controller
performs no ECC checking. The controller employs memory word addressing with
byte enables, and can handle arbitrary memory widths. User ECC does not disable
byte writes; hence, you must ensure that any byte writes do not result in corrupted
ECC.

Bonding of Memory Controllers
Bonding is a feature that allows data to be split between two memory controllers,
providing the ability to service bandwidth streams similar to a single 64-bit controller.
Bonding works by dividing data buses in proportion to the memory widths, and
always sending a transaction to both controllers. When signals are returned, bonding
ensures that both sets of signals are returned identically.

Bonding can be applied to asymetric controllers, and allows controllers to have
different memory clocks. Bonding does not attempt to synchronize the controllers.
Bonding supports only one port. The Avalon port width can be varied from 64-bit to
256-bit; 32-bit port width is not supported.

The following signals require bonding circuitry:
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 3: Functional Description—Hard Memory Interface 3–9
Hard Memory Controller
Read data return—This bonding allows read data from the two controllers to return
with effectively one ready signal to the bus master that initiated the bus transaction.

Write ready—For Avalon-MM, this is effectively bonding on the waitrequest signal.

Write acknowledge—Synchronization on returning the write completed signal.

For each of the above implementations, data is returned in order, hence the circuitry
must match up for each valid cycle.

Bonded FIFO buffers must have identical FIFO numbers; that is, read FIFO 1 on
controller 1 must be paired with Read FIFO 1 on controller 2.

Data Return Bonding
Long loop times can lead to communications problems when using bonded
controllers. The following effects are possible when using bonded controllers:

■ If one memory controller completes its transaction and receives new data before
the other controller, then the second controller can send data as soon as it arrives,
and before the first controller acknowledges that the second controller has data.

■ If the first controller has a single word in its FIFO buffer and the second controller
receives single-word transactions, the second controller must determine whether
the second word is a valid signal or not.

To accommodate the above effects, the hard controller maintains two counters for
each bonded pair of FIFO buffers and implements logic that monitors those counters
to ensure that the bonded controllers receive the same data on the same cycle, and that
they send the data out on the same cycle.

FIFO Ready
FIFO ready bonding is used for write command and write data buses. The
implementation is similar to the data return bonding.

Bonding Latency Impact
Bonding has no latency impact on ports that are not bonded.

Bonding Controller Usage
Arria V and Cyclone V devices employ three shared bonding controllers to manage
the read data return bonding, write acknowledge bonding, and command/write data
ready bonding.

The three bonding controllers require three pairs of bonding I/Os, each based on a six
port count; this means that a bonded hard memory controller requires 21 input signals
and 21 output signals for its connection to the fabric, and another 21 input signals and
21 output signals to the paired hard memory controller.

1 The hard processor system (HPS) hard memory controller cannot be bonded with
another hard memory controller on the FPGA portion of the device.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

3–10 Chapter 3: Functional Description—Hard Memory Interface
Hard PHY
Hard PHY
A physical layer interface (PHY) is embedded in the periphery of the Arria V device,
and can run at the same high speed as the hard controller and hard sequencer. The
hard PHY is located next to the hard controller. Differing device configurations have
different numbers and sizes of hard controller and hard PHY pairs.

The hard PHY implements logic that connects the hard controller to the I/O ports.
Because the hard controller and AFI interface support high frequencies, a portion of
the sequencer is implemented as hard logic. The Nios II processor, the
instruction/data RAM, and the Avalon fabric of the sequencer are implemented as
core soft logic. The read/write manger and PHY manager components of the
sequencer, which must operate at full rate, are implemented as hard logic in the hard
PHY.

Interconnections
The hard PHY resides on the device between the hard controller and the I/O register
blocks. The hard PHY is instantiated or bypassed entirely, depending on the
parameterization that you specify.

The hard PHY connects to the hard memory controller and the core, enabling the use
of either the hard memory controller or a software-based controller. (You can have the
hard controller and hard PHY, or the soft controller and soft PHY; however, the
combination of soft controller with hard PHY is not supported.) The hard PHY also
connects to the I/O register blocks and the DQS logic. The path between the hard
PHY and the I/O register blocks can be bypassed, but not reconfigured—in other
words, if you use the hard PHY datapath, the pins to which it connects are predefined
and specified by the device pin table.

Clock Domains
The hard PHY contains circuitry that uses the following clock domains:

AFI clock domain (pll_afi_clk)—The main full-rate clock signal that synchronizes
most of the circuit logic.

Avalon clock domain (pll_avl_clk)—Synchronizes data on the internal Avalon bus,
namely the Read/Write Manager, PHY Manager, and Data Manager data. The data is
then transferred to the AFI clock domain. To ensure reliable data transfer between
clock domains, the Avalon clock period must be an integer multiple of the AFI clock
period, and the phases of the two clocks must be aligned.

Address and Command clock domain (pll_addr_cmd_clk)—Synchronizes the global
asychronous reset signal, used by the I/Os in this clock domain.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 3: Functional Description—Hard Memory Interface 3–11
Hard Memory Interface Implementation Guidelines
Hard Sequencer
The sequencer initializes the memory device and calibrates the I/Os, with the
objective of maximizing timing margins and achieving the highest possible
performance. When the hard memory controller is in use, a portion of the sequncer
must run at full rate; for this reason, the Read/Write Manager, PHY Manager, and
Data Manager are implemented as hard components within the hard PHY. The hard
sequencer communicates with the soft-logic sequencer components (including the
Nios II processor) via an Avalon bus.

Hard Memory Interface Implementation Guidelines
The following sections provide guidelines for implementing a hard memory interface.

MPFE Setup Guidelines
This section provides information on configuring the multi-port front end of the hard
memory interface.

1. To enable the hard memory interface, turn on Enable Hard External Memory
Interface in the Interface Type tab in the parameter editor.

2. To export bonding interface ports to the top level, turn on Export bonding
interface in the Multiple Port Front End pulldown on the Controller Settings tab
in the parameter editor.

1 The system exports three bonding-in ports and three bonding-out ports.
You must generate two controllers and connect the bonding ports manually.

3. To expand the interface data width from a maximum of 32 bits to a maximum of 40
bits, turn on Enable Avalon-MM data for ECC in the Multiple Port Front End
pulldown on the Controller Settings tab in the parameter editor.

1 The controller does not perform ECC checking when this option is turned
on.

4. Select the required Number of ports for the multi-port front end in the Multiple
Port Front End pulldown on the Controller Settings tab in the parameter editor.

1 The maximum number of ports is 6, depending on the port type and width.
The maximum port width is 256 bits, which is the maximum data width of
the read data FIFO and write data FIFO buffers.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

3–12 Chapter 3: Functional Description—Hard Memory Interface
Hard Memory Interface Implementation Guidelines
5. The table in the Multiple Port Front End pulldown on the Controller Settings tab
in the parameter editor lists the ports that are created. The columns in the table
describe each port, as follows:

■ Port: Indicates the port number.

■ Type: Indicates whether the port is read only, write only, or bidirectional.

■ Width: To achieve optimum MPFE throughput, Altera recommends setting the
MPFE data port width according to the following calculation:

2 x (frequency ratio of HMC to user logic) x (interface data width)

For example, if the frequency of your user logic is one-half the frequency of the
hard memory controller, you should set the port width to be 4x the interface
data width. If the frequency ratio of the hard memory controller to user logic is
a fractional value, you should use a larger value; for example, if the ratio is 1.5,
you can use 2.

■ Priority: The priority setting specifies the priority of the slave port, with higher
values representing higher priority. The slave port with highest priority is
served first.

■ Weight: The weight setting has a range of values of 0–31, and specifies the
relative priority of a slave port, with higher weight representing higher
priority. The weight value can determine relative bandwidth allocations for
slave ports with the same priority values.

For example, if two ports have the same priority value, and weight values of 4
and 6, respectively, the port with a weight of 4 will receive 40% of the bus
bandwidth, while the port with a weight of 6 will receive 60% of the bus
bandwidth—assuming 100% total available bus bandwidth.

Soft Memory Interface to Hard Memory Interface Migration Guidelines
This section provides information on mapping your soft memory interface to a hard
memory interface.

Pin Connections
1. The hard and soft memory controllers have compatible pinouts. Assign interface

pins to the hard memory interface according to the pin table.

2. Ensure that your soft memory interface pins can fit into the hard memory
interface. The hard memory interface can support a maximum of a 40-bit interface
with user ECC, or a maximum of 80-bits with same-side bonding. The soft
memory interface does not support bonding.

3. Follow the recommended board layout guidelines for the hard memory interface.

Software Interface Preparation
Observe the following points in preparing your soft memory interface for migration
to a hard memory interface:

■ You cannot use the hard PHY without also using the hard memory controller.

■ The hard memory interface supports only full-rate controller mode.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 3: Functional Description—Hard Memory Interface 3–13
Hard Memory Interface Implementation Guidelines
■ Ensure that the MPFE data port width is set according to the soft memory interface
half-rate mode Avalon data width.

■ The hard memory interface uses a different Avalon port signal naming convention
than the software memory interface. Ensure that you change the
.avl_<signal_name> signals in the soft memory interface to .avl_<signal_name>_0
signals in the hard memory interface.

■ The hard memory controller MPFE includes an additional three clocks and three
reset ports (CMD port, RFIFO port, and WFIFO port) that do not exist with the soft
memory controller. You should connect the user logic clock signal to the MPFE
clock port, and the user logic reset signal to the MPFE reset port.

■ In the soft memory interface, the half-rate afi_clk is a user logic clock. In the hard
memory interface, afi_clk is a full-rate clock, because the core fabric may not be
able to achieve full-rate speed. When you migrate your soft memory interface to a
hard memory interface, you need to supply an additional slower rate clock. The
maximum clock rate supported by core logic is one-half of the maximum interface
frequency.

Latency
Overall, you should expect to see slightly more latency when using the hard memory
controller and multi-port front end, than when using the soft memory controller.

The hard memory controller typically exhibits lower latency than the soft memory
controller; however, the multi-port front end does introduce additional latency cycles
due to FIFO buffer stages used for synchronization. The MPFE cannot be bypassed,
even if only one port is needed.

Bonding Interface Guidelines
Bonding allows a single data stream to be split between two memory controllers,
providing the ability to expand the interface data width similar to a single 64-bit
controller. This section provides some guidelines for setting up the bonding interface.

1. Bonding interface ports are exported to the top level in your design. You should
connect each bonding_in_* port in one hard memory controller to the
corresponding bonding_out_* port in the other hard memory controller, and vice
versa.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

3–14 Chapter 3: Functional Description—Hard Memory Interface
Document Revision History
2. You should modify the Avalon signal connections to drive the bonding interface
with a single user logic/master, as follows:

a. AND both avl_ready signals from both hard memory controllers before the
signals enter the user logic.

b. AND both avl_rdata_valid signals from both hard memory controllers before
the signals enter the user logic. (The avl_rdata_valid signals should be
identical for both hard memory controllers.)

c. Branch the following signals from the user logic to both hard memory
controllers:

■ avl_burstbegin

■ avl_addr

■ avl_read_req

■ avl_write_req

■ avl_size

d. Split the following signals according to each multi-port front end data port
width:

■ avl_rdata

■ avl_wdata

■ avl_be

Document Revision History
Table 3–3 lists the revision history for this document.

Table 3–3. Document Revision History

Date Version Changes

November 2012 2.1
■ Added Hard Memory Interface Implementation Guidelines.

■ Moved content of EMI-Related HPS Features in SoC Devices section to chapter 4.
Functional Description—HPS Memory Controller.

June 2012 2.0

■ Added EMI-Related HPS Features in SoC Devices.

■ Added LPDDR2 support.

■ Added Feedback icon.

November 2011 1.0 Initial release.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_017-1.0

are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_017-1.0
4. Functional Description—HPS Memory
Controller
© 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos

The hard processor system (HPS) SDRAM controller subsystem provides efficient
access to external SDRAM for the ARM® Cortex™-A9 microprocessor unit (MPU)
subsystem, the level 3 (L3) interconnect, and the FPGA fabric. The SDRAM controller
provides an interface between the FPGA fabric and HPS. The interface accepts
Advanced Microcontroller Bus Architecture (AMBA®) Advanced eXtensible Interface
(AXI™) and Avalon® Memory-Mapped (Avalon-MM) transactions, converts those
commands to the correct commands for the SDRAM, and manages the details of the
SDRAM access.

Features of the SDRAM Controller Subsystem
The SDRAM controller subsystem offers the following features:

■ Support for double data rate 2 (DDR2), DDR3, and low-power DDR2
(LPDDR2) SDRAM

■ User-configurable timing parameters

■ Up to 4 Gb density parts

■ Two chip selects

■ Integrated error correction code (ECC), 24- and 40-bit widths

■ User-configurable memory width of 8, 16, 16+ECC, 32, 32+ECC

■ Command reordering (look-ahead bank management)

■ Data reordering (out of order transactions)

■ User-controllable bank policy on a per port basis for either closed page or
conditional open page accesses

■ User-configurable priority support with both absolute and relative priority
scheduling

■ Flexible FPGA fabric interface configuration with up to 6 ports and data widths
up to 256 bits wide using Avalon-MM and AXI interfaces.

■ Power management supporting self refresh, partial array self-refresh (PASR),
power down, and LPDDR2 deep power down
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=UG-00000
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_017-1.0 (EMI HB, Vol 3, Ch4: Functional Description - HPS Memory Controller)
http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

4–2 Chapter 4: Functional Description—HPS Memory Controller
SDRAM Controller Subsystem Block Diagram and System Integration
SDRAM Controller Subsystem Block Diagram and System Integration
The SDRAM controller subsystem connects to the MPU subsystem, the main switch of
the L3 interconnect, and the FPGA fabric. The memory interface consists of the
SDRAM controller, the physical layer (PHY), control and status registers (CSRs), and
their associated interfaces.

Figure 4–1 shows a high-level block diagram of the SDRAM controller subsystem.

SDRAM Controller
The SDRAM controller provides high performance data access and run-time
programmability. The controller reorders data to reduce row conflicts and bus turn-
around time by grouping read and write transactions together, allowing for efficient
traffic patterns and reduced latency.

The SDRAM controller consists of a multiport front end (MPFE) and a single-port
controller. The MPFE provides multiple independent interfaces to the single-port
controller. The single-port controller communicates with and manages each external
memory device. For more information, refer to “Memory Controller Architecture” on
page 4–4.

DDR PHY
The DDR PHY provides a physical layer interface between the memory controller and
memory devices, which performs read and write memory operations. The DDR PHY
has dataflow components, control components, and calibration logic that handle the
calibration for the SDRAM interface timing.

Figure 4–1. SDRAM Controller Subsystem High-Level Block DIagram

32-Bit AXI

Altera
PHY

Interface

Register Slave Interface

DDR
PHY

SDRAM Controller

SDRAM Controller Subsystem

64-Bit AXI

Single-Port
Controller

Multi-Port
Front End

FPGA
Fabric

AXI or
Avalon-MM

HPS
I/O
Pins

MPU
Subsystem

L3
Interconnect

FPGA-to-HPS
SDRAM Interface

32- to 256-Bit

External
Memory

L4 Peripheral Bus (osc1_clk)

Control & Status Registers
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 4: Functional Description—HPS Memory Controller 4–3
SDRAM Controller Subsystem Block Diagram and System Integration
SDRAM Controller Subsystem Interfaces
The following sections describe the SDRAM controller subsystem interfaces.

MPU Subsystem Interface
The SDRAM controller is connected to the MPU subsystem with a dedicated 64-bit
AXI interface, operating on the mpu_l2_ram_clk clock domain.

L3 Interconnect Interface
The SDRAM controller is connected to the L3 interconnect with a dedicated 32-bit AXI
interface, operating on the l3_main_clk clock domain.

CSR Interface
The CSR interface is connected the level 4 (L4) bus and operates on the l4_sp_clk
clock domain. The MPU subsystem uses the CSR interface to configure the controller
and PHY, for example, setting the memory timing parameter values or placing the
memory to a low power state. The CSR interface also provides access to the status
registers in the controller and PHY.

FPGA-to-HPS SDRAM Interface
The FPGA-to-HPS SDRAM interface provides masters implemented in the FPGA
fabric access to the SDRAM controller subsystem in the HPS. The interface has three
ports types that are used to construct the following AXI or Avalon-MM interfaces:

■ Command ports—issue read and write commands, and for receive write
acknowledge responses

■ 64-bit read data ports—receive data returned from a memory read

■ 64-bit write data ports—transmit write data

The FPGA-to-HPS SDRAM interface supports six command ports, allowing up to six
Avalon-MM interfaces or three AXI interfaces. Each command port can be used to
implement either a read or write command port for AXI, or be used as part of an
Avalon-MM interface. The AXI and Avalon-MM interfaces can be configured to
support 32-, 64-, 128-, and 256-bit data.

Table 4–1 lists the FPGA-to-HPS SDRAM controller interface ports connected to the
FPGA.

The FPGA-to-HPS SDRAM controller interface can be configured with the following
characteristics:

■ Avalon-MM interfaces and AXI interfaces can be mixed and matched as required
by the fabric logic, within the bounds of the number of ports provided to the
fabric.

Table 4–1. FPGA-to-HPS SDRAM Controller Port Types

Port Type Number

Command 6

64-bit read data 4

64-bit write data 4
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

4–4 Chapter 4: Functional Description—HPS Memory Controller
Memory Controller Architecture
■ Each Avalon-MM or AXI interface of the FPGA-to-HPS SDRAM interface operates
on an independent clock domain.

■ The FPGA-to-HPS SDRAM interfaces are configured during FPGA configuration.

Table 4–2 shows the number of ports needed to configure different bus protocols,
based on type and data width.

Memory Controller Architecture
The SDRAM controller consists of an MPFE, a single-port controller, and an interface
to the CSRs.

Table 4–2. FPGA-to-HPS SDRAM Port Utilization

Bus Protocol Command Read Data Write Data

32- or 64-bit AXI 2 (1) 1 1

128-bit AXI 2 (1) 2 (2) 2 (2)

256-bit AXI 2 (1) 4 (2) 4 (2)

32- or 64-bit Avalon-MM 1 1 1

128-bit Avalon-MM 1 2 2

256-bit Avalon-MM 1 4 4

32- or 64-bit Avalon-MM write-only 1 0 1

128-bit Avalon-MM write-only 1 0 2

256-bit Avalon-MM write-only 1 0 4

32- or 64-bit Avalon-MM read-only 1 1 0

128-bit Avalon-MM read-only 1 2 0

256-bit Avalon-MM read-only 1 4 0

Notes to Table 4–2:

(1) Because the AXI protocol allows simultaneous read and write commands to be issued, two SDRAM
control ports are required to form an AXI interface.

(2) Because the native size of the data ports is 64 bits, extra read and write ports are required to form an
AXI interface.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 4: Functional Description—HPS Memory Controller 4–5
Memory Controller Architecture
Figure 4–2 shows a block diagram of the SDRAM controller portion of the SDRAM
controller subsystem.

MPFE
The MPFE is responsible for scheduling pending transactions from the configured
interfaces and sending the scheduled memory transactions to the single-port
controller. The MPFE handles all functions related to individual ports.

The MPFE consists of the following three primary sub-blocks.

Command Block
The command block accepts read and write transactions from the FPGA fabric and the
HPS. When the command FIFO buffer is full, the command block applies
backpressure by deasserting the ready signal. For each pending transaction, the
command block calculates the next SDRAM burst needed to progress on that
transaction. The command block schedules pending SDRAM burst commands based
on the user-supplied configuration, available write data, and unallocated read data
space.

Figure 4–2. SDRAM Controller Block DIagram

10
Command

FIFO
Buffers

SDRAM Controller

Multi-Port Front End Single-Port Controller

Command

Write Data

FIFO
POP
Logic

Scheduler

WR Acknowledge

Command
Generator

Timer
Bank
Pool

Arbiter

ECC
Generation

&
Checking

Rank Timer

Altera
PHY

Interface

Write Data
Buffer

Control & Status Register Interface

Read Data

Reorder
 Buffer

6
Data
FIFO

Buffers

6
Data
FIFO

Buffers

6 Write
Acknowledge Queues

FPGA
Fabric
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

4–6 Chapter 4: Functional Description—HPS Memory Controller
Memory Controller Architecture
Write Data Block
The write data block transmits data to the single-port controller. The write data block
maintains write data FIFO buffers and clock boundary crossing for the write data. The
write data block informs the command block of the amount of pending write data for
each transaction so that the command block can calculate eligibility for the next
SDRAM write burst.

Read Data Block
The read data block receives data from the single-port controller. Depending on the
port state, the read data block either buffers the data in its internal buffer or passes the
data straight to the clock boundary crossing FIFO buffer. The read data block reorders
out-of-order data for Avalon-MM ports.

In order to prevent the read FIFO buffer from overflowing, the read data block
informs the command block of the available buffer area so the command block can
pace read transaction dispatch.

Single-Port Controller
The single-port logic is responsible for following actions:

■ Queuing the pending SDRAM bursts

■ Choosing the most efficient burst to send next

■ Keeping the SDRAM pipeline full

■ Ensuring all SDRAM timing parameters are met

Transactions passed to the single-port logic for a single page in SDRAM are
guaranteed to be executed in order, but transactions can be reordered between pages.
Each SDRAM burst read or write is converted to the appropriate Altera PHY interface
(AFI) command to open a bank on the correct row for the transaction (if required),
execute the read or write command, and precharge the bank (if required).

The single-port logic implements command reordering (looking ahead at the
command sequence to see which banks can be put into the correct state to allow a read
or write command to be executed) and data reordering (allowing data transactions to
be dispatched even if the data transactions are executed in an order different than
they were received from the multiport logic).

Command Generator
The command generator accepts commands from the MPFE and from the internal
ECC logic, and provides those commands to the timer bank pool.

Timer Bank Pool
The timer bank pool is a parallel queue that operates with the arbiter to enable data
reordering. The timer bank pool tracks incoming requests, ensures that all timing
requirements are met, and, on receiving write-data-ready notifications from the write
data buffer, passes the requests to the arbiter.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 4: Functional Description—HPS Memory Controller 4–7
Functional Description of the SDRAM Controller Subsystem
Arbiter
The arbiter determines the order in which requests are passed to the memory device.
When the arbiter receives a single request, that request is passed immediately. When
multiple requests are received, the arbiter uses arbitration rules to determine the order
to pass requests to the memory device.

Rank Timer
The rank timer performs the following functions:

■ Maintains rank-specific timing information

■ Ensures that only four activates occur within a specified timing window

■ Manages the read-to-write and write-to-read bus turnaround time

■ Manages the time-to-activate delay between different banks

Write Data Buffer
The write data buffer receives write data from the MPFE and passes the data to the
PHY, on approval of the write request.

ECC Block
The ECC block consists of an encoder and a decoder-corrector, which can detect and
correct single-bit errors, and detect double-bit errors. The ECC block can correct
single- bit errors and detect double-bit errors resulting from noise or other
impairments during data transmission.

AFI Interface
The AFI interface provides communication between the controller and the PHY.

CSR Interface
The CSR interface is accessible from the L4 bus. The interface allows code executing in
the HPS MPU and FPGA fabric to configure and monitor the SDRAM controller.

Functional Description of the SDRAM Controller Subsystem
This section provides a functional description of the SDRAM controller subsystem.

MPFE Operational Behavior
This section describes the operational behavior of the MPFE.

Operation Ordering
Requests to the same SDRAM page arriving at a given port are executed in the order
in which they are received. Requests arriving at different ports have no guaranteed
order of service, except when a first transaction has completed before the second
arrives.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

4–8 Chapter 4: Functional Description—HPS Memory Controller
Functional Description of the SDRAM Controller Subsystem
Operation ordering is defined and enforced within a port, but not between ports. All
transactions received on a single port for overlapping addresses execute in order.
Transactions received on different ports have no guaranteed order unless the second
transaction is presented after the first has completed.

Avalon-MM does not support write acknowledgement. When a port is configured to
support Avalon-MM, you should read from the location that was previously written
to ensure that the write operation has completed. When a port is configured to
support AXI, the master accessing the port can safely issue a read operation to the
same address as a write operation as soon as the write has been acknowledged. To
keep write latency low, writes are acknowledged as soon as the transaction order is
guaranteed—meaning that any operations received on any port to the same address
as the write operation are executed after the write operation.

To ensure that the overall latency of traffic is as low as possible, the single port logic
can return read data out of order to the multi-port logic which will reorder it when
transactions return out of order. A large percentage of traffic reordering will be
between ports and transactions only are ordered within a port. For traffic which is
reordered between ports but not within a port, no reordering needs to be done.
Eliminating unnecessary reordering reduces average latency.

Multiport Scheduling
Multiport scheduling is governed by two factors, the absolute priority of a request
and the weighting of a port.

The evaluation of absolute priority ensures that ports carrying higher-priority traffic
are served ahead of ports carrying lower-priority traffic. The scheduler recognizes
eight priority levels (0-7), with higher values representing higher priorities. For
example, any transaction with priority seven is scheduled before transactions of
priority six or lower.

When ports carry traffic of the same absolute priority, relative priority is determined
based on port weighting. Port weighting is a five-bit value (0-31), and is determined
by a deficit-weighted round robin (DWRR) algorithm, which corrects for past over-
servicing or under-servicing of a port. Each port has an associated weight which is
updated every cycle, with a user-configured weight added to it and the amount of
traffic served subtracted from it. The port with the highest weighting is considered the
most eligible.

To ensure that high-priority traffic is served quickly and that long and short bursts are
effectively interleaved between ports, incoming transactions longer than a single
SDRAM burst are scheduled as a series of SDRAM bursts, with each burst arbitrated
separately.

To ensure that lower priority ports do not build up large running weights while
higher priority ports monopolize bandwidth, the controller's DWRR weights are
updated only when a port matches the scheduled priority. Therefore, if three ports are
being accessed, two being priority seven and one being priority four, the weights for
both ports at priority seven are updated but the port with priority four remains
unchanged.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 4: Functional Description—HPS Memory Controller 4–9
Functional Description of the SDRAM Controller Subsystem
Multiport scheduling is performed between all of the ports connected to the FPGA
fabric and internally in the HPS to determine which transaction is serviced next.
Arbitration is performed on a SDRAM burst basis to ensure that a long transaction
does not lock other transactions or cause latency to significantly increase for
high-priority ports.

Arbitration supports both absolute and relative priority. Absolute priority is intended
for applications where one master should always get priority above or below others.
Relative priority is supported through a programmable weight field which controls
scheduling between ports at the same priority.

The scheduler is work-conserving. Write operations can only be scheduled when
enough data for the SDRAM burst has been received. Read operations can only be
scheduled when sufficient internal memory is free and the port is not occupying too
much of the read buffer.

The multiport scheduling configuration can be updated while traffic is flowing. Both
priority and weight for a port can be updated without interrupting traffic on a port.
Updates are used in scheduling decisions within 10 memory clock cycles of being
updated, so priority can be updated frequently if needed.

Read Data Handling

The MPFE contains a read buffer shared by all ports. If a port is capable of receiving
returned data then the read buffer is bypassed. If the size of a read transaction is
smaller than twice the memory interface width, the buffer RAM cannot be bypassed.

SDRAM Burst Scheduling
SDRAM burst scheduling recognizes addresses that access the same row/bank
combination, known as open page accesses. Operations to a page are served in the
order in which they are received by the single-port controller.

Selection of SDRAM operations is a two-stage process. First, each pending transaction
must wait for its timers to be eligible for execution. Next, the transaction arbitrates
against other transactions that are also eligible for execution.

The following rules govern transaction arbitration:

■ High-priority operations take precedence over lower-priority operations

■ If multiple operations are in arbitration, read operations have precedence over
write operations

■ If multiple operations still exist, the oldest is served first

A high-priority transaction in the SDRAM burst scheduler wins arbitration for that
bank immediately if the bank is idle and the high-priority transaction's chip select,
row, or column fields of the address do not match an address already in the single-
port controller. If the bank is not idle, other operations to that bank yield until the
high-priority operation is finished. If the chip select, row, and column fields match an
earlier transaction, the high-priority transaction yields until the earlier transaction is
completed.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

4–10 Chapter 4: Functional Description—HPS Memory Controller
Functional Description of the SDRAM Controller Subsystem
Clocking
The FPGA fabric ports of the MPFE can be clocked at different frequencies.
Synchronization is maintained by clock-domain crossing logic in the MPFE.
Command ports can operate on different clock domains, but the data ports associated
with a given command port must be attached to the same clock as that command port.
For example, a command port paired with a read and write port to form an
Avalon-MM interface must operate at the same clock frequency as the data ports
associated with it.

Single-Port Controller Operational Behavior
This section describes the operational behavior of the single-port controller.

SDRAM Interface
The SDRAM interface is up to 40 bits wide and can accommodate 8-bit, 16-bit, 16-bit
plus ECC, 32-bit, or 32-bit plus ECC configurations. The SDRAM interface supports
LPDDR2, DDR2, and DDR3 memory protocols.

Command and Data Reordering

The heart of the SDRAM controller is a command and data reordering engine.
Command reordering allows banks for future transactions to be opened before the
current transaction finishes. Data reordering allows transactions to be serviced in a
different order than they were received when that new order allows for improved
utilization of the SDRAM bandwidth. Operations to the same bank and row are
performed in order to ensure that operations which impact the same address preserve
the data integrity.

Figure 4–3 shows the relative timing for a write/read/write/read command sequence
performed in order and then the same command sequence performed with data
reordering. Data reordering allows the write and read operations to occur in bursts,
without bus turnaround timing delay or bank reassignment.

The SDRAM controller schedules among all pending row and column commands
every clock cycle.

Bank Policy

The bank policy of the SDRAM controller allows users to request that a transaction's
bank remain open after an operation has finished so that future accesses do not delay
in activating the same bank and row combination. The controller supports only eight
simultaneously-opened banks, so an open bank might get closed if the bank resource
is needed for other operations.

Figure 4–3. Data Reordering Effect

Command
Address

WR
B0R0

RD
B1R0

WR
B0R0

RD
B1R0

Command
Address

WR
B0R0

RD
B1R0

RD
B1R0

WR
B0R0

Data Reordering Off

Data Reordering On
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 4: Functional Description—HPS Memory Controller 4–11
Functional Description of the SDRAM Controller Subsystem
Open bank resources are allocated dynamically as SDRAM burst transactions are
scheduled. Bank allocation is requested automatically by the controller when an
incoming transaction spans multiple SDRAM bursts or by the extended command
interface. When a bank must be reallocated, the least-recently-used open bank is used
as the replacement.

If the controller determines that the next pending command will cause the bank
request to not be honored, the bank might be held open or closed depending on the
pending operation. A request to close a bank with a pending operation in the timer
bank pool to the same row address causes the bank to remain open. A request to leave
a bank open with a pending command to the same bank but a different row address
causes a precharge operation to occur.

Write Combining

The SDRAM controller combines write operations from successive bursts on a port
where the starting address of the second burst is one greater than the ending address
of the first burst and the resulting burst length does not overflow the 11-bit
burst-length counters. Write combining does not occur if the previous bus command
has finished execution before the new command has been received.

Burst Length Support

The controller supports burst lengths of 2, 4, 8, and 16, and data widths of 8, 16, and 32
bits for non-ECC operation, and widths of 24 and 40 operations with ECC enabled.
Table 4–3 shows the type of SDRAM for each burst length.

Width Matching

The SDRAM controller automatically performs data width conversion.

ECC
The single-port controller supports memory ECC calculated by the controller. The
controller ECC employs standard Hamming logic to detect and correct single-bit
errors and detect double-bit errors. The controller ECC is available for 16-bit and 32-
bit widths, each requiring an additional 8 bits of memory, resulting in an actual
memory width of 24-bits and 40-bits, respectively.

Controller ECC provides the following features:

■ Byte writes—The memory controller performs a read-modify-write operation to
ensure that the ECC data remains valid when a subset of the bits of a word is being
written. If an entire word is being written (but less than a full burst) and the DM
pins are connected, no read is necessary and only that word is updated. If
controller ECC is disabled, byte-writes have no performance impact.

Table 4–3. SDRAM Burst Lengths

Burst Length SDRAM

4 LPDDR2, DDR2

8 DDR2, DDR3, LPDDR2

16 LPDDR2
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

4–12 Chapter 4: Functional Description—HPS Memory Controller
Functional Description of the SDRAM Controller Subsystem
■ ECC write backs—When a read operation detects a correctable error, the memory
location is scheduled for a read-modify-write operation to correct the single-bit
error. ECC write backs are enabled and disabled through the
cfg_enable_ecc_code_overwrites field in the ctrlcfg register.

■ Notification of ECC errors—The memory controller provides interrupts for single-
bit and double-bit errors. The status of interrupts and errors are recorded in status
registers, as follows:

■ The dramsts register records interrupt status.

■ The dramintr register records interrupt masks.

■ The sbecount register records the single-bit error count.

■ The dbecount register records the double-bit error count.

■ The erraddr register records the address of the most recent error.

Byte Writes

Byte writes with ECC enabled are executed as a read-modify-write. Typical operations
only use a single entry in the timer bank pool. Controller ECC enabled sub-word
writes use two entries. The first operation is a read and the second operation is a
write. These two operations are transferred to the timer bank pool with an address
dependency so that the write cannot be performed until the read data has returned.
This approach ensures that any subsequent operations to the same address (from the
same port) are executed after the write operation, because they are ordered on the row
list after the write operation.

If an entire word is being written (but less than a full burst), then no read is necessary
and only that word is updated.

ECC Write Backs

If the controller ECC is enabled and a read operation results in a correctable ECC
error, the controller corrects the location in memory, if write backs are enabled. The
correction results in scheduling a new read-modify-write. A new read is performed at
the location to ensure that a write operation modifying the location is not overwritten.
The actual ECC correction operation is performed as a read-modify-write operation.

User Notification of ECC Errors

The following methods notify you of an ECC error:

For the MPU subsystem, an interrupt signal provides notification and the ECC error
information is stored in the status registers.

f For more information, refer to the Cortex-A9 Microprocessor Unit Subsystem chapter in
volume 3 of the Arria V Device Handbook or the Cortex-A9 Microprocessor Unit
SubSystem chapter in volume 3 of the Cyclone V Device Handbook.

Interleaving Options
The controller supports the following address-interleaving options:

■ Noninterleaved

■ Bank interleave without chip select interleave
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

http://www.altera.com/literature/hb/arria-v/av_54006.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_54006.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_54006.pdf

Chapter 4: Functional Description—HPS Memory Controller 4–13
Functional Description of the SDRAM Controller Subsystem
■ Bank interleave with chip select interleave

All of the interleaving examples use 512 megabits (Mb) x 16 DDR3 chips and are
documented as byte addresses. For RAMs with smaller address fields, the order of the
fields stays the same but the widths may change.

Noninterleaved

RAM mapping is noninterleaved.

Figure 4–4 shows noninterleaved address decoding.

Bank Interleave Without Chip Select Interleave

Bank interleave without chip select interleave swaps row and bank from the
noninterleaved address mapping. This interleaving allows smaller data structures to
spread across all banks in a chip.

Figure 4–5 shows bank interleave without chip select interleave address decoding.

Bank Interleave with Chip Select Interleave

Bank interleave with chip select interleave moves the row address to the top, followed
by chip select, then bank, and finally column address. This interleaving allows smaller
data structures to spread across multiple banks and chips (giving access to 16 total
banks for multithreaded access to blocks of memory). Memory timing is degraded
when switching between chips.

Figure 4–4. Noninterleaved Address Decoding

Figure 4–5. Bank Interleave Without Chip Select Interleave Address Decoding

Address Decoding
(512 Mb x 16 DDR3 DRAM)

Controller

DDR 3
512 x16

DDR 3
512 x 16

Address Nomenclature
C =Column R= Row B =Bank S= Chip Select

0481216202428

DDR 3
512 x16

DDR 3
512 x 16

C(9 :0)R(15 :0)B (2 :0)S

0481216202428

C(9:0)R(15:0) B(2:0)S
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

4–14 Chapter 4: Functional Description—HPS Memory Controller
Functional Description of the SDRAM Controller Subsystem
Figure 4–6 shows bank interleave with chip select interleave address decoding.

AXI-Exclusive Support
The single-port controller supports AXI-exclusive operations. The controller
implements a table shared across all masters, which can store up to 16 pending writes.
Table entries are allocated on an exclusive read and table entries are deallocated on a
successful write to the same address by any master.

Any exclusive write operation that is not present in the table returns an exclusive fail
as acknowledgement to the operation. If the table is full when the exclusive read is
performed, the table replaces a random entry.

1 When using AXI-exclusive operations, accessing the same location from Avalon-MM
interfaces can result in unpredictable results.

Memory Protection
The single-port controller has address protection to allow the software to configure
basic protection of memory from all masters in the system. If the system has been
designed exclusively with AXI masters, TrustZone® is supported. Ports that use
Avalon-MM can be configured for port level protection.

f For information about TrustZone®, refer to the ARM website (www.arm.com).

Memory protection is based on physical addresses in memory. You can set rules to
allow or disallow accesses to a range of memory, or to enable only secure accesses to a
range of memory (or a combination of the two).

Secure and non-secure regions are specified by rules containing a starting address and
ending address with 1 MB boundaries for both addresses. You can override the port
defaults and allow or disallow all transactions.

The memory protection table, which is an internal table addressed through the CSR
interface, contains rules to permit or deny memory access. You can configure up to a
maximum of twenty rules to control memory access. Table 4–4 lists the fields that you
can specify for each rule.

Figure 4–6. Bank Interleave With Chip Select Interleave Address Decoding

0481216202428

C(9:0)R(15:0) B(2:0)S

Table 4–4. Fields for Rules in Memory Protection Table (Part 1 of 2)

Field Width Description

Valid 1 Set to 1 to activate the rule. Set to 0 to deactivate the rule.

Port Mask (1) 10

Specifies the set of ports to which the rule applies, with one bit
representing each port, as follows: bits 0 to 5 correspond to FPGA
fabric ports 0 to 5, bit 6 corresponds to AXI L3 switch read, bit 7 is
the CPU read, bit 8 is L3 switch write, and bit 9 is the CPU write.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

http://www.arm.com

Chapter 4: Functional Description—HPS Memory Controller 4–15
Functional Description of the SDRAM Controller Subsystem
A port has a default access status of either allow or fail, and rules with the opposite
allow/fail value can override the default. The system evaluates each transaction
against every rule in the memory protection table. A transaction received on a port
which by default allows access, would fail only if a rule with the fail bit matches the
transaction. Conversely, a port which by default prevents access, would allow access
only if a rule allows that transaction to pass.

Exclusive transactions are security checked on the read operation only. A write
operation can occur only if a valid read is marked in the internal exclusive table.
Consequently, a master performing an exclusive read followed by a write, can write to
memory only if the exclusive read was successful.

Example of Configuration for TrustZone

For a TrustZone configuration, memory is divided into a range of memory accessible
by secure masters and a range of memory accessible by nonsecure masters. The two
memory address ranges may have a range of memory that overlaps.

This example implements the following memory configuration:

■ 2 GB total RAM size

■ 0—512 MB dedicated secure area

■ 513—576 MB shared area

■ 577—2048 MB dedicated nonsecure area

TID_low (1) 12

Low transfer ID of the rules to which this rule applies. Incoming
transactions match if they are greater than or equal to this value.
Ports with smaller TIDs have the TID shifted to the lower bits and
zero padded at the top.

TID_high (1) 12 High transfer ID of the rules to which this rule applies. Incoming
transactions match if they are less than or equal to this value.

Address_low 12 Points to a 1MB block and is the lower address. Incoming addresses
match if they are greater than or equal to this value.

Address_high 12 Upper limit of address. Incoming addresses match if they are less
than or equal to this value.

Protection 2
A value of 00 indicates that the protection bit is not set; a value of 01
sets the protection bit. Systems that do not set AXI protection to a
known value should program this for either protection value.

Fail/allow 1 Set this value to 1 to force the operation to fail or succeed.

Note to Table 4–4:

(1) Although TID and Port Mask could be redundant, including both in the table allows possible compression of rules.
If masters connected to a port do not have contiguous TIDs, a port-based rule might be more efficient than a TID-
based rule, in terms of the number of rules needed.

Table 4–4. Fields for Rules in Memory Protection Table (Part 2 of 2)

Field Width Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

4–16 Chapter 4: Functional Description—HPS Memory Controller
SDRAM Power Management
In this example, each port is configured by default to disallow all accesses. Table 4–5
shows the two rules programmed into the memory protection table.

The port mask value, TID Low, and TID High, apply to all ports and all transfers
within those ports. Each access request is evaluated against the memory protection
table, and will fail unless a rule matches allowing a transaction to complete
successfully.

Table 4–6 shows the result for a sample set of transactions.

If you did not want any overlap between the memory blocks, you could specify the
address ranges in the two rules of Table 4–5 to be mutually exclusive. Depending on
your desired TrustZone configuration, you can add rules to the memory protection
table to create multiple blocks of protected or unprotected space.

SDRAM Power Management
The SDRAM controller subsystem supports the following power saving features in
the SDRAM:

■ Partial array self-refresh (PASR)

■ Power down

■ Deep power down for LPDDR2

Power-saving mode initiates either due to a user command or from inactivity.

Table 4–5. Rules in Memory Protection Table for Example Configuration

Rule # Port Mask TID Low TID High Address Low Address High Prot Fail/Allow

1 0’b1111111111 0 4095 0 576 b01 allow

2 0’b1111111111 0 4095 512 2047 b00 allow

Table 4–6. Result for a Sample Set of Transactions

Operation Source Address Prot Result Comments

Read CPU 4096 1 Allow Matches rule 1.

Write CPU 536, 870, 912
(512 MB) 1 Allow Matches rule 1.

Write L3 attached
masters

605, 028, 350
(577 MB) 1 Fail

Does not match rule 1 (out of range of the
address field), does not match rule 2
(protection bit incorrect).

Read L3 attached
masters 4096 0 Fail Does not match rule 1 (prot value wrong),

does not match rule 2 (not in address range).

Write CPU 536, 870, 912
(512 MB) 0 Allow Matches rule 2.

Write L3 attached
masters

605, 028, 350
(577 MB) 0 Allow Matches rule 2.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 4: Functional Description—HPS Memory Controller 4–17
DDR PHY
Power-down mode is initiated by writing to the appropriate control register. It forces
the SDRAM burst-scheduling bank-management logic to close all banks and issue the
power down command. You can program the controller to enable power-down when
the SDRAM burst-scheduling queue is empty for a specified number of clock cycles.
The SDRAM automatically reactivates when an active SDRAM command is received.

Other power-down modes are performed only under user control.

DDR PHY
The DDR PHY connects the memory controller and external memory devices in the
speed critical command path.

The DDR PHY implements the following functions:

■ Calibration—the DDR PHY supports the JEDEC-specified steps to synchronize the
memory timing between the controller and the SDRAM chips. The calibration
algorithm is implemented in software.

■ Memory device initialization—the DDR PHY performs the mode register write
operations to initialize the devices. The DDR PHY handles re-initialization after a
deep power down.

■ Single-data-rate to double-data-rate conversion.

Clocks
All clocks are assumed to be asynchronous with respect to the ddr_dqs_clk memory
clock. All transactions are synchronized to memory clock domain.

Table 4–7 shows the SDRAM controller subsystem clock domains.

In terms of clock relationships, the FPGA fabric connects the appropriate clocks to
write data, read data, and command ports for the constructed ports.

f For more information, refer to the Clock Manager chapter in volume 3 of the Arria V
Device Handbook or the Clock Manager chapter in volume 3 of the Cyclone V Device
Handbook.

Table 4–7. SDRAM Controller Subsystem Clock Domains

Clock Name Description

ddr_dq_clk Clock for PHY

ddr_dqs_clk Clock for MPFE, single-port controller, CSR access, and PHY

ddr_2x_dqs_clk Clock for PHY

l4_sp_clk Clock for CSR interface

mpu_l2_ram_clk Clock for MPU interface

l3_main_clk Clock for L3 interface

f2h_sdram_clk[5:0]
Six separate clocks used for the FPGA-to-HPS SDRAM ports to the
FPGA fabric
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

http://www.altera.com/literature/hb/arria-v/av_54002.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_54002.pdf

4–18 Chapter 4: Functional Description—HPS Memory Controller
Resets
Resets
The SDRAM controller subsystem supports a full reset (cold reset) and a warm reset,
which may or may not preserve the contents of memory. In order to preserve the
memory contents, the reset manager can request that the single-port controller place
the SDRAM in self-refresh mode prior to issuing the warm reset. If memory contents
are preserved, the PHY and the memory timing logic is not reset, but the rest of the
controller is reset.

f For more information, refer to the Reset Manager chapter in volume 3 of the Arria V
Device Handbook or the Reset Manager chapter in volume 3 of the Cyclone V Device
Handbook.

Initialization
The SDRAM controller subsystem has CSRs which control the operation of the
controller including DRAM type, DRAM timing parameters and relative port
priorities. It also has a small set of bits which depend on the FPGA fabric to configure
ports between the memory controller and the FPGA fabric; these bits are set for you
when you configure your implementation using the HPS GUI in Qsys.

The CSRs are configured using a dedicated slave interface, which provides accesses to
registers. This region controls all SDRAM operation, MPFE scheduler configuration,
and PHY calibration.

The FPGA fabric interface configuration is programmed into the FPGA fabric and the
values of these register bits can be read by software. The ports can be configured
without software developers needing to know how the FPGA-to-HPS SDRAM
interface has been configured.

Protocol Details

Avalon-MM Bidirectional Port

The Avalon-MM bidirectional ports are standard Avalon-MM ports used to dispatch
read and write operations. Each configured Avalon-MM bidirectional port consists of
the signals listed in Table 4–8.

Table 4–8. Avalon-MM Bidirectional Port Signals (Part 1 of 2)

Name Bits Direction Function

clk 1 In Clock for the Avalon-MM interface

read 1 In Indicates read transaction

write 1 In Indicates write transaction

address 32 In Address of the transaction

readdata 32, 64, 128, or 256 Out Read data return

readdatavalid 1 Out Valid cycle flag for read data return

writedata 32, 64, 128, or 256 In Write data for a transaction
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

http://www.altera.com/literature/hb/arria-v/av_54024.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_54003.pdf

Chapter 4: Functional Description—HPS Memory Controller 4–19
Initialization
The read and write interfaces are configured to the same size. The byte-enable size
scales with the data bus size.

f For information about the Avalon-MM protocol, refer to the Avalon Interface
Specifications.

Avalon-MM Write Port

The Avalon-MM write ports are standard Avalon-MM ports used only to dispatch
write operations. Each configured Avalon-MM write port consists of the signals listed
in Table 4–9.

f For information about the Avalon-MM protocol, refer to the Avalon Interface
Specifications.

byteenable

4 (32-bit data),
8(64-bit data),
16(128-bit data),
32(256-bit data)

In Byte enables for each write byte

waitrequest 1 Out Indicates need for additional cycles to
complete a transaction

burstcount 11 In Transaction burst length

Table 4–8. Avalon-MM Bidirectional Port Signals (Part 2 of 2)

Name Bits Direction Function

Table 4–9. Avalon-MM Write Port Signals

Name Bits Direction Function

reset 1 In Reset

clk 1 In Clock

write 1 In Indicates write transaction

address 32 In Address of the transaction

writedata 32, 64, 128, or 256 In Write data for a transaction

byteenable

4 (32-bit data),
8(64-bit data),
16(128-bit data),
32(256-bit data)

In Byte enables for each write byte

waitrequest 1 Out Indicates need for additional cycles to
complete a transaction

burstcount 11 In Transaction burst length
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–20 Chapter 4: Functional Description—HPS Memory Controller
Initialization
Avalon-MM Read Port

The Avalon-MM read ports are standard Avalon-MM ports used only to dispatch read
operations. Each configured Avalon-MM read port consists of the signals listed in
Table 4–10.

f For information about the Avalon-MM protocol, refer to the Avalon Interface
Specifications.

AXI Port

The AXI port uses an AXI-3 interface.

f For information about the AXI-3 interface, refer to the AMBA Open Specifications on
the ARM website (www.arm.com).

f For information about the AXI interface ports in the high-performance II controller
(HPC II), refer to the Functional Description—HPC II Controller chapter, in the External
Memory Interface Handbook.

Each configured AXI port consists of the signals listed in Table 4–11. Each AXI
interface signal is independent of the other interfaces for all signals, including clock
and reset.

Table 4–10. Avalon-MM Read Port Signals

Name Bits Direction Function

reset 1 In Reset

clk 1 In Clock

read 1 In Indicates read transaction

address 32 In Address of the transaction

readdata 32, 64, 128, or 256 Out Read data return

readdatavalid 1 Out Flags valid cycles for read data return

waitrequest 1 Out

Indicates the need for additional cycles to
complete a transaction. Needed for read
operations when delay is needed to accept
the read command.

burstcount 11 In Transaction burst length

Table 4–11. AXI Port Signals (Part 1 of 2)

Name Bits Direction Function

ARESETn 1 In Reset

ACLK 1 In Clock

Write Address Channel Signals

AWID 4 In Write identification tag

AWADDR 32 In Write address

AWLEN 4 In Write burst length

AWSIZE 3 In Width of the transfer size

AWBURST 2 In Burst type
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.arm.com
http://www.altera.com/literature/hb/external-memory/emi_fd_controller_hpcii.pdf

Chapter 4: Functional Description—HPS Memory Controller 4–21
SDRAM Controller Subsystem Programming Model
SDRAM Controller Subsystem Programming Model

 Initialization
SDRAM controller configuration occurs through software programming of the
configuration registers using the CSR interface. Initialization of the SDRAM controller
has two separate regions with different controls.

AWREADY 1 Out Indicates ready for a write command

AWVALID 1 In Indicates valid write command.

Write Data Channel Signals

WID 4 In Write data transfer ID

WDATA 32, 64, 128 or 256 In Write data

WSTRB 4, 8, 16, 32 In
Byte-based write data strobe. Each bit
width corresponds to 8 bit wide transfer for
32-bit wide to 256-bit wide transfer.

WLAST 1 In Last transfer in a burst

WVALID 1 In Indicates write data+strobes are valid

WREADY 1 Out Indicates ready for write data and strobes

Write Response Channel Signals

BID 4 Out Write response transfer ID

BRESP 2 Out Write response status

BVALID 1 Out Write response valid signal

BREADY 1 In Write response ready signal

Read Address Channel Signals

ARID 4 In Read identification tag

ARADDR 32 In Read address

ARLEN 4 In Read burst length

ARSIZE 3 In Width of the transfer size

ARBURST 2 In Burst type

ARREADY 1 Out Indicates ready for a read command

ARVALID 1 In Indicates valid read command

Read Data Channel Signals

RID 4 Out Read data transfer ID

RDATA 32, 64, 128 or 256 Out Read data

RRESP 2 Out Read response status

RLAST 1 Out Last transfer in a burs

RVALID 1 Out Indicates read data is valid

RREADY 1 In Read data channel ready signal

Table 4–11. AXI Port Signals (Part 2 of 2)

Name Bits Direction Function
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

4–22 Chapter 4: Functional Description—HPS Memory Controller
SDRAM Controller Address Map and Register Definitions
Timing Parameters
The SDRAM controller supports a complete set of timing parameters, configurable at
run time.

SDRAM Controller Address Map and Register Definitions

f To access address map and register definitions, open the file hps.html.

To view the module description and base address, scroll to and click the link for the
following module instance:

■ sdr

To then view the register and field descriptions, scroll to and click the register names.
The register addresses are offsets relative to the base address of each module instance.

f The base addresses of all modules are also listed in the Introduction to the Hard
Processor System chapter in volume 3 of the Arria V Device Handbook and the
Introduction to the Hard Processor System chapter in volume 3 of the Cyclone V Device
Handbook.

Using EMI-Related HPS Features in SoC Devices
This section provides information on using HPS features in your external memory
interface.

Architecture
The configuration and initialization of the memory interface by the ARM processor is
a significant difference compared to the FPGA memory interfaces, and results in
several key differences in the way the HPS memory interface is defined and
configured.

Boot-up configuration of the HPS memory interface is handled by the initial software
boot code, not by the FPGA programmer, as is the case for the FPGA memory
interfaces. The Quartus II software is involved in defining the configuration of I/O
ports which is used by the boot-up code, as well as timing analysis of the memory
interface. Therefore, the memory interface must be configured with the correct PHY-
level timing information. Although configuration of the memory interface in Qsys is
still necessary, it is limited to PHY- and board-level settings.

Configuration
To configure the external memory interface components of the HPS, you open the
HPS interface by selecting the Hard Processor System component in Qsys. Within the
HPS interface, select the EMIF tab to open the EMIF parameter editor.

The EMIF parameter editor contains four additional tabs: PHY Settings, Memory
Parameters, Memory Timing, and Board Settings. The parameters available on these
tabs are similar to those available in the parameter editors for non-SoC device
families.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

http://www.altera.com/literature/hb/cyclone-v/hps.html
http://www.altera.com/literature/hb/arria-v/av_54001.pdf
http://www.altera.com/literature/hb/arria-v/av_54001.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_54001.pdf

Chapter 4: Functional Description—HPS Memory Controller 4–23
Using EMI-Related HPS Features in SoC Devices
There are significant differences between the EMIF parameter editor for the Hard
Processor System and the parameter editors for non-SoC devices, as follows:

■ Because the HPS memory controller is not configurable through the Quartus II
software, the Controller and Diagnostic tabs, which exist for non-SoC devices, are
not present in the EMIF parameter editor for the hard processor system.

■ Unlike the protocol-specific parameter editors for non-SoC devices, the EMIF
parameter editor for the Hard Processor System supports multiple protocols,
therefore there is an SDRAM Protocol parameter, where you can specify your
external memory interface protocol.

By default, the EMIF parameter editor assumes the DDR3 protocol, and other
parameters are automatically populated with DDR3-appropriate values. If you
select a protocol other than DDR3, you will have to change other associated
parameter values appropriately.

■ Unlike the memory interface clocks in the FPGA, the memory interface clocks for
the HPS are initialized by the boot-up code using values provided by the
configuration process. You may accept the values provided by UniPHY, or you
may use your own PLL settings. If you choose to specify your own PLL settings,
you must indicate that the clock frequency that UniPHY should use is the
requested clock frequency, and not the achieved clock frequency calculated by
UniPHY.

1 The HPS does not support EMIF synthesis generation, compilation, or timing
analysis.

The HPS hard memory controller cannot be bonded with another hard memory
controller on the FPGA portion of the device.

Simulation
The HPS component provides a complete simulation model of the HPS memory
interface controller and PHY, providing cycle-level accuracy, comparable to the
simulation models for the FPGA memory interface.

The simulation model supports only the skip-cal simulation mode; quick-cal and full-
cal are not supported. An example design is not provided, however you can create a
test design by adding the traffic generator component to your design using Qsys.
Also, the HPS simulation model does not use external memory pins to connect to the
DDR memory model; instead, the memory model is incorporated directly into the
HPS SDRAM interface simulation modules.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

4–24 Chapter 4: Functional Description—HPS Memory Controller
Document Revision History
Document Revision History
Table 4–12 lists the revision history for this document.

Table 4–12. Document Revision History

Date Version Changes

November 2012 1.0
■ Initial release.

■ Moved Using EMI-Related HPS Features in SoC Devices from Hard Memory Interface
chapter to this chapter.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_004-2.1

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_004-2.1
5. Functional Description—HPC II
Controller
1 This chapter describes the High Performance Controller II (HPC II) with advanced
features for designs generated in the Quartus II software version 11.0 and later.
Designs created in earlier versions and regenerated in version 11.0 and later do not
inherit the new advanced features; for information on HPC II without the version 11.0
and later advanced features, refer to the External Memory Interface Handbook for
Quartus II version 10.1, available in the External Memory Interfaces section of the Altera
Literature website.

The High Performance Controller II works with the UniPHY-based DDR2, DDR3, and
LPDDR2 interfaces, and with the ALTMEMPHY-based DDR, DDR2, and DDR3
interfaces. The controller provides high memory bandwidth, high clock rate
performance, and run-time programmability. The controller can reorder data to
reduce row conflicts and bus turn-around time by grouping reads and writes together,
allowing for efficient traffic patterns and reduced latency.

Memory Controller Architecture
Figure 5–1 shows a high-level block diagram of the overall HPC II memory interface
architecture.

Figure 5–1. High-Level Diagram of Memory Interface Architecture

CSR Interface

A
va

lo
n-

ST
 In

te
rf

ac
e

A
FI

 I
nt

er
fa

ce

Memory Controller

AF
I

In
te

rfa
ce

PHY

Ex
te

rn
al

 M
em

or
y

Memory Interface IP

CSR Master

A
va

lo
n-

M
M

 o
r A

XI
 C

on
ve

rt
er

D
at

a
M

as
te

r

A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_004
http://www.altera.com/literature/lit-external-memory-interface.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_004-2.1 (EMI HB, Vol 3, Ch5: Functional Description - HPC II Controller)

5–2 Chapter 5: Functional Description—HPC II Controller
Memory Controller Architecture
The memory interface consists of the memory controller logic block, the physical logic
layer (PHY), and their associated interfaces.

The memory controller logic block uses an Avalon Streaming (Avalon-ST) interface as
its native interface, and communicates with the PHY layer by the Altera PHY
Interface (AFI).

Figure 5–2 shows a block diagram of the memory controller architecture.

The following sections describe the blocks in Figure 5–2.

Avalon-ST Input Interface
The Avalon-ST interface serves as the entry point to the memory controller, and
provides communication with the requesting data masters.

f For information about the Avalon interface, refer to Avalon Interface Specifications.

AXI to Avalon-ST Converter
The HPC II memory controller includes an AXI to Avalon-ST converter for
communication with the AXI protocol. The AXI to Avalon-ST converter provides
write address, write data, write response, read address, and read data channels on the
AXI interface side, and command, write data, and read data channels on the
Avalon-ST interface side.

Figure 5–2. Memory Controller Architecture Block Diagram

CSR Interface

A
va

lo
n-

ST
 In

pu
t I

nt
er

fa
ce

A
FI

 I
nt

er
fa

ce
 to

 P
H

Y

Rank Timer

Write Data Buffer

Read Data Buffer

Command
Generator

Timing Bank
Pool

Arbiter

ECC

Memory Controller
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 5: Functional Description—HPC II Controller 5–3
Memory Controller Architecture
Handshaking
The AXI protocol employs a handshaking process similar to the Avalon-ST protocol,
based on ready and valid signals.

Command Channel Implementation
The AXI interface includes separate read and write channels, while the Avalon-ST
interface has only one command channel. Arbitration of the read and write channels
is based on these policies:

■ Round robin

■ Write priority—write channel has priority over read channel

■ Read priority—read channel has priority over write channel

You can choose an arbitration policy by setting the COMMAND_ARB_TYPE parameter to
one of ROUND_ROBIN, WRITE_PRIORITY, or READ_PRIORITY.

Data Ordering
The AXI specification requires that write data IDs must arrive in the same order as
write address IDs are received. Similarly, read data must be returned in the same
order as its associated read address is received.

Consequently, the AXI to Avalon-ST converter does not support interleaving of write
data; all data must arrive in the same order as its associated write address IDs. On the
read side, the controller returns read data based on the read addresses received.

Burst Types
The AXI to Avalon-ST converter supports the following burst types:

■ Incrementing burst—the address for each transfer is an increment of the previous
transfer address; the increment value depends on the size of the transfer.

■ Wrapping burst—similar to the incrementing burst, but wraps to the lower
address when the burst boundary is reached. The starting address must be aligned
to the size of the transfer. Burst length must be 2, 4, 8, or 16. The burst wrap
boundary = burst size * burst length.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–4 Chapter 5: Functional Description—HPC II Controller
Memory Controller Architecture
Backpressure Support
The write response and read data channels do not support data transfer with
backpressure; consequently, you must assert the ready signal for the write response
and read data channels to 1 as shown in Figure 5–3, to ensure acceptance of data at
any time.

f For information about data transfer with and without backpressure, refer to the
Avalon Interface Specifications.

Command Generator
The command generator accepts commands from the front-end Avalon-ST interface
and from local ECC internal logic, and provides those commands to the timing bank
pool.

Timing Bank Pool
The timing bank pool is a parallel queue that works with the arbiter to enable data
reordering. The timing bank pool tracks incoming requests, ensures that all timing
requirements are met and, upon receiving write-data-ready notification from the
write data buffer, passes the requests to the arbiter in an ordered and efficient manner.

Arbiter
The arbiter determines the order in which requests are passed to the memory device.
When the arbiter receives a single request, that request is passed immediately;
however, when multiple requests are received, the arbiter uses arbitration rules to
determine the order in which to pass requests to the memory device.

Arbitration Rules
The arbiter uses the following arbitration rules:

■ If only one master is issuing a request, grant that request immediately.

■ If there are outstanding requests from two or more masters, the arbiter applies the
following tests, in order:

a. Is there a read request? If so, the arbiter grants the read request ahead of any
write requests.

b. If neither of the above conditions apply, the arbiter grants the oldest request
first.

Figure 5–3. Data Transfer Without Backpressure

clk

rvalid

rid

rresp

rdata D1 D2 D3D0

rready
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 5: Functional Description—HPC II Controller 5–5
Controller Features Descriptions
Rank Timer
The rank timer maintains rank-specific timing information, and performs the
following functions:

■ Ensures that only four activates occur within a specified timing window.

■ Manages the read-to-write and write-to-read bus turnaround time.

■ Manages the time-to-activate delay between different banks.

Read Data Buffer
The read data buffer receives data from the PHY and passes that data through the
input interface to the master.

Write Data Buffer
The write data buffer receives write data from the input interface and passes that data
to the PHY, upon approval of the write request.

ECC Block
The error-correcting code (ECC) block comprises an encoder and a decoder-corrector,
which can detect and correct single-bit errors, and detect double-bit errors. The ECC
block can remedy errors resulting from noise or other impairments during data
transmission.

AFI Interface
The AFI interface provides communication between the controller and the physical
layer logic (PHY).

For more information about AFI signals, refer to AFI 3.0 Specification.

1 Unaligned reads and writes on the AFI interface are not supported.

CSR Interface
The CSR interface provides communication with your system’s internal control status
registers.

Controller Features Descriptions
The following sections describe main features of the memory controller.

Data Reordering
The controller implements data reordering to maximize efficiency for read and write
commands. The controller can reorder read and write commands as necessary to
mitigate bus turn-around time and reduce conflict between rows.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–6 Chapter 5: Functional Description—HPC II Controller
Controller Features Descriptions
Inter-bank data reordering reorders commands going to different bank addresses.
Commands going to the same bank address are not reordered. This reordering
method implements simple hazard detection on the bank address level.

The controller implements logic to limit the length of time that a command can go
unserved. This logic is known as starvation control. In starvation control, a counter is
incremented for every command served. You can set a starvation limit, to ensure that
a waiting command is served immediately, when the starvation counter reaches the
specified limit.

Pre-emptive Bank Management
Data reordering allows the controller to issue bank-management commands
pre-emptively, based on the patterns of incoming commands; consequently, the
desired page in memory can be already open when a command reaches the AFI
interface.

Quasi-1T and Quasi-2T
One controller clock cycle equals two memory clock cycles in a half-rate interface, and
to four memory clock cycles in a quarter-rate interface. To fully utilize the command
bandwidth, the controller can operate in Quasi-1T half-rate and Quasi-2T quarter-rate
modes.

In Quasi-1T and Quasi-2T modes, the controller issues two commands on every
controller clock cycle. The controller is constrained to issue a row command on the
first clock phase and a column command on the second clock phase, or vice versa.
Row commands include activate and precharge commands; column commands
include read and write commands.

The controller operates in Quasi-1T in half-rate mode, and in Quasi-2T in quarter-rate
mode; this operation is transparent and has no user settings.

User Autoprecharge Commands
The autoprecharge read and autoprecharge write commands allow you to indicate to
the memory device that this read or write command is the last access to the currently
open row. The memory device automatically closes or autoprecharges the page it is
currently accessing so that the next access to the same bank is quicker.

This command is useful for applications that require fast random accesses.

Since the HPC II controller can reorder transactions for best efficiency, when you
assert the local_autopch_req signal, the controller evaluates the current command
and buffered commands to determine the best autoprecharge operation.

Half-Rate Bridge
Half-rate bridge support is available for ALTMEMPHY-based cores targeting device
families other than Arria II GX. Half-rate bridge support is not available for
UniPHY-based cores.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–7
Controller Features Descriptions
When using the half-rate bridge feature, you must ensure that the local_size data for
each write command remains constant until the next write command is issued. In
other words, the local_size bus should not be allowed to change unless the
burst_begin signal is high.

Before using the half-rate bridge feature, you should perform the following steps:

1. Open the Synopsis Design Constraints file (.sdc) for the half-rate bridge and set
slow_clk to the path of the clock connected to the half-rate bridge’s slave interface.

2. Before running the constraint, ensure that the clock $slow_clk is already created or
declared using the derive_pll_clocks, create_clock, or
create_generated_clock function; otherwise, the constraint may be ignored.

Address and Command Decoding Logic
When the main state machine issues a command to the memory, it asserts a set of
internal signals. The address and command decoding logic turns these signals into
AFI-specific commands and address. This block generates the following signals:

■ Clock enable and reset signals: afi_cke, afi_rst_n

■ Command and address signals: afi_cs_n, afi_ba, afi_addr, afi_ras_n,
afi_cas_n, afi_we_n

Low-Power Logic
There are two types of low-power logic: the user-controlled self-refresh logic and
automatic power-down with programmable time-out logic.

User-Controlled Self-Refresh
When you assert the local_self_rfsh_req signal, the controller completes any
currently executing reads and writes, and then interrupts the command queue and
immediately places the memory into self-refresh mode. When the controller places the
memory into self-refresh mode, it responds by asserting an acknowledge signal,
local_self_rfsh_ack. You can leave the memory in self-refresh mode for as long as
you choose.

To bring the memory out of self-refresh mode, you must deassert the request signal,
and the controller responds by deasserting the acknowledge signal when the memory
is no longer in self-refresh mode.

1 If a user-controlled refresh request and a system-generated refresh request occur at
the same time, the user-controlled refresh takes priority; the system-generated refresh
is processed only after the user-controlled refresh request is completed.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–8 Chapter 5: Functional Description—HPC II Controller
Controller Features Descriptions
Automatic Power-Down with Programmable Time-Out
The controller automatically places the memory in power-down mode to save power
if the requested number of idle controller clock cycles is observed in the controller.
The Auto Power Down Cycles parameter on the Controller Settings tab allows you
to specify a range between 1 to 65,535 idle controller clock cycles. The counter for the
programmable time-out starts when there are no user read or write requests in the
command queue. Once the controller places the memory in power-down mode, it
responds by asserting the acknowledge signal, local_power_down_ack.

ODT Generation Logic
The on-die termination (ODT) generation logic generates the necessary ODT signals
for the controller, based on the scheme that Altera recommends.

DDR2 SDRAM
Table 5–1 lists which ODT signal is enabled for single-slot single chip-select per
DIMM.

1 There is no ODT for reads.

Table 5–2 lists which ODT signal is enabled for single-slot dual chip-select per DIMM.

1 There is no ODT for reads.

Table 5–3 lists which ODT signal is enabled for dual-slot single chip-select per DIMM.

Table 5–4 lists which ODT signal is enabled for dual-slot dual chip-select per DIMM.

Table 5–1. ODT—DDR2 SDRAM Single Slot Single Chip-select Per DIMM (Write)

Write On ODT Enabled

mem_cs[0] mem_odt[0]

Table 5–2. ODT—DDR2 SDRAM Single Slot Dual Chip-select Per DIMM (Write)

Write On ODT Enabled

mem_cs[0] mem_odt[0]

mem_cs[1] mem_odt[1]

Table 5–3. ODT—DDR2 SDRAM Dual Slot Single Chip-select Per DIMM (Write)

Write On ODT Enabled

mem_cs[0] mem_odt[1]

mem_cs[1] mem_odt[0]

Table 5–4. ODT—DDR2 SDRAM Dual Slot Dual Chip-select Per DIMM (Write)

Write On ODT Enabled

mem_cs[0] mem_odt[2]

mem_cs[1] mem_odt[3]
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–9
Controller Features Descriptions
DDR3 SDRAM
Table 5–5 lists which ODT signal is enabled for single-slot single chip-select per
DIMM.

1 There is no ODT for reads.

Table 5–6 lists which ODT signal is enabled for single-slot dual chip-select per DIMM.

1 There is no ODT for reads.

Table 5–7 lists which ODT signal is enabled for dual-slot single chip-select per DIMM.

Table 5–8 lists which ODT signal is enabled for dual-slot single chip-select per DIMM.

Table 5–9 lists which ODT signal is enabled for dual-slot dual chip-select per DIMM.

mem_cs[2] mem_odt[0]

mem_cs[3] mem_odt[1]

Table 5–4. ODT—DDR2 SDRAM Dual Slot Dual Chip-select Per DIMM (Write)

Write On ODT Enabled

Table 5–5. ODT—DDR3 SDRAM Single Slot Single Chip-select Per DIMM (Write)

Write On ODT Enabled

mem_cs[0] mem_odt[0]

Table 5–6. ODT—DDR3 SDRAM Single Slot Dual Chip-select Per DIMM (Write)

Write On ODT Enabled

mem_cs[0] mem_odt[0]

mem_cs[1] mem_odt[1]

Table 5–7. ODT—DDR3 SDRAM Dual Slot Single Chip-select Per DIMM (Write)

Write On ODT Enabled

mem_cs[0] mem_odt[0] and mem_odt[1]

mem_cs[1] mem_odt[0] and mem_odt[1]

Table 5–8. ODT—DDR3 SDRAM Dual Slot Single Chip-select Per DIMM (Read)

Read On ODT Enabled

mem_cs[0] mem_odt[1]

mem_cs[1] mem_odt[0]

Table 5–9. ODT—DDR3 SDRAM Dual Slot Dual Chip-select Per DIMM (Write)

Write On ODT Enabled

mem_cs[0] mem_odt[0] and mem_odt[2]

mem_cs[1] mem_odt[1]and mem_odt[3]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–10 Chapter 5: Functional Description—HPC II Controller
Controller Features Descriptions
Table 5–10 lists which ODT signal is enabled for dual-slot dual chip-select per DIMM.

Burst Merging
The burst merging feature is available to improve throughput for sequential
addresses, when the Timing Bank Pool receives requests faster than they can be
processed.

For designs created in a version of the high-performance controller II earlier than 11.0,
burst merging is turned off by default. To turn on burst merging, perform these steps:

1. In a text editor, open the <variation_name>.v file for your design.

2. Search for the ENABLE_BURST_MERGE parameter in the .v file.

3. Change the ENABLE_BURST_MERGE value from 0 to 1.

ECC
The ECC logic comprises an encoder and a decoder-corrector, which can detect and
correct single-bit errors, and detect double-bit errors. The ECC logic is available in
widths of 16, 24, 40, and 72 bits.

1 For the hard memory controller with multiport front end available in Arria V and
Cyclone V devices, ECC logic is limited to widths of 24 and 40.

■ The ECC logic has the following features:

■ Has Hamming code ECC logic that encodes every 64, 32, 16, or 8 bits of data into
72, 40, 24, or 16 bits of codeword.

■ Has a latency increase of one clock for both writes and reads.

■ For a 128-bit interface, ECC is generated as one 64-bit data path with 8-bits of ECC
path, plus a second 64-bit data path with 8-bits of ECC path.

■ Detects and corrects all single-bit errors.

■ Detects all double-bit errors.

■ Counts the number of single-bit and double-bit errors.

mem_cs[2] mem_odt[0]and mem_odt[2]

mem_cs[3] mem_odt[1]and mem_odt[3]

Table 5–10. ODT—DDR3 SDRAM Dual Slot Dual Rank Per DIMM (Read)

Read On ODT Enabled

mem_cs[0] mem_odt[2]

mem_cs[1] mem_odt[3]

mem_cs[2] mem_odt[0]

mem_cs[3] mem_odt[1]

Table 5–9. ODT—DDR3 SDRAM Dual Slot Dual Chip-select Per DIMM (Write)

Write On ODT Enabled
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–11
Controller Features Descriptions
■ Accepts partial writes, which trigger a read-modify-write cycle, for memory
devices with DM pins.

■ Can inject single-bit and double-bit errors to trigger ECC correction for testing and
debugging purposes.

■ Generates an interrupt signal when an error occurs.

1 When using ECC, you must initialize memory before writing to it.

When a single-bit or double-bit error occurs, the ECC logic triggers the ecc_interrupt
signal to inform you that an ECC error has occurred. When a single-bit error occurs,
the ECC logic reads the error address, and writes back the corrected data. When a
double-bit error occurs, the ECC logic does not do any error correction but it asserts
the avl_rdata_error signal to indicate that the data is incorrect. The avl_rdata_error
signal follows the same timing as the avl_rdata_valid signal.

Enabling autocorrection allows the ECC logic to delay all controller pending activities
until the correction completes. You can disable autocorrection and schedule the
correction manually when the controller is idle to ensure better system efficiency. To
manually correct ECC errors, follow these steps:

1. When an interrupt occurs, read out the SBE_ERROR register. When a single-bit error
occurs, the SBE_ERROR register is equal to one.

2. Read out the ERR_ADDR register.

3. Correct the single-bit error by issuing a dummy write to the memory address
stored in the ERR_ADDR register. A dummy write is a write request with the
local_be signal zero, that triggers a partial write which is effectively a
read-modify-write event. The partial write corrects the data at that address and
writes it back.

Partial Writes
The ECC logic supports partial writes. Along with the address, data, and burst
signals, the Avalon-MM interface also supports a signal vector, local_be, that is
responsible for byte-enable. Every bit of this signal vector represents a byte on the
data-bus. Thus, a logic low on any of these bits instructs the controller not to write to
that particular byte, resulting in a partial write. The ECC code is calculated on all
bytes of the data-bus. If any bytes are changed, the IP core must recalculate the ECC
code and write the new code back to the memory.

For partial writes, the ECC logic performs the following steps:

1. The ECC logic sends a read command to the partial write address.

2. Upon receiving a return data from the memory for the particular address, the ECC
logic decodes the data, checks for errors, and then merges the corrected or correct
dataword with the incoming information.

3. The ECC logic issues a write to write back the updated data and the new ECC
code.

The following corner cases can occur:
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–12 Chapter 5: Functional Description—HPC II Controller
Controller Features Descriptions
■ A single-bit error during the read phase of the read-modify-write process. In this
case, the IP core corrects the single-bit error first, increments the single-bit error
counter and then performs a partial write to this corrected decoded data word.

■ A double-bit error during the read phase of the read-modify-write process. In this
case, the IP core increments the double-bit error counter and issues an interrupt.
The IP core writes a new write word to the location of the error. The ECC status
register keeps track of the error information.

Figure 5–4 and Figure 5–5 show partial write operations for the controller, for full and
half rate configurations, respectively.

Partial Bursts
DIMMs that do not have the DM pins do not support partial bursts. You must write a
minimum (or multiples) of memory-burst-length-equivalent words to the memory at
the same time.

Figure 5–6 shows a partial burst operation for the controller.

Figure 5–4. Partial Write for the Controller—Full Rate

Figure 5–5. Partial Write for the Controller—Half Rate

Figure 5–6. Partial Burst for Controller

avl_address

avl_size

avl_be

avl_wdata

mem_dm

mem_dq

0 1

2

X1 XF

01234567 89ABCDEF

67 R R R EF CD AB 89

avl_address

avl_size

avl_be

avl_wdata

mem_dm

mem_dq

0

1

X1

01234567

67 R R R

avl_address

avl_size

avl_be

avl_wdata

mem_dm

mem_dq

0

1

X1

01234567

67 45 23 01
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–13
External Interfaces
External Interfaces
This section discusses the interfaces between the controller and other external
memory interface components.

Clock and Reset Interface
The clock and reset interface is part of the AFI interface.

The controller can have up to two clock domains, which are synchronous to each
other. The controller operates with a single clock domain when there is no integrated
half-rate bridge, and with two-clock domains when there is an integrated half-rate
bridge. The clocks are provided by UniPHY.

The main controller clock is afi_clk, and the optional half-rate controller clock is
afi_half_clk. The main and half-rate clocks must be synchronous and have a 2:1
frequency ratio. The optional quarter-rate controller clock is afi_quarter_clk, which
must also be synchronous and have a 4:1 frequency ratio.

Avalon-ST Data Slave Interface
The Avalon-ST data slave interface consists of the following Avalon-ST channels,
which together form a single data slave:

■ The command channel, which serves as command and address for both read and
write operations.

■ The write data channel, which carries write data.

■ The read data channel, which carries read data.

f For information about the Avalon interface, refer to Avalon Interface Specifications.

AXI Data Slave Interface
The AXI data interface consists of the following channels, which communicate with
the Avalon-ST interface through the AXI to Avalon-ST converter:

■ The write address channel, which carries address information for write operations.

■ The write data channel, which carries write data.

■ The write response channel, which carries write response data.

■ The read address channel, which carries address information for read operations.

■ The read data channel, which carries read data.

Enabling the AXI Interface
This section provides guidance for enabling the AXI interface.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

5–14 Chapter 5: Functional Description—HPC II Controller
External Interfaces
1. To enable the AXI interface, first open in an editor the file appropriate for the
required flow, as indicated below:

■ For synthesis flow: <working_dir>/<variation_name>/<variation_name>_c0.v

■ For simulation flow: <working_dir>/<variation_name>_sim/<variation_name>/
<variation_name>_c0.v

■ Example design fileset for synthesis:
<working_dir>/<variation_name>_example_design/example_project/
<variation_name>_example/submodules/<variation_name>_example_if0_c0.v

■ Example design fileset for simulation:
<working_dir>/<variation_name>_example_design/simulation/verilog/
submodules/<variation_name>_example_sim_e0_if0_c0.v

2. Locate and remove the alt_mem_ddrx_mm_st_converter instantiation from the .v
file opened in the preceding step.

3. Instantiate the alt_mem_ddrx_axi_st_converter module into the open .v file. Refer
to the following code fragment as a guide:

module ? # (parameter
// AXI parameters
AXI_ID_WIDTH = <replace parameter value>,
AXI_ADDR_WIDTH = <replace parameter value>,
AXI_LEN_WIDTH = <replace parameter value>,
AXI_SIZE_WIDTH = <replace parameter value>,
AXI_BURST_WIDTH = <replace parameter value>,
AXI_LOCK_WIDTH = <replace parameter value>,
AXI_CACHE_WIDTH = <replace parameter value>,
AXI_PROT_WIDTH = <replace parameter value>,
AXI_DATA_WIDTH = <replace parameter value>,
AXI_RESP_WIDTH = <replace parameter value>
)
(
// Existing ports
...
// AXI Interface ports
// Write address channel
input wire [AXI_ID_WIDTH - 1 : 0] awid,
input wire [AXI_ADDR_WIDTH - 1 : 0] awaddr,
input wire [AXI_LEN_WIDTH - 1 : 0] awlen,
input wire [AXI_SIZE_WIDTH - 1 : 0] awsize,
input wire [AXI_BURST_WIDTH - 1 : 0] awburst,
input wire [AXI_LOCK_WIDTH - 1 : 0] awlock,
input wire [AXI_CACHE_WIDTH - 1 : 0] awcache,
input wire [AXI_PROT_WIDTH - 1 : 0] awprot,
input wire awvalid,
output wire awready,

// Write data channel
input wire [AXI_ID_WIDTH - 1 : 0] wid,
input wire [AXI_DATA_WIDTH - 1 : 0] wdata,
input wire [AXI_DATA_WIDTH / 8 - 1 : 0] wstrb,
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–15
External Interfaces
input wire wlast,
input wire wvalid,
output wire wready,

// Write response channel
output wire [AXI_ID_WIDTH - 1 : 0] bid,
output wire [AXI_RESP_WIDTH - 1 : 0] bresp,
output wire bvalid,
input wire bready,

// Read address channel
input wire [AXI_ID_WIDTH - 1 : 0] arid,
input wire [AXI_ADDR_WIDTH - 1 : 0] araddr,
input wire [AXI_LEN_WIDTH - 1 : 0] arlen,
input wire [AXI_SIZE_WIDTH - 1 : 0] arsize,
input wire [AXI_BURST_WIDTH - 1 : 0] arburst,
input wire [AXI_LOCK_WIDTH - 1 : 0] arlock,
input wire [AXI_CACHE_WIDTH - 1 : 0] arcache,
input wire [AXI_PROT_WIDTH - 1 : 0] arprot,
input wire arvalid,
output wire arready,

// Read data channel
output wire [AXI_ID_WIDTH - 1 : 0] rid,
output wire [AXI_DATA_WIDTH - 1 : 0] rdata,
output wire [AXI_RESP_WIDTH - 1 : 0] rresp,
output wire rlast,
output wire rvalid,
input wire rready
);

// Existing wire, register declaration and instantiation
...
// AXI interface instantiation
alt_mem_ddrx_axi_st_converter #
(
.AXI_ID_WIDTH (AXI_ID_WIDTH),
.AXI_ADDR_WIDTH (AXI_ADDR_WIDTH),
.AXI_LEN_WIDTH (AXI_LEN_WIDTH),
.AXI_SIZE_WIDTH (AXI_SIZE_WIDTH),
.AXI_BURST_WIDTH (AXI_BURST_WIDTH),
.AXI_LOCK_WIDTH (AXI_LOCK_WIDTH),
.AXI_CACHE_WIDTH (AXI_CACHE_WIDTH),
.AXI_PROT_WIDTH (AXI_PROT_WIDTH),
.AXI_DATA_WIDTH (AXI_DATA_WIDTH),
.AXI_RESP_WIDTH (AXI_RESP_WIDTH),
.ST_ADDR_WIDTH (ST_ADDR_WIDTH),
.ST_SIZE_WIDTH (ST_SIZE_WIDTH),
.ST_ID_WIDTH (ST_ID_WIDTH),
.ST_DATA_WIDTH (ST_DATA_WIDTH),
.COMMAND_ARB_TYPE (COMMAND_ARB_TYPE)
)

November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–16 Chapter 5: Functional Description—HPC II Controller
External Interfaces
a0
(
.ctl_clk (afi_clk),
.ctl_reset_n (afi_reset_n),
.awid (awid),
.awaddr (awaddr),
.awlen (awlen),
.awsize (awsize),
.awburst (awburst),
.awlock (awlock),
.awcache (awcache),
.awprot (awprot),
.awvalid (awvalid),
.awready (awready),
.wid (wid),
.wdata (wdata),
.wstrb (wstrb),
.wlast (wlast),
.wvalid (wvalid),
.wready (wready),
.bid (bid),
.bresp (bresp),
.bvalid (bvalid),
.bready (bready),
.arid (arid),
.araddr (araddr),
.arlen (arlen),
.arsize (arsize),
.arburst (arburst),
.arlock (arlock),
.arcache (arcache),
.arprot (arprot),
.arvalid (arvalid),
.arready (arready),
.rid (rid),
.rdata (rdata),
.rresp (rresp),
.rlast (rlast),
.rvalid (rvalid),
.rready (rready),
.itf_cmd_ready (ng0_native_st_itf_cmd_ready),
.itf_cmd_valid (a0_native_st_itf_cmd_valid),
.itf_cmd (a0_native_st_itf_cmd),
.itf_cmd_address (a0_native_st_itf_cmd_address),
.itf_cmd_burstlen (a0_native_st_itf_cmd_burstlen),
.itf_cmd_id (a0_native_st_itf_cmd_id),
.itf_cmd_priority (a0_native_st_itf_cmd_priority),
.itf_cmd_autoprecharge (a0_native_st_itf_cmd_autopercharge),
.itf_cmd_multicast (a0_native_st_itf_cmd_multicast),
.itf_wr_data_ready (ng0_native_st_itf_wr_data_ready),
.itf_wr_data_valid (a0_native_st_itf_wr_data_valid),
.itf_wr_data (a0_native_st_itf_wr_data),
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–17
External Interfaces
.itf_wr_data_byte_en (a0_native_st_itf_wr_data_byte_en),

.itf_wr_data_begin (a0_native_st_itf_wr_data_begin),

.itf_wr_data_last (a0_native_st_itf_wr_data_last),

.itf_wr_data_id (a0_native_st_itf_wr_data_id),

.itf_rd_data_ready (a0_native_st_itf_rd_data_ready),

.itf_rd_data_valid (ng0_native_st_itf_rd_data_valid),

.itf_rd_data (ng0_native_st_itf_rd_data),

.itf_rd_data_error (ng0_native_st_itf_rd_data_error),

.itf_rd_data_begin (ng0_native_st_itf_rd_data_begin),

.itf_rd_data_last (ng0_native_st_itf_rd_data_last),

.itf_rd_data_id (ng0_native_st_itf_rd_data_id)
);

4. Set the required parameters for the AXI interface. Table 5–11 lists the available
parameters.

5. Export the AXI interface to the top-level wrapper, making it accessible to the AXI
master.

6. To add the AXI interface to the Quartus II project:

a. On the Assignments > Settings menu in the Quartus II software, open the File
tab.

b. Add the alt_mem_ddrx_axi_st_converter.v file to the project.

Table 5–11. AXI Interface Parameters (Part 1 of 2)

Parameter Name Description / Value

AXI_ID_WIDTH Width of the AXI ID bus. Default value is 4.

AXI_ADDR_WIDTH

Width of the AXI address bus. Must be set according to the Avalon
interface address and data bus width as shown below:

AXI_ADDR_WIDTH = LOCAL_ADDR_WIDTH +
log2(LOCAL_DATA_WIDTH/8)

LOCAL_ADDR_WIDTH is the memory controller Avalon interface
address width.
LOCAL_DATA_WIDTH is the memory controller Avalon data interface
width.

AXI_LEN_WIDTH

Width of the AXI length bus. Default value is 8.

Should be set to LOCAL_SIZE_WIDTH - 1, where
LOCAL_SIZE_WIDTH is the memory controller Avalon interface burst
size width

AXI_SIZE_WIDTH Width of the AXI size bus. Default value is 3.

AXI_BURST_WIDTH Width of the AXI burst bus. Default value is 2.

AXI_LOCK_WIDTH Width of the AXI lock bus. Default value is 2.

AXI_CACHE_WIDTH Width of the AXI cache bus. Default value is 4.

AXI_PROT_WIDTH Width of the AXI protection bus. Default value is 3.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–18 Chapter 5: Functional Description—HPC II Controller
External Interfaces
Table 5–12 lists the AXI interface ports.

AXI_DATA_WIDTH

Width of the AXI data bus. Should be set to match the Avalon interface
data bus width.

AXI_DATA_WIDTH = LOCAL_DATA_WIDTH, where
LOCAL_DATA_WIDTH is the memory controller Avalon interface input
data width.

AXI_RESP_WIDTH Width of the AXI response bus. Default value is 2.

ST_ADDR_WIDTH

Width of the Avalon interface address. Must be set to match the
Avalon interface address bus width.

ST_ADDR_WIDTH = LOCAL_ADDR_WIDTH, where
LOCAL_ADDR_WIDTH is the memory controller Avalon interface
address width.

ST_SIZE_WIDTH
Width of the Avalon interface burst size.

ST_SIZE_WIDTH = AXI_LEN_WIDTH + 1

ST_ID_WIDTH
Width of the Avalon interface ID. Default value is 4.

ST_ID_WIDTH = AXI_ID_WIDTH

ST_DATA_WIDTH
Width of the Avalon interface data.

ST_DATA_WIDTH = AXI_DATA_WIDTH.

COMMAND_ARB_TYPE

Specifies the AXI command arbitration type, as shown:

ROUND_ROBIN: arbitrates between read and write address channel in
round robin fashion. Default option.

WRITE_PRIORITY: write address channel has priority if both channels
send request simultaneously.

READ_PRIORITY: read address channel has priority if both channels
send request simultaneously.

REGISTERED Setting this parameter to 1 adds an extra register stage in the AXI
interface and incurs one extra clock cycle of latency. Default value is 1.

Table 5–12. AXI Interface Ports (Part 1 of 3)

Name Direction Description

awid Input AXI write address channel ID bus.

awaddr Input AXI write address channel address bus.

awlen Input AXI write address channel length bus.

awsize Input AXI write address channel size bus.

awburst Input
AXI write address channel burst bus.

(Interface supports only INCR and WRAP burst types.)

Table 5–11. AXI Interface Parameters (Part 2 of 2)

Parameter Name Description / Value
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–19
External Interfaces
awlock Input
AXI write address channel lock bus.

(Interface does not support this feature.)

awcache Input
AXI write address channel cache bus.

(Interface does not support this feature.)

awprot Input
AXI write address channel protection bus.

(Interface does not support this feature.)

awvalid Input AXI write address channel valid signal.

awready Output AXI write address channel ready signal.

wid Input AXI write address channel ID bus.

wdata Input AXI write address channel data bus.

wstrb Input AXI write data channel strobe bus.

wlast Input AXI write data channel last burst signal.

wvalid Input AXI write data channel valid signal.

wready Output AXI write data channel ready signal.

bid Output AXI write response channel ID bus.

bresp Output

AXI write response channel response bus.

Response encoding information:

‘b00 - OKAY
‘b01 - Reserved
‘b10 - Reserved
‘b11 - Reserved

bvalid Output AXI write response channel valid signal.

bready Input

AXI write response channel ready signal.

Must be set to 1. Interface does not support back
pressure for write response channel.

arid Input AXI read address channel ID bus.

araddr Input AXI read address channel address bus.

arlen Input AXI read address channel length bus.

arsize Input AXI read address channel size bus.

arburst Input
AXI read address channel burst bus.

(Interface supports only INCR and WRAP burst types.)

arlock Input
AXI read address channel lock bus.

(Interface does not support this feature.)

arcache Input
AXI read address channel cache bus.

(Interface does not support this feature.)

Table 5–12. AXI Interface Ports (Part 2 of 3)

Name Direction Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–20 Chapter 5: Functional Description—HPC II Controller
External Interfaces
f For information about the AXI specification, refer to the ARM website, at
www.arm.com.

Controller-PHY Interface
The interface between the controller and the PHY is part of the AFI interface.

The controller assumes that the PHY performs all necessary calibration processes
without any interaction with the controller.

For more information about AFI signals, refer to AFI 3.0 Specification.

Memory Side-Band Signals
This section describes supported side-band signals.

Self-Refresh (Low Power) Interface
The optional low power self-refresh interface consists of a request signal and an
acknowledgement signal, which you can use to instruct the controller to place the
memory device into self-refresh mode. This interface is clocked by afi_clk.

When you assert the request signal, the controller places the memory device into
self-refresh mode and asserts the acknowledge signal. To bring the memory device
out of self-refresh mode, you deassert the request signal; the controller then deasserts
the acknowledge signal when the memory device is no longer in self-refresh mode.

arprot Input
AXI read address channel protection bus.

(Interface does not support this feature.)

arvalid Input AXI read address channel valid signal.

arready Output AXI read address channel ready signal.

rid Output AXI read data channel ID bus.

rdata Output AXI read data channel data bus.

rresp Output

AXI read data channel response bus.

Response encoding information:

‘b00 - OKAY
‘b01 - Reserved
‘b10 - Data error
‘b11 - Reserved

rlast Output AXI read data channel last burst signal.

rvalid Output AXI read data channel valid signal.

rready Input

AXI read data channel ready signal.

Must be set to 1. Interface does not support back
pressure for write response channel.

Table 5–12. AXI Interface Ports (Part 3 of 3)

Name Direction Description
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

www.arm.com

Chapter 5: Functional Description—HPC II Controller 5–21
External Interfaces
1 For multi-rank designs using the HPC II memory controller, a self-refresh and a
user-refresh cannot be made to the same memory chip simultaneously.

Also, the self-refresh ack signal indicates that at least one device has entered
self-refresh, but does not necessarily mean that all devices have entered self-refresh.

User-Controlled Refresh Interface
The optional user-controlled refresh interface consists of a request signal, a chip select
signal, and an acknowledgement signal. This interface provides increased control
over worst-case read latency and enables you to issue refresh bursts during idle
periods. This interface is clocked by afi_clk.

When you assert a refresh request signal to instruct the controller to perform a refresh
operation, that request takes priority over any outstanding read or write requests that
might be in the command queue. In addition to the request signal, you must also
choose the chip to be refreshed by asserting the refresh chip select signal along with
the request signal. If you do not assert the chip select signal with the request signal,
unexpected behavior may result.

The controller attempts to perform a refresh as long as the refresh request signal is
asserted; if you require only one refresh, you should deassert the refresh request
signal after the acknowledgement signal is received. If you maintain the request
signal high after the acknowledgement is sent, it would indicate that further refresh is
required. You should deassert the request signal after the required number of
acknowledgement/refresh is received from the controller. You can issue up to a
maximum of nine consecutive refresh commands.

1 For multi-rank designs using the HPC II memory controller, a self-refresh and a
user-refresh cannot be made to the same memory chip simultaneously.

Configuration and Status Register (CSR) Interface
The controller has a configuration and status register (CSR) interface that allows you
to configure timing parameters, address widths, and the behavior of the controller.
The CSR interface is a 32-bit Avalon-MM slave of fixed address width; if you do not
need this feature, you can disable it to save area.

This interface is clocked by csr_clk, which is the same as afi_clk, and is always
synchronous relative to the main data slave interface.

Table 5–13 lists the controller’s external interfaces.

Table 5–13. Summary of Controller External Interfaces (Part 1 of 2)

Interface Name Display Name Type Description

Clock and Reset Interface

Clock and Reset Interface Clock and Reset Interface AFI (1) Clock and reset generated by UniPHY to
the controller.

Avalon-ST Data Slave Interface

Command Channel Avalon-ST Data Slave Interface Avalon-ST (2)
Address and command channel for read
and write, single command single data
(SCSD).
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–22 Chapter 5: Functional Description—HPC II Controller
Top-Level Signals Description
Top-Level Signals Description
Table 5–14 lists the clock and reset signals.

1 The suffix _n denotes active low signals.

Write Data Channel Avalon-ST Data Slave Interface Avalon-ST (2) Write Data Channel, single command
multiple data (SCMD).

Read Data Channel Avalon-ST Data Slave Interface Avalon-ST (2) Read data channel, SCMD with read data
error response.

Controller-PHY Interface

AFI 3.0 AFI Interface AFI (1) Interface between controller and PHY.

Memory Side-Band Signals

Self Refresh (Low Power)
Interface

Self Refresh (Low Power)
Interface

Avalon Control
& Status
Interface (2)

SDRAM-specific signals to place
memory into low-power mode.

User-Controller Refresh
Interface

User-Controller Refresh
Interface

Avalon Control
& Status
Interface (2)

SDRAM-specific signals to request
memory refresh.

Configuration and Status Register (CSR) Interface

CSR Configuration and Status
Register Interface Avalon-MM (2)

Enables on-the-fly configuration of
memory timing parameters, address
widths, and controller behaviour.

Notes:

(1) For information about AFI signals, refer to AFI 3.0 Specification.
(2) For information about Avalon signals, refer to Avalon Interface Specifications.

Table 5–13. Summary of Controller External Interfaces (Part 2 of 2)

Interface Name Display Name Type Description

Table 5–14. Clock and Reset Signals (Part 1 of 2)

 Name Direction Description

global_reset_n Input
The asynchronous reset input to the controller. The IP core derives all
other reset signals from resynchronized versions of this signal. This
signal holds the PHY, including the PLL, in reset while low.

pll_ref_clk Input The reference clock input to PLL.

phy_clk Output The system clock that the PHY provides to the user. All user inputs to
and outputs from the controller must be synchronous to this clock.

reset_phy_clk_n Output
The reset signal that the PHY provides to the user. The IP core asserts
reset_phy_clk_n asynchronously and deasserts synchronously to
phy_clk clock domain.

aux_full_rate_clk Output

An alternative clock that the PHY provides to the user. This clock
always runs at the same frequency as the external memory interface.
In half-rate designs, this clock is twice the frequency of the phy_clk
and you can use it whenever you require a 2x clock. In full-rate
designs, the same PLL output as the phy_clk signal drives this clock.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 5: Functional Description—HPC II Controller 5–23
Top-Level Signals Description
Table 5–15 lists the controller local interface signals.

aux_half_rate_clk Output

An alternative clock that the PHY provides to the user. This clock
always runs at half the frequency as the external memory interface. In
full-rate designs, this clock is half the frequency of the phy_clk and
you can use it, for example to clock the user side of a half-rate bridge.
In half-rate designs, or if the Enable Half Rate Bridge option is turned
on. The same PLL output that drives the phy_clk signal drives this
clock.

dll_reference_clk Output Reference clock to feed to an externally instantiated DLL.

reset_request_n Output

Reset request output that indicates when the PLL outputs are not
locked. Use this signal as a reset request input to any system-level
reset controller you may have. This signal is always low when the PLL
is trying to lock, and so any reset logic using Altera advises you detect
a reset request on a falling edge rather than by level detection.

soft_reset_n Input
Edge detect reset input for SOPC Builder or for control by other
system reset logic. Assert to cause a complete reset to the PHY, but
not to the PLL that the PHY uses.

seriesterminationcontrol

Input (for OCT
slave)

Required signal for PHY to provide series termination calibration
value. Must be connected to a user-instantiated OCT control block
(alt_oct) or another UniPHY instance that is set to OCT master mode.

Output (for
OCT master) Unconnected PHY signal, available for sharing with another PHY.

parallelterminationcontrol

Input (for OCT
slave)

Required signal for PHY to provide series termination calibration
value. Must be connected to a user-instantiated OCT control block
(alt_oct) or another UniPHY instance that is set to OCT master mode.

Output (for
OCT master) Unconnected PHY signal, available for sharing with another PHY.

oct_rdn
Input (for OCT

master)
Must connect to calibration resistor tied to GND on the appropriate
RDN pin on the device. (Refer to appropriate device handbook.)

oct_rup
Input (for OCT

master)
Must connect to calibration resistor tied to Vccio on the appropriate
RUP pin on the device. (See appropriate device handbook.)

dqs_delay_ctrl_import Input
Allows the use of DLL in another PHY instance in this PHY instance.
Connect the export port on the PHY instance with a DLL to the
import port on the other PHY instance.

csr_clk (1) Output
Clock for the configuration and status register (CSR) interface, which
is the same as afi_clk and is always synchronous relative to the
main data slave interface.

Note for Table 5–14:

(1) Applies only to the hard memory controller with multiport front end available in Arria V and Cyclone V devices.

Table 5–14. Clock and Reset Signals (Part 2 of 2)

 Name Direction Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–24 Chapter 5: Functional Description—HPC II Controller
Top-Level Signals Description
Table 5–15. Local Interface Signals (Part 1 of 4)

Signal Name Direction Description

avl_addr[] (1) Input

Memory address at which the burst should start.

By default, the IP core maps local address to the bank interleaving scheme. You can
change the ordering via the Local-to-Memory Address Mapping option in the
Controller Settings page.

This signal needs to remain stable only during the first transaction of a burst. The
constantBurstBehavior property is always false for UniPHY controllers.

The IP core sizes the width of this bus according to the following equations:

■ Full rate controllers

For one chip select: width = row bits + bank bits + column bits – 1

For multiple chip selects: width = chip bits* + row bits + bank bits + column bits – 1

If the bank address is 2 bits wide, row is 13 bits wide and column is 10 bits wide,
the local address is 24 bits wide. To map local_address to bank, row and column
address:

avl_addr is 24 bits wide

avl_addr[23:11]= row address[12:0]

avl_addr[10:9] = bank address [1:0]

avl_addr [8:0] = column address[9:1]

The IP core ignores the least significant bit (LSB) of the column address (multiples
of two) on the memory side, because the local data width is twice that of the
memory data bus width.

■ Half rate controllers

For one chip select: width = row bits + bank bits + column bits – 2

For multiple chip selects: width = chip bits* + row bits + bank bits + column bits – 2

If the bank address is 2 bits wide, row is 13 bits wide and column is 10 bits wide,
the local address is 23 bits wide. To map local_address to bank, row and column
address:

avl_addr is 23 bits wide

avl_addr[22:10] = row address[12:0]

avl_addr[9:8] = bank address [1:0]

avl_addr[7:0] = column address[9:2]

The IP core ignores two LSBs of the column address (multiples of four) on the
memory side, because the local data width is four times that of the memory data
bus width.

■ Quarter rate controllers

For one chip select: width = row bits + bank bits + column bits – 3

For multiple chip selects: width = chip bits* + row bits + bank bits + column bits – 3

If the bank address is 2 bits wide, row is 13 bits wide and column is 10 bits wide,
the local address is 22 bits wide.

(* chip bits is a derived value indicating the number of address bits necessary to
uniquely address every memory rank in the system; this value is not user
configurable.)
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–25
Top-Level Signals Description
avl_be[] (2) Input

Byte enable signal, which you use to mask off individual bytes during writes.
avl_be is active high; mem_dm is active low.

To map avl_wdata and avl_be to mem_dq and mem_dm, consider a full-rate design
with 32-bit avl_wdata and 16-bit mem_dq.

avl_wdata = < 22334455 >< 667788AA >< BBCCDDEE >

avl_be = < 1100 >< 0110 >< 1010 >

These values map to:

Mem_dq = <4455><2233><88AA><6677><DDEE><BBCC>

Mem_dm = <1 1 ><0 0 ><0 1 ><1 0 ><0 1 ><0 1 >

avl_burstbegin (3) Input

The Avalon burst begin strobe, which indicates the beginning of an Avalon burst.
Unlike all other Avalon-MM signals, the burst begin signal does not stay asserted if
avl_ready is deasserted.

For write transactions, assert this signal at the beginning of each burst transfer and
keep this signal high for one cycle per burst transfer, even if the slave deasserts
avl_ready. The IP core samples this signal at the rising edge of phy_clk when
avl_write_req is asserted. After the slave deasserts the avl_ready signal, the
master keeps all the write request signals asserted until avl_ready signal
becomes high again.

For read transactions, assert this signal for one clock cycle when read request is
asserted and avl_addr from which the data should be read is given to the
memory. After the slave deasserts avl_ready (waitrequest_n in Avalon
interface), the master keeps all the read request signals asserted until avl_ready
becomes high again.

avl_read_req (4) Input
Read request signal. You cannot assert read request and write request signals at
the same time. The controller must deassert reset_phy_clk_n before you can
assert local_autopch_req.

local_refresh_req Input

User-controlled refresh request. If Enable User Auto-Refresh Controls option is
turned on, local_refresh_req becomes available and you are responsible for
issuing sufficient refresh requests to meet the memory requirements. This option
allows complete control over when refreshes are issued to the memory including
grouping together multiple refresh commands. Refresh requests take priority over
read and write requests, unless the IP core is already processing the requests.

local_refresh_chip Input

Controls which chip to issue the user refresh to. The IP core uses this active high
signal with local_refresh_req. This signal is as wide as the memory chip select.
This signal asserts a high value to each bit that represents the refresh for the
corresponding memory chip.

For example: If local_refresh_chip signal is assigned with a value of 4’b0101,
the controller refreshes the memory chips 0 and 2, and memory chips 1 and 3 are
not refreshed.

avl_size[] (5) Input

Controls the number of beats in the requested read or write access to memory,
encoded as a binary number. The IP core supports Avalon burst lengths from 1 to
64. The IP core derives the width of this signal based on the burst count that you
specify in the Local Maximum Burst Count option. With the derived width, you
specify a value ranging from 1 to the local maximum burst count specified.

This signal needs to remain stable only during the first transaction of a burst. The
constantBurstBehavior property is always false for UniPHY controllers.

Table 5–15. Local Interface Signals (Part 2 of 4)

Signal Name Direction Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–26 Chapter 5: Functional Description—HPC II Controller
Top-Level Signals Description
avl_wdata[] (6) Input

Write data bus. The width of avl_wdata is twice that of the memory data bus for a
full-rate controller, four times the memory data bus for a half-rate controller, and
eight times the memory data bus for a quarter-rate controller. If Generate
power-of-2 data bus widths for Qsys and SOPC Builder is enabled, the width is
rounded down to the nearest power of 2.

avl_write_req (7) Input
Write request signal. You cannot assert read request and write request signal at the
same time. The controller must deassert reset_phy_clk_n before you can assert
avl_write_req.

local_autopch_req
(8) Input

User control of autoprecharge. If you turn on Enable Auto-Precharge Control, the
local_autopch_req signal becomes available and you can request the controller
to issue an autoprecharge write or autoprecharge read command.

These commands cause the memory to issue a precharge command to the current
bank at the appropriate time without an explicit precharge command from the
controller. This feature is particularly useful if you know the current read or write is
the last one you intend to issue to the currently open row. The next time you need
to use that bank, the access could be quicker as the controller does not need to
precharge the bank before activating the row you wish to access.

Upon receipt of the local_autopch_req signal, the controller evaluates the
pending commands in the command buffer and determines the most efficient
autoprecharge operation to perform, reordering commands if necessary.

The controller must deassert reset_phy_clk_n before you can assert
local_autopch_req.

local_self_rfsh_chip Input

Controls which chip to issue the user refresh to. The IP core uses this active high
signal with local_self_rfsh_req. This signal is as wide as the memory chip
select. This signal asserts a high value to each bit that represents the refresh for the
corresponding memory chip.

For example: If local_self_rfsh_chip signal is assigned with a value of
4’b0101, the controller refreshes the memory chips 0 and 2, and memory chips 1
and 3 are not refreshed.

local_self_rfsh_req Input

User control of the self-refresh feature. If you turn on Enable Self-Refresh
Controls, you can request that the controller place the memory devices into a
self-refresh state by asserting this signal. The controller places the memory in the
self-refresh state as soon as it can without violating the relevant timing parameters
and responds by asserting local_self_rfsh_ack. You can hold the memory in
the self-refresh state by keeping this signal asserted. You can release the memory
from the self-refresh state at any time by deasserting local_self_rfsh_req and
the controller responds by deasserting local__self_rfsh_ack when it has
successfully brought the memory out of the self-refresh state.

local_init_done Output
When the memory initialization, training, and calibration are complete, the PHY
sequencer asserts ctrl_usr_mode_rdy to the memory controller, which then
asserts this signal to indicate that the memory interface is ready for use.

avl_rdata[] (9) Output

Read data bus. The width of avl_rdata is twice that of the memory data bus for a
full rate controller; four times the memory data bus for a half rate controller. If
Generate power-of-2 data bus widths for Qsys and SOPC Builder is enabled, the
width is rounded down to the nearest power of 2.

Table 5–15. Local Interface Signals (Part 3 of 4)

Signal Name Direction Description
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–27
Top-Level Signals Description
avl_rdata_error (10) Output

Asserted if the current read data has an error. This signal is only available if you
turn on Enable Error Detection and Correction Logic. The controller asserts this
signal with the avl_rdata_valid signal.

If the controller encounters double-bit errors, no correction is made and the
controller asserts this signal.

avl_rdata_valid (11) Output Read data valid signal. The avl_rdata_valid signal indicates that valid data is
present on the read data bus.

avl_ready (12) Output

The avl_ready signal indicates that the controller is ready to accept request
signals. If controller asserts the avl_ready signal in the clock cycle that it asserts
a read or write request, the controller accepts that request. The controller deasserts
the avl_ready signal to indicate that it cannot accept any more requests. The
controller can buffer eight read or write requests, after which the avl_ready signal
goes low.

local_refresh_ack Output

Refresh request acknowledge, which the controller asserts for one clock cycle
every time it issues a refresh. Even if you do not turn on Enable User Auto-Refresh
Controls, local_refresh_ack still indicates to the local interface that the
controller has just issued a refresh command.

local_self_rfsh_ack Output Self refresh request acknowledge signal. The controller asserts and deasserts this
signal in response to the local_self_rfsh_req signal.

local_power_down_ack Output Auto power-down acknowledge signal. The controller asserts this signal for one
clock cycle every time auto power-down is issued.

ecc_interrupt (13) Output Interrupt signal from the ECC logic. The controller asserts this signal when the ECC
feature is turned on, and the controller detects an error.

Notes for Table 5–15:

(1) For the hard memory controller with multiport front end available in Arria V and Cyclone V devices, avl_addr becomes a per port value,
avl_addr_#, where # is a numeral from 0–5, based on the number of ports selected in the Controller tab.

(2) For the hard memory controller with multiport front end available in Arria V and Cyclone V devices, avl_be becomes a per port value, avl_be_#,
where # is a numeral from 0–5, based on the number of ports selected in the Controller tab.

(3) For the hard memory controller with multiport front end available in Arria V and Cyclone V devices, avl_burstbegin becomes a per port value,
avl_burstbegin_#, where # is a numeral from 0–5, based on the number of ports selected in the Controller tab.

(4) For the hard memory controller with multiport front end available in Arria V and Cyclone V devices, avl_read_req becomes a per port value,
avl_read_req_#, where # is a numeral from 0–5, based on the number of ports selected in the Controller tab.

(5) For the hard memory controller with multiport front end available in Arria V and Cyclone V devices, avl_size becomes a per port value,
avl_size_#, where # is a numeral from 0–5, based on the number of ports selected in the Controller tab.

(6) For the hard memory controller with multiport front end available in Arria V and Cyclone V devices, avl_wdata becomes a per port value,
avl_wdata_#, where # is a numeral from 0–5, based on the number of ports selected in the Controller tab.

(7) For the hard memory controller with multiport front end available in Arria V and Cyclone V devices, avl_write_req becomes a per port value,
avl_write_req_#, where # is a numeral from 0–5, based on the number of ports selected in the Controller tab.

(8) This signal is not applicable to the hard memory controller.
(9) For the hard memory controller with multiport front end available in Arria V and Cyclone V devices, avl_rdata becomes a per port value,

avl_rdata_#, where # is a numeral from 0–5, based on the number of ports selected in the Controller tab.
(10) This signal is not applicable to the hard memory controller.
(11) For the hard memory controller with multiport front end available in Arria V and Cyclone V devices, avl_rdata_valid becomes a per port value,

avl_rdata_valid_#, where # is a numeral from 0–5, based on the number of ports selected in the Controller tab.
(12) For the hard memory controller with multiport front end available in Arria V and Cyclone V devices, avl_ready becomes a per port value,

avl_ready_#, where # is a numeral from 0–5, based on the number of ports selected in the Controller tab.
(13) This signal is not applicable to the hard memory controller.

Table 5–15. Local Interface Signals (Part 4 of 4)

Signal Name Direction Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–28 Chapter 5: Functional Description—HPC II Controller
Top-Level Signals Description
Table 5–16 lists the controller interface signals.

Table 5–17 lists the CSR interface signals.

Table 5–16. Interface Signals

Signal Name Direction Description

mem_dq[] Bidirectional Memory data bus. This bus is half the width of the local read and write data
busses.

mem_dqs[] Bidirectional Memory data strobe signal, which writes data into the memory device and
captures read data into the Altera device.

mem_dqs_n[] Bidirectional Inverted memory data strobe signal, which with the mem_dqs signal improves
signal integrity.

mem_ck Output Clock for the memory device.

mem_ck_n Output Inverted clock for the memory device.

mem_addr[] Output Memory address bus.

mem_ac_parity (1) Output Address or command parity signal generated by the PHY and sent to the
DIMM. DDR3 SDRAM only.

mem_ba[] Output Memory bank address bus.

mem_cas_n Output Memory column address strobe signal.

mem_cke[] Output Memory clock enable signals.

mem_cs_n[] Output Memory chip select signals.

mem_dm[] Output Memory data mask signal, which masks individual bytes during writes.

mem_odt Output Memory on-die termination control signal.

mem_ras_n Output Memory row address strobe signal.

mem_we_n Output Memory write enable signal.

parity_error_n (1) Output Active-low signal that is asserted when a parity error occurs and stays
asserted until the PHY is reset. DDR3 SDRAM only

mem_err_out_n (1) Input Signal sent from the DIMM to the PHY to indicate that a parity error has
occured for a particular cycle. DDR3 SDRAM only.

Notes to Table 5–16:

(1) This signal is for registered DIMMs only.

Table 5–17. CSR Interface Signals (Part 1 of 2)

Signal Name Direction Description

csr_addr[] Input Register map address.The width of csr_addr is 16 bits.

csr_be[] Input Byte-enable signal, which you use to mask off individual bytes during writes.
csr_be is active high.

csr_clk (1) Output
Clock for the configuration and status register (CSR) interface, which is the
same as afi_clk and is always synchronous relative to the main data slave
interface.

csr_wdata[] Input Write data bus. The width of csr_wdata is 32 bits.

csr_write_req Input Write request signal. You cannot assert csr_write_req and csr_read_req
signals at the same time.

csr_read_req Input Read request signal. You cannot assert csr_read_req and
csr_write_req signals at the same time.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–29
Top-Level Signals Description
Controller Register Map
The controller register map allows you to control the memory controller settings.
Table 5–18 lists the register map for the controller.

csr_rdata[] Output Read data bus. The width of csr_rdata is 32 bits.

csr_rdata_valid Output Read data valid signal. The csr_rdata_valid signal indicates that valid data
is present on the read data bus.

csr_waitrequest Output

The csr_waitrequest signal indicates that the HPC II is busy and not ready
to accept request signals. If the csr_waitrequest signal goes high in the
clock cycle when a read or write request is asserted, that request is not
accepted. If the csr_waitrequest signal goes low, the HPC II is then ready
to accept more requests.

Note for Table 5–17:

(1) Applies only to the hard memory controller with multiport front end available in Arria V and Cyclone V devices.

Table 5–17. CSR Interface Signals (Part 2 of 2)

Signal Name Direction Description

Table 5–18. Controller Register Map (Part 1 of 5)

Address Bit Name Default Access Description

0x100

0 Reserved. 0 — Reserved for future use.

1 Reserved. 0 — Reserved for future use.

2 Reserved. 0 — Reserved for future use.

7:3 Reserved. 0 — Reserved for future use.

13:8 Reserved. 0 — Reserved for future use.

30:14 Reserved. 0 — Reserved for future use.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–30 Chapter 5: Functional Description—HPC II Controller
Top-Level Signals Description
0x110

15:0 AUTO_PD_CYCLES 0x0 Read write

The number of idle clock cycles after which
the controller should place the memory into
power-down mode. The controller is
considered to be idle if there are no
commands in the command queue. Setting
this register to 0 disables the auto
power-down mode. The default value of this
register depends on the values set during the
generation of the design.

16 Reserved. 0 — Reserved for future use.

17 Reserved. 0 — Reserved for future use.

18 Reserved. 0 — Reserved for future use.

19 Reserved. 0 — Reserved for future use.

21:20 ADDR_ORDER 00 Read write

00 - Chip, row, bank, column.
01 - Chip, bank, row, column.
10 - reserved for future use.
11 - Reserved for future use.

22 Reserved. 0 — Reserved for future use.

24:23 Reserved. 0 — Reserved for future use.

30:24 Reserved 0 — Reserved for future use.

0x120

7:0 Column address width — Read write
The number of column address bits for the
memory devices in your memory interface.
The range of legal values is 7-12.

15:8 Row address width — Read write
The number of row address bits for the
memory devices in your memory interface.
The range of legal values is 12-16.

19:16 Bank address width — Read write
The number of bank address bits for the
memory devices in your memory interface.
The range of legal values is 2-3.

23:20 Chip select address width — Read write

The number of chip select address bits for
the memory devices in your memory
interface. The range of legal values is 0-2. If
there is only one single chip select in the
memory interface, set this bit to 0.

31:24 Reserved. 0 — Reserved for future use.

0x121 31:0 Data width representation
(word) — Read only

The number of DQS bits in the memory
interface. This bit can be used to derive the
width of the memory interface by multiplying
this value by the number of DQ pins per DQS
pin (typically 8).

0x122
7:0 Chip select representation — Read only

The number of chip select in binary
representation. For example, a design with 2
chip selects has the value of 00000011.

31:8 Reserved. 0 — Reserved for future use.

Table 5–18. Controller Register Map (Part 2 of 5)

Address Bit Name Default Access Description
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–31
Top-Level Signals Description
0x123

3:0 tRCD — Read write
The activate to read or write a timing
parameter. The range of legal values is 2-11
cycles.

7:4 tRRD — Read write The activate to activate a timing parameter.
The range of legal values is 2-8 cycles.

11:8 tRP — Read write The precharge to activate a timing parameter.
The range of legal values is 2-11 cycles.

15:12 tMRD — Read write

The mode register load time parameter. This
value is not used by the controller, as the
controller derives the correct value from the
memory type setting.

23:16 tRAS — Read write The activate to precharge a timing parameter.
The range of legal values is 4-29 cycles.

31:24 tRC — Read write The activate to activate a timing parameter.
The range of legal values is 8-40 cycles.

0x124

3:0 tWTR — Read write The write to read a timing parameter. The
range of legal values is 1-10 cycles.

7:4 tRTP — Read write The read to precharge a timing parameter.
The range of legal values is 2-8 cycles.

15:8 tFAW — Read write The four-activate window timing parameter.
The range of legal values is 6-32 cycles.

31:16 Reserved. 0 — Reserved for future use.

0x125

15:0 tREFI — Read write The refresh interval timing parameter. The
range of legal values is 780-6240 cycles.

23:16 tRFC — Read write The refresh cycle timing parameter. The
range of legal values is 12-88 cycles.

31:24 Reserved. 0 — Reserved for future use.

0x126

3:0 Reserved. 0 — Reserved for future use.

7:4 Reserved. 0 — Reserved for future use.

11:8 Reserved. 0 — Reserved for future use.

15:12 Reserved. 0 — Reserved for future use.

23:16 Burst Length — Read write Value must match memory burst length.

31:24 Reserved. 0 — Reserved for future use.

Table 5–18. Controller Register Map (Part 3 of 5)

Address Bit Name Default Access Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–32 Chapter 5: Functional Description—HPC II Controller
Top-Level Signals Description
0x130

0 ENABLE_ECC 1 Read write

When this bit equals 1, it enables the
generation and checking of ECC. This bit is
only active if ECC was enabled during IP
parameterization.

1 ENABLE_AUTO_CORR — Read write
When this bit equals 1, it enables
auto-correction when a single-bit error is
detected.

2 GEN_SBE 0 Read write

When this bit equals 1, it enables the
deliberate insertion of single-bit errors, bit 0,
in the data written to memory. This bit is
used only for testing purposes.

3 GEN_DBE 0 Read write

When this bit equals 1, it enables the
deliberate insertion of double-bit errors, bits
0 and 1, in the data written to memory. This
bit is used only for testing purposes.

4 ENABLE_INTR 1 Read write When this bit equals 1, it enables the
interrupt output.

5 MASK_SBE_INTR 0 Read write When this bit equals 1, it masks the
single-bit error interrupt.

6 MASK_DBE_INTR 0 Read write When this bit equals 1, it masks the
double-bit error interrupt

7 CLEAR 0 Read write

When this bit equals 1, writing to this
self-clearing bit clears the interrupt signal,
and the error status and error address
registers.

8 MASK_CORDROP_INTR 0 Read write When this bit equals 1, the dropped
autocorrection error interrupt is dropped.

9 Reserved. 0 — Reserved for future use.

0x131

0 SBE_ERROR 0 Read only Set to 1 when any single-bit errors occur.

1 DBE_ERROR 0 Read only Set to 1 when any double-bit errors occur.

2 CORDROP_ERROR 0 Read only
Value is set to 1 when any
controller-scheduled autocorrections are
dropped.

7:3 Reserved. 0 — Reserved for future use.

15:8 SBE_COUNT 0 Read only
Reports the number of single-bit errors that
have occurred since the status register
counters were last cleared.

23:16 DBE_COUNT 0 Read only
Reports the number of double-bit errors that
have occurred since the status register
counters were last cleared.

31:24 CORDROP_COUNT 0 Read only
Reports the number of controller-scheduled
autocorrections dropped since the status
register counters were last cleared.

0x132 31:0 ERR_ADDR 0 Read only
The address of the most recent ECC error.
This address is a memory burst-aligned local
address.

Table 5–18. Controller Register Map (Part 4 of 5)

Address Bit Name Default Access Description
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 5: Functional Description—HPC II Controller 5–33
Sequence of Operations
Sequence of Operations
This section explains how the various blocks pass information in common situations.

Write Command
When a requesting master issues a write command together with write data, the
following events occur:

■ The input interface accepts the write command and the write data.

■ The input interface passes the write command to the command generator and the
write data to the write data buffer.

■ The command generator processes the command and sends it to the timing bank
pool.

■ Once all timing requirements are met and a write-data-ready notification has been
received from the write data buffer, the timing bank pool sends the command to
the arbiter.

■ When rank timing requirements are met, the arbiter grants the command request
from the timing bank pool and passes the write command to the AFI interface.

■ The AFI interface receives the write command from the arbiter and requests the
corresponding write data from the write data buffer.

■ The PHY receives the write command and the write data, through the AFI
interface.

Read Command
When a requesting master issues a read command, the following events occur:

■ The input interface accepts the read command.

■ The input interface passes the read command to the command generator.

■ The command generator processes the command and sends it to the timing bank
pool.

■ Once all timing requirements are met, the timing bank pool sends the command to
the arbiter.

0x133 31:0 CORDROP_ADDR 0 Read only
The address of the most recent
autocorrection that was dropped. This is a
memory burst-aligned local address.

0x134

0 REORDER_DATA — Read write

15:1 Reserved. 0 — Reserved for future use.

23:16 STARVE_LIMIT 0 Read write Number of commands that can be served
before a starved command.

31:24 Reserved. 0 — Reserved for future use.

Table 5–18. Controller Register Map (Part 5 of 5)

Address Bit Name Default Access Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

5–34 Chapter 5: Functional Description—HPC II Controller
Document Revision History
■ When rank timing requirements are met, the arbiter grants the command request
from the timing bank pool and passes the read command to the AFI interface.

■ The AFI interface receives the read command from the arbiter and passes the
command to the PHY.

■ The PHY receives the read command through the AFI interface, and returns read
data through the AFI interface.

■ The AFI interface passes the read data from the PHY to the read data buffer.

■ The read data buffer sends the read data to the master through the input interface.

Read-Modify-Write Command
A read-modify-write command can occur when enabling ECC for partial write, and
for ECC correction commands. When a read-modify-write command is issued, the
following events occur:

■ The command generator issues a read command to the timing bank pool.

■ The timing bank pool and arbiter passes the read command to the PHY through
the AFI interface.

■ The PHY receives the read command, reads data from the memory device, and
returns the read data through the AFI interface.

■ The read data received from the PHY passes to the ECC block.

■ The read data is processed by the write data buffer.

■ When the write data buffer issues a read-modify-write data ready notification to
the command generator, the command generator issues a write command to the
timing bank pool. The arbiter can then issue the write request to the PHY through
the AFI interface.

■ When the PHY receives the write request, it passes the data to the memory device.

Document Revision History
Table 5–19 lists the revision history for this document.

Table 5–19. Document Revision History

Date Version Changes

November 2012 2.1

■ Added Controller Register Map information.

■ Added Burst Merging information.

■ Updated User-Controlled Refresh Interface information.

■ Changed chapter number from 4 to 5.

June 2012 2.0
■ Added LPDDR2 support.

■ Added Feedback icon.

November 2011 1.1

■ Revised Figure 5–1.

■ Added AXI to Avalon-ST Converter information.

■ Added AXI Data Slave Interface information.

■ Added Half-Rate Bridge information.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_005-3.3

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_005-3.3
6. Functional Description—QDR II
Controller
The QDR II and QDR II+ controller translates memory requests from the Avalon
Memory-Mapped (Avalon-MM) interface to AFI, while satisfying timing
requirements imposed by the memory configurations. QDR II and QDR II+ SRAM
has unidirectional data buses, therefore read and write operations are highly
independent of each other and each has its own interface and state machine.

Block Description
This topic describes the blocks in the IP. Figure 6–1 shows a block diagram of the
QDR II and QDR II+ SRAM controller architecture.

Avalon-MM Slave Read and Write Interfaces
The read and write blocks accept read and write requests, respectively, from the
Avalon-MM interface . Each block has a simple state machine that represents the state
of the command and address registers, which stores the command and address when
a request arrives.

The read data passes through without the controller registering it, as the PHY takes
care of read latency. The write data goes through a pipeline stage to delay for a fixed
number of cycles as specified by the write latency. In the full-rate burst length of four
controller, the write data is also multiplexed into a burst of 2, which is then
multiplexed again in the PHY to become a burst of 4 in DDR.

The user interface to the controller has separate read and write Avalon-MM interfaces
because reads and writes are independent of each other in the memory device. The
separate channels give efficient use of available bandwidth.

Figure 6–1. QDR II and QDR II+ SRAM Controller Architecture Block Diagram

Command
Issuing
FSM

Controller
with UniPHY

Avalon-MM Slave
Write Interface

Avalon-MM Slave
Write Interface

AFI

Write
Data
FIFO

Avalon-MM Slave
Read Interface
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_005
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_005-3.3 (EMI HB, Vol 3, Ch6: Functional Description - QDR II Controller)

6–2 Chapter 6: Functional Description—QDR II Controller
Avalon-MM and Memory Data Width
Command Issuing FSM
The command-issuing full-state machine (FSM) has two states: INIT and
INIT_COMPLETE. In the INIT_COMPLETE state, commands are issued immediately as
requests arrive using combinational logic and do not require state transitions.

AFI
In the full-rate burst length of two configuration, the controller can issue both read
and write commands in the same clock cycle. In the memory device, both commands
are clocked on the positive edge, but the read address is clocked on the positive edge,
while the write address is clocked on the negative edge. Care must be taken on how
these signals are ordered in the AFI.

For the half-rate burst length of four configuration the controller also issues both read
and write commands, but the AFI width is doubled to fill two memory clocks per
controller clock. As the controller only issues one write command and one read
command per controller clock, the AFI read and write signals corresponding to the
other memory cycle are tied to no operation (NOP).

For information on the AFI, refer to AFI 3.0 Specification.

Avalon-MM and Memory Data Width
Table 6–1 lists the data width ratio between the memory interface and the Avalon-MM
interface. The half-rate controller does not support burst-of-2 devices because it
under-uses the available memory bandwidth. Regardless of full or half-rate decision
and the device burst length, the Avalon-MM interface must supply all the data for the
entire memory burst in a single clock cycle. Therefore the Avalon-MM data width of
the full-rate controller with burst-of-4 devices is four times the memory data width.
For width-expanded configurations, the data width is further multiplied by the
expansion factor (not shown in table 5-1 and 5-2).

Signal Description
This topic discusses the signals for each interface.

For information on the AFI signals, refer to AFI 3.0 Specification.

Table 6–1. Data Width Ratio

Memory Burst Length Half-Rate Designs Full-Rate Designs

QDR II 2-word burst No Support 2:1

QDR II and II+ 4-word burst 4:1
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 6: Functional Description—QDR II Controller 6–3
Signal Description
Avalon-MM Slave Read Interface
Table 6–2 lists the signals of the controller’s Avalon-MM slave read interface.

1 The data width of the Avalon-MM interface is restricted to powers of two when using
SOPC Builder or Qsys. Non-power-of-two data widths are supported when using the
MegaWizard Plug-In Manager.

f For more information about the Avalon interface, refer to Avalon Interface
Specifications.

Avalon-MM Slave Write Interface
Table 6–3 lists the signals of the controller’s Avalon-MM slave write interface.

1 For more information about the Avalon interface, refer to Avalon Interface
Specifications.

Table 6–2. Avalon-MM Slave Read Signals

Signal Width Direction Avalon-MM Signal Type

avl_r_ready 1 Out waitrequest_n

avl_r_read_req 1 In read

avl_r_addr ≤ 20 In address

avl_r_rdata_valid 1 Out readdatavalid

avl_r_rdata 16, 18, 36, 72, 144 Out readdata

avl_r_size
log_2(MAX_BURST_SI

ZE) + 1 In burstcount

Table 6–3. Avalon-MM Slave Write Signals

Signal Width Direction Avalon-MM Signal Type

avl_w_ready 1 Out waitrequest_n

avl_w_write_req 1 In write

avl_w_addr ≤ 20 In address

avl_w_wdata 18, 36, 72, 144 In writedata

avl_w_be 2,4,8,16 In byteenable

avl_w_size
log_2(MAX_BURST_SI

ZE) + 1 In burstcount
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=avalon specification
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=avalon specification
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=avalon specification
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=avalon specification

6–4 Chapter 6: Functional Description—QDR II Controller
Document Revision History
Document Revision History
Table 6–4 lists the revision history for this document.

Table 6–4. Document Revision History

Date Version Changes

November 2012 3.3 Changed chapter number from 5 to 6.

June 2012 3.2 Added Feedback icon.

November 2011 3.1 Harvested Controller chapter from 11.0 QDR II and QDR II+ SRAM Controller with UniPHY
User Guide.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_006-3.3

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_006-3.3
7. Functional Description—RLDRAM II
Controller
The RLDRAM II controller translates memory requests from the Avalon
Memory-Mapped (Avalon-MM) interface to AFI, while satisfying timing
requirements imposed by the memory configurations.

Block Description
This topic describes the blocks in the IP. Figure 7–1 shows a block diagram of the
RLDRAM II controller architecture.

Avalon-MM Slave Interface
This Avalon-MM slave interface accepts read and write requests. A simple state
machine represents the state of the command and address registers, which stores the
command and address when a request arrives.

The Avalon-MM slave interface decomposes the Avalon-MM address to the memory
bank, column, and row addresses. The IP automatically maps the bank address to the
LSB of the Avalon address vector.

The Avalon-MM slave interface includes a burst adaptor, which has the following two
parts:

■ The first part is a read and write request combiner that groups requests to
sequential addresses into the native memory burst. Given that the second request
arrives within the read and write latency window of the first request, the
controller can combine and satisfy both requests with a single memory
transaction.

■ The second part is the burst divider in the front end of the Avalon-MM interface,
which breaks long Avalon bursts into individual requests of sequential addresses,
which then pass to the controller state machine.

Figure 7–1. RLDRAM II Controller Architecture Block Diagram

Command
Issuing
FSM

Controller
with UniPHY

Avalon-MM Slave
Write Interface

Avalon-MM Slave
Write Interface

AFI

Write
Data
FIFO

Avalon-MM Slave
Read Interface
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_006
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_006-3.3 (EMI HB, Vol 3, Ch7: Functional Description - RLDRAM II Controller)

7–2 Chapter 7: Functional Description—RLDRAM II Controller
User-Controlled Features
Write Data FIFO Buffer
The write data FIFO buffer accepts write data from the Avalon-MM interface. The AFI
controls the subsequent consumption of the FIFO buffer write data.

Command Issuing FSM
The command issuing finite-state machine (FSM) has three states. The controller is in
the INIT state when the PHY initializes the memory. Upon receiving the
afi_cal_success signal, the state transitions to INIT_COMPLETE. If the calibration fails,
afi_cal_fail is asserted and the state transitions to INIT_FAIL. The PHY receives
commands only in the INIT_COMPLETE state.

When a refresh request arrives at the state machine at the same time as a read or write
request, the refresh request takes precedence. The read or write request waits until
there are no more refresh requests, and is issued immediately if timing requirements
are met.

Refresh Timer
With automatic refresh, the refresh timer periodically issues refresh requests to the
command issuing FSM. The refresh interval can be set at generation.

Timer Module
The timer module contains one DQ timer and eight bank timers (one per bank). The
DQ timer tracks how often read and write requests can be issued, to avoid bus
contention. The bank timers track the cycle time (tRC).

The 8-bit wide output bus of the bank timer indicates to the command issuing FSM
whether each bank can be issued a read, write, or refresh command.

AFI
For information on the AFI, refer to AFI 3.0 Specification.

User-Controlled Features
The following features are available on the General Settings tab of the parameter
editor. These features are disabled by default.

Error Detection Parity
The error detection parity protection feature creates a simple parity encoder block
which processes all read and write data. The error detection feature asserts an error
signal if it detects any corrupted data during the read process. For every 8 bits of write
data, a parity bit is generated and concatenated to the data before it is written to the
memory. During the subsequent read operation, the parity bit is checked against the
data bits to ensure data integrity.

Enabling the error detection parity protection feature reduces the local data width by
one. For example, a nine-bit memory interface will present eight bits of data to the
controller interface.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 7: Functional Description—RLDRAM II Controller 7–3
Avalon-MM and Memory Data Width
You can enable error detection parity protection in the Controller Settings section of
the General Settings tab of the parameter editor.

User-Controlled Refresh
The user-controlled refresh feature allows you to take control of the refresh process
that the controller normally performs automatically. You can control when refresh
requests occur, and, if there are multiple memory devices, you control which bank
receives the refresh signal. When you enable this feature, you disable auto-refresh,
and assume responsibility for maintaining the necessary average periodic refresh rate.

You can enable user-controlled refresh in the Controller Settings section of the
General Settings tab of the parameter editor.

Avalon-MM and Memory Data Width
Table 7–1 lists the data width ratio between the memory interface and the Avalon-MM
interface. The half-rate controller does not support burst-of-2 devices because it
under-uses the available memory bandwidth.

Signal Description
This topic discusses the signals for each interface.

For information on the AFI signals, refer to AFI 3.0 Specification.

Avalon-MM Slave Interface
Table 7–2 lists the signals of the controller’s Avalon-MM slave interface.

Table 7–1. Data Width Ratio

Memory Burst Length Half-Rate Designs Full-Rate Designs

 2-word No Support

2:1 4-word
4:1

 8-word

Table 7–2. Avalon-MM Slave Signals

Signal Width Direction Avalon-MM Signal Type Description

avl_size 1 to 11 In burstcount —

avl_ready 1 Out waitrequest_n —

avl_read_req 1 In read —

avl_write_req 1 In write —

avl_addr ≤ 25 In address —

avl_rdata_valid 1 Out readdatavalid —
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

7–4 Chapter 7: Functional Description—RLDRAM II Controller
Document Revision History
1 The data width of the Avalon-MM interface is restricted to powers of two when using
SOPC Builder or Qsys. Non-power-of-two data widths are supported when using the
MegaWizard Plug-In Manager.

Document Revision History
Table 7–3 lists the revision history for this document.

avl_rdata 18, 36, 72, 144 Out readdata —

avl_wdata 18, 36, 72, 144 In writedata —

Table 7–2. Avalon-MM Slave Signals

Signal Width Direction Avalon-MM Signal Type Description

Table 7–3. Document Revision History

Date Version Changes

November 2012 3.3 Changed chapter number from 6 to 7.

June 2012 3.2 Added Feedback icon.

November 2011 3.1 Harvested Controller chapter from 11.0 RLDRAM II Controller with UniPHY IP User Guide.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_018-1.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_018-1.0
8. Functional Description—RLDRAM 3
PHY-Only IP
The RLDRAM 3 PHY-only IP works with a customer-supplied memory controller to
translate memory requests from user logic to RLDRAM 3 memory devices, while
satisfying timing requirements imposed by the memory configurations.

Block Description
The RLDRAM 3 UniPHY-based IP is a PHY-only offering which you can use with a
third-party controller or a controller that you develop yourself. Figure 8–1 shows a
block diagram of the RLDRAM 3 system architecture.

Features
The RLDRAM 3 UniPHY-based IP supports features available from major RLDRAM 3
device vendors at speeds of up to 800 MHz. The following list summarizes key
features of the RLDRAM 3 UniPHY-based IP:

■ support for Arria V GZ and Stratix V devices

■ standard AFI interface between the PHY and the memory controller

■ quarter-rate and half-rate AFI interface

■ maximum frequency of 533 MHz for half-rate operation and 800 MHz for quarter-
rate operation

■ burst length of 2, 4, or 8

■ x18 and x36 memory organization

■ common I/O device support

■ nonmultiplexed addressing

■ multibank write and refresh protocol (programmable through mode register)

■ optional use of data mask pins

Figure 8–1. RLDRAM 3 System Architecture

User
Logic

Avalon-MM Controller

(Custom or
third-party)

PHY

(RLDRAM III
UniPHY)

AFI RLDRAM III
Memory
Device

FPGA
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=UG-00000
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_018-1.0 (EMI HB, Vol 3, Ch 8: Functional Description - RLDRAM 3 PHY-Only IP)
http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

8–2 Chapter 8: Functional Description—RLDRAM 3 PHY-Only IP
RLDRAM III AFI Protocol
RLDRAM III AFI Protocol
The RLDRAM 3 UniPHY-based IP communicates with the memory controller using
an AFI interface that follows the AFI 3.0 specification. To maximize bus utilization
efficiency, the RLDRAM 3 UniPHY-based IP can issue multiple memory read/write
operations within a single AFI cycle.

Figure 8–2 illustrates AFI bus activity when a quarter-rate controller issues four
consecutive burst-length 2 read requests.

The controller does not have to begin a read or write command using channel 0 of the
AFI bus. The flexibility afforded by being able to begin a command on any bus
channel can facilitate command scheduling in the memory controller.

Figure 8–3 illustrates the AFI bus activity when a quarter-rate controller issues a
single burst-length 4 read command to the memory on channel 1 of the AFI bus.

1 For information on the AFI, refer to AFI 3.0 Specification.

Figure 8–2. AFI Bus Activity for Quarter-Rate Controller Issuing Four Burst-Length 2 Read Requests

4’b0000 4’b1111

4’b1111

4’b1111

4’b1111 4’b0000

4’b1111

Data

afi_clk

afi_cs_n[3:0]

afi_ref_n[3:0]

afi_we_n[3:0]

afi_rdata_en_full[3:0]

afi_rdata_valid[3:0]

afi_rdata[...]

Read Latency

Figure 8–3. AFI Bus Activity for Quarter-Rate Controller Issuing One Burst-Length 4 Read Request

4’b1101 4’b1111

4’b1111

4’b1111

4’b0110 4’b0000

4’b0110

Data

afi_clk

afi_cs_n[3:0]

afi_ref_n[3:0]

afi_we_n[3:0]

afi_rdata_en_full[3:0]

afi_rdata_valid[3:0]

afi_rdata[...]

Read Latency
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 8: Functional Description—RLDRAM 3 PHY-Only IP 8–3
Document Revision History
Document Revision History
Table 8–1 lists the revision history for this document.

Table 8–1. Document Revision History

Date Version Changes

November 2012 1.0 Initial release.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

8–4 Chapter 8: Functional Description—RLDRAM 3 PHY-Only IP
Document Revision History
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_007-1.3

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_007-1.3
9. Functional Description—Example
Designs
This chapter describes the example designs and the traffic generator.

Two independent example designs are created during generation with the
MegaWizard Plug-In Manager. These example designs illustrate how to instantiate
and connect the memory interface for both synthesis and simulation flows.

The two example designs are completely independent, and contain independent RTL
files and other project files; they should be compiled or simulated separately, and the
files should not be mixed. Nonetheless, the designs are related, as the simulation
example design builds upon the design of the synthesis example design.

Synthesis Example Design
The synthesis example design contains the following major blocks, as shown in
Figure 9–1:

■ A traffic generator, which is a synthesizable Avalon-MM example driver that
implements a pseudo-random pattern of reads and writes to a parameterized
number of addresses. The traffic generator also monitors the data read from the
memory to ensure it matches the written data and asserts a failure otherwise.

■ An instance of the UniPHY memory interface, which includes a memory controller
that moderates between the Avalon-MM interface and the AFI interface, and the
UniPHY, which serves as an interface between the memory controller and external
memory devices to perform read and write operations.

Figure 9–1. Synthesis Example Design

ControllerTraffic Generator PHY
Avalon-MM AFI Memory

Synthesis Example Design

IP
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_007
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_007-1.3 (EMI HB, Vol 3, Ch 9: Functional Description - Example Designs)

9–2 Chapter 9: Functional Description—Example Designs
Synthesis Example Design
If you are using the Ping Pong PHY feature, the synthesis example design includes
two traffic generators issuing commands to two independent memory devices
through two independent controllers and a common PHY, as shown in Figure 9–2.

If you are using RLDRAM 3, the traffic generator in the synthesis example design
communicates directly with the PHY using AFI, as shown in Figure 9–3.

You can obtain the synthesis example design by generating your IP core using the
MegaWizard Plug-In Manager flow. The files related to the synthesis example design
reside at <variation_name>_example_design/example_project. The synthesis example
design includes a Quartus II project file (<variation_name>_example_design/
example_project/<variation_name>_example.qpf). The Quartus II project file can be
compiled in the Quartus II software, and can be run on hardware.

1 If one or more of the PLL Sharing Mode, DLL Sharing Mode, or OCT Sharing Mode
parameters are set to any value other than No Sharing, the synthesis example design
will contain two traffic generator/memory interface instances. The two traffic
generator/memory interface instances are related only by shared PLL/DLL/OCT
connections as defined by the parameter settings. The traffic generator/memory
interface instances demonstrate how you can make such connections in your own
designs.

Figure 9–2. Synthesis Example Design for Ping Pong PHY

Figure 9–3. Synthesis Example Design for RLDRAM 3 Interfaces

Traffic
Generator 0

Controller 0

Traffic
Generator 1

Controller 1

Synthesis Example Design

Avalon-MM AFI

IP

Memory

Avalon-MM AFI Memory
PHY

Traffic Generator PHY
AFI Memory

Synthesis Example Design

IP
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 9: Functional Description—Example Designs 9–3
Simulation Example Design
Simulation Example Design
The simulation example design contains the following major blocks, as shown in
Figure 9–4:

■ An instance of the synthesis example design. As described in the previous section,
the synthesis example design contains a traffic generator and an instance of the
UniPHY memory interface. These blocks default to abstract simulation models
where appropriate for rapid simulation.

■ A memory model, which acts as a generic model that adheres to the memory
protocol specifications. Frequently, memory vendors provide simulation models
for specific memory components that you can download from their websites.

■ A status checker, which monitors the status signals from the UniPHY IP and the
traffic generator, to signal an overall pass or fail condition.

Figure 9–4. Simulation Example Design

ControllerTraffic Generator PHY
Avalon-MM AFI Memory

Abstract instance of the synthesis example design

Memory
Model

Status
Checker

Simulation Example Design

IP
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

9–4 Chapter 9: Functional Description—Example Designs
Simulation Example Design
If you are using the Ping Pong PHY feature, the simulation example design includes
two traffic generators issuing commands to two independent memory devices
through two independent controllers and a common PHY, as shown in Figure 9–5.

If you are using RLDRAM 3, the traffic generator in the simulation example design
communicates directly with the PHY using AFI, as shown in Figure 9–6.

You can obtain the simulation example design by generating your IP core with the
MegaWizard Plug-In Manager. The files related to the simulation example design
reside at <variation_name>_example_design/simulation. After obtaining the files
generated by the MegaWizard Plug-In Manager, you must still generate the
simulation example design RTL for your desired HDL language. The file
<variation_name>_example_design/simulation/README.txt contains details about
how to generate the IP and to run the simulation in ModelSim-AE/SE.

Figure 9–5. Simulation Example Design for Ping Pong PHY

Figure 9–6. Simulation Example Design for RLDRAM 3 Interface

Traffic
Generator 0

Controller 0

Traffic
Generator 1

Controller 1

Abstract Instance of the Synthesis Example Design

Avalon-MM AFI

IP

Memory Memory
Model 0

Memory
Model 1

Simulation Example Design

Avalon-MM AFI Memory

PHY

Status Checker

Traffic Generator PHY
AFI Memory

Synthesis Example Design

IP

Abstract instance of the synthesis example design

Memory
Model
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 9: Functional Description—Example Designs 9–5
Traffic Generator and BIST Engine
Traffic Generator and BIST Engine
The traffic generator and built-in self test (BIST) engine for Avalon-MM memory
interfaces generates Avalon-MM traffic on an Avalon-MM master interface. The traffic
generator creates read and write traffic, stores the expected read responses internally,
and compares the expected responses to the read responses as they arrive. If all reads
report their expected response, the pass signal is asserted; however, if any read
responds with unexpected data a fail signal occurs.

Each operation generated by the traffic generator is a single write or block of writes
followed by a single read or block of reads to the same addresses, which allows the
driver to precisely determine the data that should be expected when the read data is
returned by the memory interface. The traffic generator comprises a traffic generation
block, the Avalon-MM interface and a read comparison block. The traffic generation
block generates addresses and write data, which are then sent out over the
Avalon-MM interface. The read comparison block compares the read data received
from the Avalon-MM interface to the write data from the traffic generator. If at any
time the data received is not the expected data, the read comparison block records the
failure, finishes reading all the data, and then signals that there is a failure and the
traffic generator enters a fail state. If all patterns have been generated and compared
successfully, the traffic generator enters a pass state.

Within the traffic generator, there are the following main states:

■ Generation of individual read and writes

■ Generation of block read and writes

■ The pass state

■ The fail state

Within each of the generation states there are the following substates:

Figure 9–7. Example Driver Operations

Individual
Reads/Writes

Block
Reads/Writes

User-Defined
Stages (Optional)

Sequential
Addresses

Random
Addresses

User-defined
Addresses
(Optional)

Pass Fail

Initialize

Sequential/Random
Addresses
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

9–6 Chapter 9: Functional Description—Example Designs
Traffic Generator and BIST Engine
■ Sequential address generation

■ Random address generation

■ Mixed sequential and random address generation

For each of the states and substates, the order and number of operations generated for
each substate is parameterizable—you can decide how many of each address pattern
to generate, or can disable certain patterns entirely if you want. The sequential and
random interleave substate takes in additions to the number of operations to generate.
An additional parameter specifies the ratio of sequential to random addresses to
generate randomly.

Read and Write Generation
The traffic generator block can generate individual or block reads and writes.

Individual Read and Write Generation
During the traffic generator’s individual read and write generation state, the traffic
generation block generates individual write followed by individual read Avalon-MM
transactions, where the address for the transactions is chosen according to the specific
substate. The width of the Avalon-MM interface is a global parameter for the driver,
but each substate can have a parameterizable range of burst lengths for each
operation.

Block Read and Write Generation
During the traffic generator’s block read and write generation state, the traffic
generator block generates a parameterizable number of write operations followed by
the same number of read operations. The specific addresses generated for the blocks
are chosen by the specific substates. The burst length of each block operation can be
parameterized by a range of acceptable burst lengths.

Address and Burst Length Generation
The traffic generator block can perform sequential or random addressing.

Sequential Addressing
The sequential addressing substate defines a traffic pattern where addresses are
chosen in sequential order starting from a user definable address. The number of
operations in this substate is parameterizable.

Random Addressing
The random addressing substate defines a traffic pattern where addresses are chosen
randomly over a parameterizable range. The number of operations in this substate is
parameterizable.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 9: Functional Description—Example Designs 9–7
Traffic Generator and BIST Engine
Sequential and Random Interleaved Addressing
The sequential and random interleaved addressing substate defines a traffic pattern
where addresses are chosen to be either sequential or random based on a
parameterizable ratio. The acceptable address range is parameterizable as is the
number of operations to perform in this substate.

Traffic Generator Signals
Table 9–1 lists the signals used by the traffic generator.

f For information about the Avalon signals and the Avalon interface, refer to Avalon
Interface Specifications.

Traffic Generator Add-Ons
Some optional components that can be useful for verifying aspects of the controller
and PHY operation are generated in conjunction with certain user-specified options.
These add-on components are self-contained, and are not part of the controller or
PHY, nor the traffic generator.

User Refresh Generator
The user refresh generator sends refresh requests to the memory controller when user
refresh is enabled. The memory controller returns an acknowledgement signal and
then issues the refresh command to the memory device.

The user refresh generator is created when you turn on Enable User Refresh on the
Controller Settings tab of the parameter editor.

Table 9–1. Traffic Generator Signals

Signal Width Signal Type

clk

reset_n

avl_ready avl_ready

avl_write_req avl_write_req

avl_read_req avl_read_req

avl_addr 24 avl_addr

avl_size 3 avl_size

avl_wdata 72 avl_wdata

avl_rdata 72 avl_rdata

avl_rdata_valid avl_rdata_valid

pnf_per_bit pnf_per_bit

pnf_per_bit_
persist

pnf_per_bit_persist

pass pass

fail fail

test_complete test_complete
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

9–8 Chapter 9: Functional Description—Example Designs
Creating and Connecting the UniPHY Memory Interface and the Traffic Generator in Qsys
Traffic Generator Timeout Counter
The traffic generator timeout counter uses the Avalon interface clock.

When a test fails due to driver failure or timeout, the fail signal is asserted. When a
test has failed, the traffic generator must be reset with the reset_n signal.

Creating and Connecting the UniPHY Memory Interface and the Traffic
Generator in Qsys

The traffic generator can be used in Qsys as a stand-alone component for use within a
larger system. This section explains how to instantiate and configure the example
driver, and includes tips on configuring a UniPHY memory interface which can apply
in many general situations.

1 If you are using RLDRAM 3, you cannot use the example driver because the
RLDRAM 3 IP is PHY-only, and does not include a controller.

Creating the Qsys System
To create the system in Qsys, perform the following steps:

1. Start Qsys.

2. On the Project Settings tab, select the required device from the Device Family list.

3. In the Component Library, choose a UniPHY memory interface to instantiate. For
example, under Library > Memories and Memory Controllers > External
Memory Interfaces, select DDR3 SDRAM Controller with UniPHY.

4. Configure the parameters for your instantiation of the memory interface.

5. In the Component Library, find the example driver and instantiate it in the system.
For example, under Library > Memories and Memory Controllers > Pattern
Generators, select Avalon-MM Traffic Generator and BIST Engine.

6. Configure the parameters for your instantiation of the example driver.

1 The Avalon specification stipulates that Avalon-MM master interfaces issue
byte addresses, while Avalon-MM slave interfaces accept word addresses.
The default for the Avalon-MM Traffic Generator and BIST Engine is to
issue word addresses. When using Qsys or SOPC Builder, you must enable
the Generate per byte address setting in the traffic generator.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 9: Functional Description—Example Designs 9–9
Creating and Connecting the UniPHY Memory Interface and the Traffic Generator in Qsys
7. Connect the interfaces as illustrated in Figure 9–8. At this point, you can generate
synthesis RTL, Verilog or VHDL simulation RTL, or a simulation testbench system.

Notes on Configuring UniPHY IP in Qsys
This section includes notes and tips on configuring the UniPHY IP in Qsys.

■ The address ranges shown for the Avalon-MM slave interface on the UniPHY
component should be interpreted as byte addresses that an Avalon-MM master
would address, despite the fact that this range is modified by configuring the
word addresses width of the Avalon-MM slave interface on the UniPHY
controller.

■ The afi_clk clock source is the associated clock to the Avalon-MM slave interface
on the memory controller. This is the ideal clock source to use for all IP
components connected on the same Avalon network. Using another clock would
cause Qsys to automatically instantiate clock-crossing logic, potentially degrading
performance.

■ The afi_clk clock rate is determined by the Rate on Avalon-MM interface setting
on the UniPHY PHY Settings tab. The afi_half_clk clock interface has a rate
which is further halved. For example, if Rate on Avalon-MM interface is set to
Half, the afi_clk rate is half of the memory clock frequency, and the
afi_half_clk is one quarter of the memory clock frequency.

Figure 9–8. Qsys System
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

9–10 Chapter 9: Functional Description—Example Designs
Document Revision History
■ The global_reset input interface can be used to reset the UniPHY memory
interface and the PLL contained therein. The soft_reset input interface can be
used to reset the UniPHY memory interface but allow the PLL to remain locked.
You can use the soft_reset input to reset the memory but to maintain the AFI
clock output to other components in the system.

■ Do not connect a reset request from a system component (such as a Nios II
processor) to the UniPHY global_reset_n port. Doing so would reset the UniPHY
PLL, which would propagate as a reset condition on afi_reset back to the
requester; the resulting reset loop could freeze the system.

■ Qsys generates an interconnect fabric for each Avalon network. The interconnect
fabric is capable of burst and width adaptation. If your UniPHY memory
controller is configured with an Avalon interface data width which is wider than
an Avalon-MM master interface connected to it, you must enable the byte enable
signal on the Avalon-MM slave interface, by checking the Enable Avalon-MM
byte-enable signal checkbox on the Controller Settings tab in the parameter
editor.

■ If you have a point-to-point connection from an Avalon-MM master to the
Avalon-MM slave interface on the memory controller, and if the Avalon data
width and burst length settings match, then the Avalon interface data widths may
be multiples of either a power of two or nine. Otherwise, you must enable
Generate power-of-2 data bus widths for Qsys or SOPC Builder on the
Controller Settings tab of the parameter editor.

Document Revision History
Table 9–2 lists the revision history for this document.

Table 9–2. Document Revision History

Date Version Changes

November 2012 1.3
■ Added block diagrams of simulation and synthesis example designs for RLDRAM 3 and

Ping Pong PHY.

■ Changed chapter number from 7 to 9.

June 2012 1.2 ■ Added Feedback icon.

November 2011 1.1

■ Added Synthesis Example Design and Simulation Example Design sections.

■ Added Creating and Connecting the UniPHY Memory Interface and the Traffic Generator
in Qsys.

■ Revised Example Driver section as Traffic Generator and BIST Engine.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

November 2012 Altera Corporation
Section II. UniPHY Reference
This section provides reference information about the UniPHY-based external
memory interface IP.

This section includes the following chapters:

■ Chapter 10, Introduction to UniPHY IP

■ Chapter 11, Latency for UniPHY IP

■ Chapter 12, Timing Diagrams for UniPHY IP

■ Chapter 13, UniPHY External Memory Interface Debug Toolkit

■ Chapter 14, Upgrading to UniPHY-based Controllers from ALTMEMPHY-based
Controllers

f For information about the revision history for chapters in this section, refer to
“Document Revision History” in each individual chapter.
External Memory Interface Handbook
Volume 3: Reference Material

II–2 Section II: UniPHY Reference
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_008-2.1

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_008-2.1
10. Introduction to UniPHY IP
The Altera® DDR2, DDR3, and LPDDR2 SDRAM controllers with UniPHY, QDR II
and QDR II+ SRAM controllers with UniPHY, RLDRAM II controller with UniPHY,
and RLDRAM 3 PHY-only IP provide low latency, high-performance, feature-rich
interfaces to industry-standard memory devices. The DDR2, QDR II and QDR II+,
and RLDRAM II controllers with UniPHY offer full-rate and half-rate interfaces, while
the DDR3 controller with UniPHY and the RLDRAM 3 PHY-only IP offer half-rate
and quarter-rate interfaces, and the LPDDR2 controller with UniPHY offers a half-rate
interface.

The UniPHY IP is an interface between a memory controller and memory devices and
performs read and write operations to the memory. The UniPHY IP creates the
datapath between the memory device and the memory controller and user logic in
various Altera devices.

The MegaWizard™ interface generates an example top-level project, consisting of an
example driver, and your controller custom variation. The controller instantiates an
instance of the UniPHY datapath.

The example top-level project is a fully-functional design that you can simulate,
synthesize, and use in hardware. The example driver is a self-test module that issues
read and write commands to the controller and checks the read data to produce the
pass, fail, and test-complete signals.

1 For device families not supported by the UniPHY-based designs, use the Altera
ALTMEMPHY-based High Performance SDRAM Controller IP core.

If the UniPHY datapath does not match your requirements, you can create your own
memory interface datapath using the ALTDLL, ALTDQ_DQS, ALTDQ_DQS2,
ALTDQ, or ALTDQS megafunctions, available in the Quartus® II software, but you
are then responsible for all aspects of the design including timing analysis and design
constraints.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_008
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_008-2.1 (EMI HB, Vol 3, Ch 10: Introduction to UniPHY IP)

10–2 Chapter 10: Introduction to UniPHY IP
Release Information
Release Information
Table 10–1 provides information about this release of the DDR2 and DDR3 SDRAM,
QDR II and QDR II+ SRAM, and RLDRAM II controllers with UniPHY, and the
RLDRAM 3 PHY-only IP.

Altera verifies that the current version of the Quartus II software compiles the
previous version of each MegaCore function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release.

Device Family Support
Table 10–2 defines the device support levels for Altera IP cores.

Table 10–3 shows the level of support offered by each of the UniPHY-based external
memory interface protocols for Altera device families.

Table 10–1. Release Information

Item
Protocol

DDR2, DDR3, LPDDR2 QDR II RLDRAM II RLDRAM 3

Version 12.1 12.1 12.1 12.1

Release Date November 2012 November 2012 November 2012 November 2012

Ordering Code

IP-DDR2/UNI

IP-DDR3/UNI

IP-SDRAM/LPDDR2

IP-QDRII/UNI IP-RLDII/UNI —

Table 10–2. Altera IP Core Device Support Levels

FPGA Device Families HardCopy Device Families

Preliminary support—The IP core is verified with
preliminary timing models for this device family. The IP core
meets all functional requirements, but might still be
undergoing timing analysis for the device family. It can be
used in production designs with caution.

HardCopy Companion—The IP core is verified with
preliminary timing models for the HardCopy companion
device. The IP core meets all functional requirements, but
might still be undergoing timing analysis for the HardCopy
device family. It can be used in production designs with
caution.

Final support—The IP core is verified with final timing
models for this device family. The IP core meets all
functional and timing requirements for the device family and
can be used in production designs.

HardCopy Compilation—The IP core is verified with final
timing models for the HardCopy device family. The IP core
meets all functional and timing requirements for the device
family and can be used in production designs.

Table 10–3. Device Family Support (Part 1 of 2)

Device Family
Support Level

DDR2 DDR3 LPDDR2 QDR II RLDRAM II RLDRAM 3

Arria® II GX No support No support No support Final No support No support

Arria II GZ Final Final No support Final Final No support

Arria V Refer to the What’s New in Altera IP page of the Altera website. No support
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/products/ip/news/ip-whats-new.html

Chapter 10: Introduction to UniPHY IP 10–3
Features
f For information about features and supported clock rates for external memory
interfaces, refer to the External Memory Specifiation Estimator.

Features
Table 10–4 summarizes key feature support for Altera’s UniPHY-based external
memory interfaces.

Arria V GZ
Refer to the What’s New in
Altera IP page of the Altera
website.

No support Refer to the What’s New in Altera IP page of the Altera
website.

Cyclone V Refer to the What’s New in Altera IP page of the Altera website. No support

HardCopy® III
Refer to the What’s New in
Altera IP page of the Altera
website.

No support Refer to the What’s New in Altera
IP page of the Altera website. No support

HardCopy IV
Refer to the What’s New in
Altera IP page of the Altera
website.

No support Refer to the What’s New in Altera
IP page of the Altera website. No support

Stratix® III Final
Final (Only Vcc
= 1.1V
supported)

No support Final Final (Only Vcc =
1.1V supported) No support

Stratix IV Final Final No support Final Final No support

Stratix V
Refer to the What’s New in
Altera IP page of the Altera
website.

No support Refer to the What’s New in Altera IP page of the Altera
website.

Other device
families No support No support No support No support No support No support

Table 10–3. Device Family Support (Part 2 of 2)

Device Family
Support Level

DDR2 DDR3 LPDDR2 QDR II RLDRAM II RLDRAM 3

Table 10–4. Feature Support (Part 1 of 2)

Key Feature
Protocol

DDR2 DDR3 LPDDR2 QDR II RLDRAM II RLDRAM 3

High-performance controller II (HPC II) v v v — — —

Half-rate core logic and user interface v v v v v v

Full-rate core logic and user interface v — — v v —

Quarter-rate core logic and user interface — v (1) — — — v

Dynamically generated Nios II-based
sequencer v v v v v v

Choice of RTL-based or dynamically
generated Nios® II-based sequencer — — — v (2) (3) v 3 —

Available Efficiency Monitor and Protocol
Checker v v v — v v

DDR3L support — v (1) — — — —

UDIMM and RDIMM in any form factor v v (4) (5) — — — —
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

http://www.altera.com/technology/memory/estimator/mem-emif-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=external%20memory%20interface%20spec
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html

10–4 Chapter 10: Introduction to UniPHY IP
Features
Multiple components in a single-rank
UDIMM or RDIMM layout v v — — — —

LRDIMM — v — — — —

Burst length (half-rate) 8 — 8 or 16 4 4 or 8 2, 4, or 8

Burst length (full-rate) 4 — — 2 or 4 2, 4, or 8 —

Burst length (quarter-rate) — 8 — — — 2, 4, or 8

Burst length of 8 and burst chop of 4 (on
the fly) — v — — — —

With leveling

v
(240 MHz

and
above) (10)

v (9) (10) — — — v

Without leveling
v

(below
240 MHz)

— v — — —

Maximum data width 144
bits (6)

144
bits (6) 32 bits 72 bits 72 bits 72 bits

Reduced controller latency — — — v (2) (7) v (2) (7) —

Read latency — — —
1.5 (QDR II)

2 or 2.5
(QDR II+)

— —

ODT (in memory device) — v — v (QDR II
+ only) v v

x36 emulation mode — — — v (8) (11) — —

Notes:

(1) For Arria V GZ and Stratix V devices only.
(2) Not available in Arria II GX devices.
(3) Nios II-based sequencer not available for full-rate interfaces.
(4) For DDR3, the DIMM form is not supported in Arria II GX, Arria II GZ, Arria V, or Cyclone V devices.
(5) Arria II GZ uses leveling logic for discrete devices in DDR3 interfaces to achieve high speeds, but that leveling cannot be used

to implement the DIMM form in DDR3 interfaces.
(6) For any interface with data width above 72 bits, you must use Quartus II software timing analysis of your complete design to

determine the maximum clock rate.
(7) The maximum achievable clock rate when reduced controller latency is selected must be attained through Quatrus II software

timing analysis of your complete design.
(8) Emulation mode allows emulation of a larger memory-width interface using multiple smaller memory-width interfaces. For

example, an x36 QDR II or QDR II+ interface can be emulated using two x18 interfaces.
(9) The leveling delay on the board between first and last DDR3 SDRAM component laid out as a DIMM must be less than 0.69 tCK.
(10) Leveling is not available for Arria V or Cyclone V devices.
(11) x36 emulation mode is not supported in Arria V, Arria V GZ, Cyclone V, or Stratix V devices.

Table 10–4. Feature Support (Part 2 of 2)

Key Feature
Protocol

DDR2 DDR3 LPDDR2 QDR II RLDRAM II RLDRAM 3
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 10: Introduction to UniPHY IP 10–5
Unsupported Features
Unsupported Features
Table 10–4 summarizes key feature support. Device, protocol, and architecture
support is summarized in the Protocol Support Matrix in chapter 1 of volume 1 of this
handbook.

System Requirements
The DDR2, DDR3, and LPDDR2 SDRAM controllers with UniPHY, QDR II and QDR
II+ SRAM controllers with UniPHY, RLDRAM II controller with UniPHY, and
RLDRAM 3 PHY-only IP are part of the MegaCore IP Library, which Altera distributes
with the Quartus II software.

f For system requirements and installation instructions, refer to Altera Software
Installation and Licensing.

MegaCore Verification
Altera has carried out extensive random, directed tests with functional test coverage
using industry-standard models to ensure the functionality of the external memory
controllers with UniPHY. Altera’s functional verification of the external memory
controllers with UniPHY use modified Denali models, with certain assertions
disabled.

Resource Utilization
This section lists resource utilization information for the external memory controllers
with UniPHY for supported device families.

DDR2, DDR3, and LPDDR2 SDRAM Controllers with UniPHY
Table 10–5 shows typical resource usage of the DDR2, DDR3, and LPDDR2 SDRAM
controllers with UniPHY in the current version of Quartus II software for Arria V
devices.

Table 10–5. Resource Utilization in Arria V Devices (Part 1 of 2)

Protocol
Memory
Width
(Bits)

Combinational
ALUTS

Logic
Registers

M10K
Blocks

Memory
(Bits)

Hard
Memory

Controiler

Controller

DDR2
(Half rate)

8 2286 1404 4 6560 0

64 2304 1379 17 51360 0

DDR2
(Fullrate) 32 0 0 0 0 1

DDR3
(Half rate)

8 2355 1412 4 6560 0

64 2372 1440 17 51360 0

DDR3
(Full rate) 32 0 0 0 0 1
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

10–6 Chapter 10: Introduction to UniPHY IP
Resource Utilization
Table 10–6 shows typical resource usage of the DDR2 and DDR3 SDRAM controllers
with UniPHY in the current version of Quartus II software for Arria II GZ devices.

LPDDR2
(Half rate)

8 2230 1617 4 6560 0

32 2239 1600 10 25760 0

PHY

DDR2
(Half rate)

8 1652 2015 34 141312 0

64 1819 2089 34 174080 0

DDR2
(Fullrate) 32 1222 1415 34 157696 1

DDR3
(Half rate)

8 1653 1977 34 141312 0

64 1822 2090 34 174080 0

DDR3
(Full rate) 32 1220 1428 34 157696 0

LPDDR2
(Half rate)

8 2998 3187 35 150016 0

32 3289 3306 35 174592 0

Total

DDR2
(Half rate)

8 4555 3959 39 148384 0

64 4991 4002 52 225952 0

DDR2
(Fullrate) 32 1776 1890 35 158208 1

DDR3
(Half rate)

8 4640 3934 39 148384 0

64 5078 4072 52 225952 0

DDR3
(Full rate) 32 1774 1917 35 158208 1

LPDDR2
(Half rate)

8 5228 4804 39 156576 0

32 5528 4906 45 200352 0

Table 10–6. Resource Utilization in Arria II GZ Devices (Part 1 of 2)

Protocol
Memory
Width
(Bits)

Combinational
ALUTS

Logic
Registers

Mem
ALUTs

M9K
Blocks

M144K
Blocks

Memory
(Bits)

Controller

DDR2
(Half rate)

8 1,781 1,092 10 2 0 4,352

16 1,784 1,092 10 4 0 8,704

64 1,818 1,108 10 15 0 34,560

72 1,872 1,092 10 17 0 39,168

Table 10–5. Resource Utilization in Arria V Devices (Part 2 of 2)

Protocol
Memory
Width
(Bits)

Combinational
ALUTS

Logic
Registers

M10K
Blocks

Memory
(Bits)

Hard
Memory

Controiler
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 10: Introduction to UniPHY IP 10–7
Resource Utilization
DDR2
(Full rate)

8 1,851 1,124 10 2 0 2,176

16 1,847 1,124 10 2 0 4,352

64 1,848 1,124 10 8 0 17,408

72 1,852 1,124 10 9 0 19,574

DDR3
(Half rate)

8 1,869 1,115 10 2 0 4,352

16 1,868 1,115 10 4 0 8,704

64 1,882 1,131 10 15 0 34,560

72 1,888 1,115 10 17 0 39,168

PHY

DDR2
(Half rate)

8 2,560 2,042 183 22 0 157,696

16 2,730 2,262 183 22 0 157,696

64 3,606 3,581 183 22 0 157,696

72 3,743 3,796 183 22 0 157,696

DDR2
(Full rate)

8 2,494 1,934 169 22 0 157,696

16 2,652 2,149 169 22 0 157,696

64 3,519 3,428 169 22 0 157,696

72 3,646 3,642 169 22 0 157,696

DDR3
(Half rate)

8 2,555 2,032 187 22 0 157,696

16 3,731 2,251 187 22 0 157,696

64 3,607 3,572 187 22 0 157,696

72 3,749 3,788 187 22 0 157,696

Total

DDR2
(Half rate)

8 4,341 3,134 193 24 0 4,374

16 4,514 3,354 193 26 0 166,400

64 5,424 4,689 193 37 0 192,256

72 5,615 4,888 193 39 0 196,864

DDR2
(Full rate)

8 4,345 3,058 179 24 0 159,872

16 4,499 3,273 179 24 0 162,048

64 5,367 4,552 179 30 0 175,104

72 5,498 4,766 179 31 0 177,280

DDR3
(Half rate)

8 4,424 3,147 197 24 0 162,048

16 5,599 3,366 197 26 0 166,400

64 5,489 4,703 197 37 0 192,256

72 5,637 4,903 197 39 0 196,864

Table 10–6. Resource Utilization in Arria II GZ Devices (Part 2 of 2)

Protocol
Memory
Width
(Bits)

Combinational
ALUTS

Logic
Registers

Mem
ALUTs

M9K
Blocks

M144K
Blocks

Memory
(Bits)
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

10–8 Chapter 10: Introduction to UniPHY IP
Resource Utilization
Table 10–7 shows typical resource usage of the DDR2 and DDR3 SDRAM controllers
with UniPHY in the current version of Quartus II software for Stratix III devices.

Table 10–7. Resource Utilization in Stratix III Devices (Part 1 of 2)

Protocol
Memory
Width
(Bits)

Combinational
ALUTS

Logic
Registers

Mem
ALUTs

M9K
Blocks

M144K
Blocks

Memory
(Bits)

Controller

DDR2
(Half rate)

8 1,807 1,058 0 4 0 4,464

16 1,809 1,058 0 6 0 8,816

64 1,810 1,272 10 14 0 32,256

72 1,842 1,090 10 17 0 39,168

DDR2
(Full rate)

8 1,856 1,093 0 4 0 2,288

16 1,855 1,092 0 4 0 4,464

64 1,841 1,092 0 10 0 17,520

72 1,834 1,092 0 11 0 19,696

DDR3
(Half rate)

8 1,861 1,083 0 4 0 4,464

16 1,863 1,083 0 6 0 8,816

64 1,878 1,295 10 14 0 32,256

72 1,895 1,115 10 17 0 39,168

PHY

DDR2
(Half rate)

8 2,591 2,100 218 6 1 157,696

16 2,762 2,320 218 6 1 157,696

64 3,672 3,658 242 6 1 157,696

72 3,814 3,877 242 6 1 157,696

DDR2
(Full rate)

8 2,510 1,986 200 6 1 157,696

16 2,666 2,200 200 6 1 157,696

64 3,571 3,504 224 6 1 157,696

72 3,731 3,715 224 6 1 157,696

DDR3
(Half rate)

8 2,591 2,094 224 6 1 157,696

16 2,765 2,314 224 6 1 157,696

64 3,680 3,653 248 6 1 157,696

72 3,819 3,871 248 6 1 157,696

Total

DDR2
(Half rate)

8 4,398 3,158 218 10 1 162,160

16 4,571 3,378 218 12 1 166,512

64 5,482 4,930 252 20 1 189,952

72 5,656 4,967 252 23 1 196,864

DDR2
(Full rate)

8 4,366 3,079 200 10 1 159,984

16 4,521 3,292 200 10 1 162,160

64 5,412 4,596 224 16 1 175,216

72 5,565 4,807 224 17 1 177,392
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 10: Introduction to UniPHY IP 10–9
Resource Utilization
Table 10–8 shows typical resource usage of the DDR2 and DDR3 SDRAM controllers
with UniPHY in the current version of Quartus II software for Stratix IV devices.

DDR3
(Half rate)

8 4,452 3,177 224 10 1 162,160

16 4,628 3,397 224 12 1 166,512

64 5,558 4,948 258 20 1 189,952

72 5,714 4,986 258 23 1 196,864

Table 10–8. Resource Utilization in Stratix IV Devices (Part 1 of 2)

Protocol
Memory
Width
(Bits)

Combinational
ALUTS

Logic
Registers

Mem
ALUTs

M9K
Blocks

M144K
Blocks

Memory
(Bits)

Controller

DDR2
(Half rate)

8 1,785 1,090 10 2 0 4,352

16 1,785 1,090 10 4 0 8,704

64 1,796 1,106 10 15 0 34,560

72 1,798 1,090 10 17 0 39,168

DDR2
(Full rate)

8 1,843 1,124 10 2 0 2,176

16 1,845 1,124 10 2 0 4,352

64 1,832 1,124 10 8 0 17,408

72 1,834 1,124 10 9 0 19,584

DDR3
(Half rate)

8 1,862 1,115 10 2 0 4,352

16 1,874 1,115 10 4 0 8,704

64 1,880 1,131 10 15 0 34,560

72 1,886 1,115 10 17 0 39,168

PHY

DDR2
(Half rate)

8 2,558 2,041 183 6 1 157,696

16 2,728 2,262 183 6 1 157,696

64 3,606 3,581 183 6 1 157,696

72 3,748 3,800 183 6 1 157,696

DDR2
(Full rate)

8 2,492 1,934 169 6 1 157,696

16 2,652 2,148 169 6 1 157,696

64 3,522 3,428 169 6 1 157,696

72 3,646 3,641 169 6 1 157,696

DDR3
(Half rate)

8 2,575 2,031 187 6 1 157,696

16 2,732 2,251 187 6 1 157,696

64 3,602 3,568 187 6 1 157,696

72 3,750 3,791 187 6 1 157,696

Total

Table 10–7. Resource Utilization in Stratix III Devices (Part 2 of 2)

Protocol
Memory
Width
(Bits)

Combinational
ALUTS

Logic
Registers

Mem
ALUTs

M9K
Blocks

M144K
Blocks

Memory
(Bits)
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

10–10 Chapter 10: Introduction to UniPHY IP
Resource Utilization
Table 10–9 shows typical resource usage of the DDR2 and DDR3 SDRAM controllers
with UniPHY in the current version of Quartus II software for Arria V GZ and
Stratix V devices.

DDR2
(Half rate)

8 4,343 3,131 193 8 1 162,048

16 4,513 3,352 193 10 1 166,400

64 5,402 4,687 193 21 1 192,256

72 5,546 4,890 193 23 1 196,864

DDR2
(Full rate)

8 4,335 3,058 179 8 1 159,872

16 4,497 3,272 179 8 1 162,048

64 5,354 4,552 179 14 1 175,104

72 5,480 4,765 179 15 1 177,280

DDR3
(Half rate)

8 4,437 3,146 197 8 1 162,048

16 4,606 3,366 197 10 1 166,400

64 5,482 4,699 197 21 1 192,256

72 5,636 4,906 197 23 1 196,864

Table 10–9. Resource Utilization in Arria V GZ and Stratix V Devices (Part 1 of 2)

Protocol
Memory
Width
(Bits)

Combinational
LCs

Logic
Registers

M20K
Blocks Memory (Bits)

Controller

DDR2
(Half rate)

8 1,787 1,064 2 4,352

16 1,794 1,064 4 8,704

64 1,830 1,070 14 34,304

72 1,828 1,076 15 38,400

DDR2
(Full rate)

8 2,099 1,290 2 2,176

16 2,099 1,290 2 4,352

64 2,126 1,296 7 16,896

72 2,117 1,296 8 19,456

DDR3
(Quarter

rate)

8 2,101 1,370 4 8,704

16 2,123 1,440 7 16,896

64 2,236 1,885 28 69,632

72 2,102 1,870 30 74,880

DDR3
(Half rate)

8 1,849 1,104 2 4,352

16 1,851 1,104 4 8,704

64 1,853 1,112 14 34,304

72 1,889 1,116 15 38,400

Table 10–8. Resource Utilization in Stratix IV Devices (Part 2 of 2)

Protocol
Memory
Width
(Bits)

Combinational
ALUTS

Logic
Registers

Mem
ALUTs

M9K
Blocks

M144K
Blocks

Memory
(Bits)
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 10: Introduction to UniPHY IP 10–11
Resource Utilization
PHY

DDR2
(Half rate)

8 2,567 1,757 13 157,696

16 2,688 1,809 13 157,696

64 3,273 2,115 13 157,696

72 3,377 2,166 13 157,696

DDR2
(Full rate)

8 2,491 1,695 13 157,696

16 2,578 1,759 13 157,696

64 3,062 2,137 13 157,696

72 3,114 2,200 13 157,696

DDR3
(Quarter

rate)

8 2,209 2,918 18 149,504

16 2,355 3,327 18 157,696

64 3,358 5,228 18 182,272

72 4,016 6,318 18 198,656

DDR3
(Half rate)

8 2,573 1,791 13 157,696

16 2,691 1,843 13 157,696

64 3,284 2,149 13 157,696

72 3,378 2,200 13 157,696

Total

DDR2
(Half rate)

8 4,354 2,821 15 162,048

16 4,482 2,873 17 166,400

64 5,103 3,185 27 192,000

72 5,205 3,242 28 196,096

DDR2
(Full rate)

8 4,590 2,985 15 159,872

16 4,677 3,049 15 162,048

64 5,188 3,433 20 174,592

72 5,231 3,496 21 177,152

DDR3
(Quarter

rate)

8 4,897 4,844 23 158,720

16 5,065 5,318 26 175,104

64 6,183 7,669 47 252,416

72 6,705 8,744 49 274,048

DDR3
(Half rate)

8 4,422 2,895 15 162,048

16 4,542 2,947 17 166,400

64 5,137 3,261 27 192,000

72 5,267 3,316 28 196,096

Table 10–9. Resource Utilization in Arria V GZ and Stratix V Devices (Part 2 of 2)

Protocol
Memory
Width
(Bits)

Combinational
LCs

Logic
Registers

M20K
Blocks Memory (Bits)
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

10–12 Chapter 10: Introduction to UniPHY IP
Resource Utilization
QDR II and QDR II+ SRAM Controllers with UniPHY
Table 10–10 shows typical resource usage of the QDR II and QDR II+ SRAM
controllers with UniPHY in the current version of Quartus II software for Arria V
devices.
8

Table 10–11 shows typical resource usage of the QDR II and QDR II+ SRAM
controllers with UniPHY in the current version of Quartus II software for Arria II GX
devices.

Table 10–10. Resource Utilization in Arria V Devices

PHY Rate
Memory
Width
(Bits)

Combinational
ALUTs

Logic
Registers

M10K
Blocks

Memory
(Bits)

Hard
Memory

Controiler

Controller

Half

9 98 120 0 0 0

18 96 156 0 0 0

36 94 224 0 0 0

PHY

Half

9 234 257 0 0 0

18 328 370 0 0 0

36 522 579 0 0 0

Total

Half

9 416 377 0 0 0

18 542 526 0 0 0

36 804 803 0 0 0

Table 10–11. Resource Utilization in Arria II GX Devices

PHY
Rate

Memory
Width
(Bits)

Combinational
ALUTS Logic Registers Memory

(Bits)
M9K

Blocks

Half

9 620 701 0 0

18 921 1122 0 0

36 1534 1964 0 0

Full

9 584 708 0 0

18 850 1126 0 0

36 1387 1962 0 0
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 10: Introduction to UniPHY IP 10–13
Resource Utilization
Table 10–12 shows typical resource usage of the QDR II and QDR II+ SRAM
controllers with UniPHY in the current version of Quartus II software for Arria II GZ,
Arria V GZ, Stratix III, Stratix IV, and Stratix V devices.

RLDRAM II Controller with UniPHY
Table 10–13 shows typical resource usage of the RLDRAM II controller with UniPHY
in the current version of Quartus II software for Arria V devices.

Table 10–12. Resource Utilization in Arria II GZ, Arria V GZ, Stratix III, Stratix IV, and Stratix V
Devices

PHY
Rate

Memory
Width
(Bits)

Combinational
ALUTS Logic Registers Memory

(Bits)
M9K

Blocks

Half

9 602 641 0 0

18 883 1002 0 0

36 1457 1724 0 0

Full

9 586 708 0 0

18 851 1126 0 0

36 1392 1962 0 0

Table 10–13. Resource Utilization in Arria V Devices

PHY Rate Memory
Width (Bits)

Combinational
ALUTs

Logic
Registers

M10K
Blocks

Memory
(Bits)

Hard
Memory

Controller

Controller

Half

9 353 303 1 288 0

18 350 324 2 576 0

36 350 402 4 1152 0

PHY

Half

9 295 474 0 0 0

18 428 719 0 0 0

36 681 1229 0 0 0

Total

Half

9 705 777 1 288 0

18 871 1043 2 576 0

36 1198 1631 4 1152 0
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

10–14 Chapter 10: Introduction to UniPHY IP
Document Revision History
Table 10–14 shows typical resource usage of the RLDRAM II controller with UniPHY
in the current version of Quartus II software for Arria II GZ, Arria V GZ, Stratix III,
Stratix IV, and Stratix V devices.

Document Revision History
Table 10–15 lists the revision history for this document.

Table 10–14. Resource Utilization in Arria II GZ, Arria V GZ, Stratix III, Stratix IV, and Stratix V
Devices (1)

PHY
Rate

Memory
Width
(Bits)

Combinational
ALUTS Logic Registers Memory

(Bits)
M9K

Blocks

Half

9 829 763 288 1

18 1145 1147 576 2

36 1713 1861 1152 4

Full

9 892 839 288 1

18 1182 1197 576 1

36 1678 1874 1152 2

Note to Table 10–14:

(1) Half-rate designs use the same amount of memory as full-rate designs, but the data is organized in a different way
(half the width, double the depth) and the design may need more M9K resources.

Table 10–15. Document Revision History

Date Version Changes

November 2012 2.1

■ Added RLDRAM 3 support

■ Added LRDIMM support

■ Added Arria V GZ support

■ Changed chapter number from 8 to 10.

June 2012 2.0

■ Added LPDDR2 support.

■ Moved Protocol Support Matrix to Volume 1.

■ Added Feedback icon.

November 2011 1.1

■ Combined Release Information, Device Family Support, Features list, and Unsupported
Features list for DDR2, DDR3, QDR II, and RLDRAM II.

■ Added Protocol Support Matrix.

■ Combined Resource Utilization information for DDR2, DDR3, QDR II, and RLDRAM II.
Updated data for 11.1.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_009-2.1

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_009-2.1
11. Latency for UniPHY IP
Altera defines read and write latencies in terms of memory clock cycles. There are two
types of latencies that exists while designing with memory controllers—read and
write latencies, which have the following definitions:

■ Read latency—the amount of time it takes for the read data to appear at the local
interface after initiating the read request.

■ Write latency—the amount of time it takes for the write data to appear at the
memory interface after initiating the write request.

Latency of the memory interface depends on its configuration and traffic patterns,
therefore you should simulate your system to determine precise latency values. The
numbers presented in this chapter are typical values meant only as guidelines.

Latency found in simulation may differ from latency found on the board, because
functional simulation does not consider board trace delays and differences in process,
voltage, and temperature. For a given design on a given board, the latency found may
differ by one clock cycle (for full-rate designs), or two clock cycles (for quarter-rate or
half-rate designs) upon resetting the board. The same design can yield different
latencies on different boards.

1 For a half-rate controller, the local side frequency is half of the memory interface
frequency. For a full-rate controller, the local side frequency is equal to the memory
interface frequency.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_009
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_009-2.1 (EMI HB, Vol 3, Ch 11: Latency for UniPHY IP)

11–2 Chapter 11: Latency for UniPHY IP
DDR2, DDR3, and LPDDR2
DDR2, DDR3, and LPDDR2
Table 11–1 shows the DDR2 SDRAM latency in full-rate memory clock cycles.

Table 11–2 shows the DDR3 SDRAM latency in full-rate memory clock cycles.

Table 11–1. DDR2 SDRAM Controller Latency (In Full-Rate Memory Clock Cycles) (1) (2)

Latency in Full-Rate Memory Clock Cycles

Rate
Controller
Address &
Command

PHY Address
& Command

Memory
Maximum

Read

PHY Read
Return

Controller
Read Return Round Trip

Round Trip
Without
Memory

Half 10
EWL: 3

3–7 6 4
EWL: 26–30 EWL: 23

OWL: 4 OWL: 27–31 OWL: 24

Full 5 0 3–7 4 10 22–26 19

Notes:

(1) EWL = Even write latency
(2) OWL = Odd write latency

Table 11–2. DDR3 SDRAM Controller Latency (In Full-Rate Memory Clock Cycles) (1) (2) (3) (4)

Latency in Full-Rate Memory Clock Cycles

Rate
Controller
Address &
Command

PHY Address
& Command

Memory
Maximum

Read

PHY Read
Return

Controller
Read Return Round Trip

Round Trip
Without
Memory

Quarter 20

EWER : 8

5–11

EWER: 16

8

EWER:
57–63 EWER: 52

EWOR: 8 EWOR: 17 EWOR:
58–64 EWOR: 53

OWER: 11 OWER: 17 OWER:
61–67 OWER: 56

OWOR: 11 OWOR: 14 OWOR:
58–64 OWOR: 53

Half 10

EWER: 3

5–11

EWER: 7

4

EWER:
29–35 EWER: 24

EWOR: 3 EWOR: 6 EWOR:
28–34 EWOR: 23

OWER: 4 OWER: 6 OWER:
29–35 OWER: 24

OWOR: 4 OWOR: 7 OWOR:
30–36 OWOR: 25

Full 5 0 5–11 4 10 24–30 19

Notes:

(1) EWER = Even write latency and even read latency
(2) EWOR = Even write latency and odd read latency
(3) OWER = Odd write latency and even read latency
(4) OWOR = Odd write latency and odd read latency
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 11: Latency for UniPHY IP 11–3
QDR II and QDR II+
Table 11–3 shows the LPDDR2 SDRAM latency in full-rate memory clock cycles.

QDR II and QDR II+
Table 11–4 shows the latency in full-rate memory clock cycles.

Table 11–3. LPDDR2 SDRAM Controller Latency (In Full-Rate Memory Clock Cycles) (1) (2) (3) (4)

Latency in Full-Rate Memory Clock Cycles

Rate
Controller
Address &
Command

PHY Address
& Command

Memory
Maximum

Read

PHY Read
Return

Controller
Read Return Round Trip

Round Trip
Without
Memory

Half 10

EWER: 3

5–11

EWER: 7

4

EWER:
29–35 EWER: 24

EWOR: 3 EWOR: 6 EWOR:
28–34 EWOR: 23

OWER: 4 OWER: 6 OWER:
29–35 OWER: 24

OWOR: 4 OWOR: 7 OWOR:
30–36 OWOR: 25

Full 5 0 5–11 4 10 24–30 19

Notes:

(1) EWER = Even write latency and even read latency
(2) EWOR = Even write latency and odd read latency
(3) OWER = Odd write latency and even read latency
(4) OWOR = Odd write latency and odd read latency

Table 11–4. QDR II Latency (In Full-Rate Memory Clock Cycles) (1)

Latency in Full-Rate Memory Clock Cycles

Rate
Controller
Address &
Command

PHY Address
& Command

Memory
Maximum

Read

PHY Read
Return

Controller
Read Return Round Trip

Round Trip
Without
Memory

Half 2 1 1.5, 2.0, 2.5

RL 1.5: 5.5

0

RL 1.5: 10 RL 1.5: 8.5

RL 2.0: 5.0 RL 2.0: 10 RL 2.0: 8

RL 2.5 :4.5 RL 2.5: 10 RL 2.5: 7.5

Full 1 1 1.5, 2.0, 2.5

RL 1.5: 4.5

0

RL 1.5: 8 RL 1.5: 6.5

RL 2.0: 4.0 RL 2.0: 8 RL 2.0: 6.0

RL 2.5 :4.5 RL 2.5: 9 RL 2.5: 6.5

Note:

(1) RL = Read latency
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

11–4 Chapter 11: Latency for UniPHY IP
RLDRAM II
RLDRAM II
Table 11–5 shows the latency in full-rate memory clock cycles.

RLDRAM 3
Table 11–6 shows the latency in full-rate memory clock cycles.

Variable Controller Latency
The variable controller latency feature allows you to take advantage of lower latency
for variations designed to run at lower frequency. When deciding whether to vary the
controller latency from the default value of 1, be aware of the following
considerations:

■ Reduced latency can help achieve a reduction in resource usage and clock cycles in
the controller, but might result in lower fMAX.

■ Increased latency can help acheive greater fMAX, but might consume more clock
cycles in the controller and result in increased resource usage.

If you select a latency value that is inappropriate for the target frequency, the system
displays a warning message in the text area at the bottom of the parameter editor.

You can change the controller latency by altering the value of the Controller Latency
setting in the Controller Settings section of the General Settings tab of the QDR II
and QDR II+ SRAM controller with UniPHY parameter editor.

Table 11–5. RLDRAM II Latency (In Full-Rate Memory Clock Cycles) (1) (2)

Latency in Full-Rate Memory Clock Cycles

Rate
Controller
Address &
Command

PHY Address
& Command

Memory
Maximum

Read

PHY Read
Return

Controller
Read Return Round Trip

Round Trip
Without
Memory

Half 4
EWL: 1

3–8
EWL: 4

0
EWL: 12–17 EWL: 9

OWL: 2 OWL: 4 OWL: 13–18 OWL: 10

Full 2 1 3–8 4 0 10–15 7

Notes:

(1) EWL = Even write latency
(2) OWL = Odd write latency

Table 11–6. RLDRAM 3 Latency (In Full-Rate Memory Clock Cycles)

Latency in Full-Rate Memory Clock Cycles

Rate PHY Address &
Command

Memory Maximum
Read

PHY Read
Return

Controller
Read Return Round Trip

Round Trip
Without
Memory

Quarter 7 3–16 18 0 28–41 25

Half 4 3–16 6 0 13–26 10
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 11: Latency for UniPHY IP 11–5
Document Revision History
Document Revision History
Table 11–7 lists the revision history for this document.

Table 11–7. Document Revision History

Date Version Changes

November 2012 2.1
■ Added latency information for RLDRAM 3.

■ Changed chapter number from 9 to 11.

June 2012 2.0
■ Added latency information for LPDDR2.

■ Added Feedback icon.

November 2011 1.0

■ Consolidated latency information from 11.0 DDR2 and DDR3 SDRAM Controller with
UniPHY User Guide, QDR II and QDR II+ SRAM Controller with UniPHY User Guide, and
RLDRAM II Controller with UniPHY IP User Guide.

■ Updated data for 11.1.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

11–6 Chapter 11: Latency for UniPHY IP
Document Revision History
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_010-2.1

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_010-2.1
12. Timing Diagrams for UniPHY IP
This chapter contains timing diagrams for the UniPHY-based external memory
interface IP.

DDR2 and DDR3 Timing Diagrams
This section contains timing diagrams for DDR2 and DDR3 protocols.

Figure 12–1 through Figure 12–8 present the following timing diagrams, based on a
Stratix III device:

■ Full-Rate DDR2 SDRAM Read

■ Full-Rate DDR2 SDRAM Write

■ Half-Rate DDR2 SDRAM Read

■ Half-Rate DDR2 SDRAM Write

■ Half-Rate DDR3 SDRAM Read

■ Half-Rate DDR3 SDRAM Writes

■ Quarter-Rate DDR3 SDRAM Reads

■ Quarter-Rate DDR3 SDRAM Writes
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_010
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_010-2.1 (EMI HB, Vol 3, Ch12: Timing Diagrams for UniPHY IP)

12–2 Chapter 12: Timing Diagrams for UniPHY IP
DDR2 and DDR3 Timing Diagrams
Notes for Figure 12–1

(1) Controller receives read command.
(2) Controller issues activate command to PHY.
(3) PHY issues activate command to memory.
(4) Controller issues read command to PHY.
(5) PHY issues read command to memory.
(6) PHY receives read data from memory.
(7) Controller receives read data from PHY.
(8) User logic receives read data from controller.

Figure 12–1. Full-Rate DDR2 SDRAM Read

afi_clk

avl_ready

avl_read_req

avl_size[1:0]

avl_addr[24:0]

avl_burstbegin

avl_rdata_valid

avl_rdata[15:0]

afi_cs_n

afi_ras_n

afi_cas_n

afi_we_n

afi_ba[1:0]

afi_addr[13:0]

afi_rdata_en_full

afi_rdata_en

afi_rdata_valid

afi_rdata[15:0]

mem_ck

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_ba[1:0]

mem_a[13:0]

mem_dqs

mem_dq[7:0]

X

X

X

XX

X X X

X

X

X

X

2

0

X

X X

X

0

0

0

0

0

0

0

0

X X

X X

[2]

[7]

[1]

[3]

[4]

[5]

[6]

[8]
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–3
DDR2 and DDR3 Timing Diagrams
Notes for Figure 12–2:

(1) Controller receives write command.
(2) Controller receives write data.
(3) Controller issues activate command to PHY.
(4) PHY issues activate command to memory.
(5) Controller issues write command to PHY.
(6) PHY issues write command to memory.
(7) Controller sends write data to PHY.
(8) PHY sends write data to memory.

Figure 12–2. Full-Rate DDR2 SDRAM Write

afi_clk

avl_ready

avl_write_req

avl_size[1:0]

avl_addr[24:0]

avl_burstbegin

avl_wdata[15:0]

avl_be[1:0]

afi_cs_n

afi_ras_n

afi_cas_n

afi_we_n

afi_ba[1:0]

afi_addr[13:0]

afi_dqs_burst

afi_wdata_valid

afi_wdata[15:0]

afi_dm[1:0]

afi_wlat[5:0]

mem_ck

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_ba[1:0]

mem_a[13:0]

mem_dqs

mem_dq[7:0]

mem_dm

0 2

X

X

X

X

2

0

X

X

X

X

X

X

X

X

X

X

05

0

00

0

X

XX

X

X

X

0

0

0

0

X X

X X

3 1

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–4 Chapter 12: Timing Diagrams for UniPHY IP
DDR2 and DDR3 Timing Diagrams
Notes for Figure 12–3:

(1) Controller receives read command.
(2) Controller issues activate command to PHY.
(3) PHY issues activate command to memory.
(4) Controller issues read command to PHY.
(5) PHY issues read command to memory.
(6) PHY receives read data from memory.
(7) Controller receives read data from PHY.
(8) User logic receives read data from controller.

Figure 12–3. Half-Rate DDR2 SDRAM Read

afi_clk

avl_ready

avl_read_req

avl_size[1:0]

avl_addr[23:0]

avl_burstbegin

avl_rdata_valid

avl_rdata[31:0]

afi_cs_n[1:0]

afi_ras_n[1:0]

afi_cas_n[1:0]

afi_we_n[1:0]

afi_ba[3:0]

afi_addr[27:0]

afi_rdata_en_full[1:0]

afi_rdata_en[1:0]

afi_rdata_valid

afi_rdata[31:0]

mem_ck

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_ba[1:0]

mem_a[13:0]

mem_dqs

mem_dq[7:0]

1 3 1

0

0

3

3

0

X

X

X

X

X

X

X

X

X

X

2

0

X X

0 0

0 0

X

X

0

0 0

0

0X XX

00X XX

3

3

3

3

3

3

3

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[7]
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–5
DDR2 and DDR3 Timing Diagrams
Notes for Figure 12–4:

(1) Controller receives write command.
(2) Controller receives write data.
(3) Controller issues activate command to PHY.
(4) PHY issues activate command to memory.

Figure 12–4. Half-Rate DDR2 SDRAM Write

afi_clk

avl_ready

avl_write_req

avl_size[1:0]

avl_addr[23:0]

avl_burstbegin

avl_wdata[31:0]

avl_be[3:0]

afi_cs_n[1:0]

afi_ras_n[1:0]

afi_cas_n[1:0]

afi_we_n[1:0]

afi_ba[3:0]

afi_addr[27:0]

afi_dqs_burst[1:0]

afi_wdata_valid[1:0]

afi_wdata[31:0]

afi_dm[3:0]

afi_wlat[5:0]

mem_ck

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_ba[1:0]

mem_a[13:0]

mem_dqs

mem_dq[7:0]

mem_dm

1 3 1

0

0

0

2 3

3

4 2

00X XX

00X XX

0

00

0

X

X

X

X

00 X

00 X

X

X

X

X

X

X

X

X

0 XX

XX 2

3

3

3

3

3

3

3

3

B D

02

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–6 Chapter 12: Timing Diagrams for UniPHY IP
DDR2 and DDR3 Timing Diagrams
(5) Controller issues write command to PHY.
(6) PHY issues write command to memory.
(7) Controller sends write data to PHY.
(8) PHY sends write data to memory.

Notes for Figure 12–5:

(1) Controller receives read command.
(2) Controller issues activate command to PHY.
(3) PHY issues activate command to memory.

Figure 12–5. Half-Rate DDR3 SDRAM Read

afi_clk

avl_ready

avl_read_req

avl_size[1:0]

avl_addr[25:0]

avl_burstbegin

avl_rdata_valid

avl_rdata[31:0]

afi_cs_n[1:0]

afi_ras_n[1:0]

afi_cas_n[1:0]

afi_we_n[1:0]

afi_ba[5:0]

afi_addr[29:0]

afi_rdata_en_full[1:0]

afi_rdata_en[1:0]

afi_rdata_valid[1:0]

afi_rdata[31:0]

mem_ck

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_ba[2:0]

mem_a[14:0]

mem_dqs

mem_dq[7:0]

1 3 1

0

0

3

3

 X

 X

 X

 X

 X

 X0 0

0 0

 X

 X

00 X X X

00 X X X

2

0

3

3

3

3

3

3

3

0

0 0

0

 X X

 X X

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[7]
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–7
DDR2 and DDR3 Timing Diagrams
(4) Controller issues read command to PHY.
(5) PHY issues read command to memory.
(6) PHY receives read data from memory.
(7) Controller receives read data from PHY.
(8) User logic receives read data from controller.

Figure 12–6. Half-Rate DDR3 SDRAM Writes

afi_clk

avl_ready

avl_write_req

avl_size[1:0]

avl_addr[25:0]

avl_burstbegin

avl_wdata[31:0]

avl_be[3:0]

afi_cs_n[1:0]

afi_ras_n[1:0]

afi_cas_n[1:0]

afi_we_n[1:0]

afi_ba[5:0]

afi_addr[29:0]

afi_dqs_burst[1:0]

afi_wdata_valid[1:0]

afi_wdata[31:0]

afi_dm[3:0]

afi_wlat[5:0]

mem_ck

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_ba[2:0]

mem_a[14:0]

mem_dqs

mem_dq[7:0]

mem_dm

1 3 1

0

0

0

2 3

3

E 7

1 X X

 X X

 X

 X

 X

 X

00 X

00 X

 X

 X

 X

 X

 X X

00 X X X

00 X X X

2

0

3

3

3

3

3

3

3

3

0

0

0

0

 X X

03

1 8

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–8 Chapter 12: Timing Diagrams for UniPHY IP
DDR2 and DDR3 Timing Diagrams
Notes for Figure 12–6:

(1) Controller receives write command.
(2) Controller receives write data.
(3) Controller issues activate command to PHY.
(4) PHY issues activate command to memory.
(5) Controller issues write command to PHY.
(6) PHY issues write command to memory.
(7) Controller sends write data to PHY.
(8) PHY sends write data to memory.

Figure 12–7. Quarter-Rate DDR3 SDRAM Reads

afi_clk

avl_ready

avl_read_req

avl_size[2:0]

avl_addr[24:0]

avl_burstbegin

avl_rdata_valid

avl_rdata[63:0]

afi_cs_n[3:0]

afi_ras_n[3:0]

afi_cas_n[3:0]

afi_we_n[3:0]

afi_ba[11:0]

afi_addr[59:0]

afi_rdata_en_full[3:0]

mem_ck

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_ba[2:0]

mem_a[14:0]

mem_dqs

mem_dq[7:0]

1

0

F F 7 F

F 0 F

F 0 F

F

X X

X X

X X

7

F0 0

afi_rdata_en[3:0]

afi_rdata_valid[3:0]

afi_rdata[63:0]

F0 0

X X X

0 0

0 0

X

X

X

X

X

X

0

0

0

0

X

X

X

X

X

X

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–9
DDR2 and DDR3 Timing Diagrams
Notes for Figure 12–7:

(1) Controller receives read command.
(2) Controller issues activate command to PHY.
(3) PHY issues activate command to memory.
(4) Controller issues read command to PHY.
(5) PHY issues read command to memory.
(6) PHY receives read data from memory
(7) Controller receives read data from PHY
(8) User logic receives read data from controller.

Figure 12–8. Quarter-Rate DDR3 SDRAM Writes

afi_clk

avl_ready

avl_write_req

avl_size[2:0]

avl_addr[24:0]

avl_burstbegin

avl_wdata[63:0]

avl_be[7:0]

afi_cs_n[3:0]

afi_ras_n[3:0]

afi_cas_n[3:0]

afi_we_n[3:0]

afi_ba[11:0]

afi_addr[59:0]

afi_dqs_burst[3:0]

afi_wdata_valid[3:0]

afi_wdata[63:0]

afi_dm[7:0]

afi_wlat[5:0]

mem_ck

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_ba[2:0]

mem_a[14:0]

mem_dqs

mem_dq[7:0]

mem_dm

0 1 0

7 F

F F

F F

X

0

0

8 F 0

0

0

F 0

F

EC

02

0X

XX

XX

7

F

0

X X X0 0

X X X0 0

X X

X X X0 0

X X X0 0

F

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–10 Chapter 12: Timing Diagrams for UniPHY IP
QDR II and QDR II+ Timing Diagrams
Notes for Figure 12–8:

(1) Controller receives write command.
(2) Controller receives write data.
(3) Controller issues activate command to PHY
(4) PHY issues activate command to memory.
(5) Controller issues write command to PHY
(6) PHY issues write command to memory
(7) Controller sends write data to PHY
(8) PHY sends write data to memory.

QDR II and QDR II+ Timing Diagrams
This section contains timing diagrams for QDR II and QDR II+ protocols.

Figure 12–9 through Figure 12–12 present the following timing diagrams, based on a
Stratix III device:

■ Half-Rate QDR II and QDR II+ SRAM Read

■ Half-Rate QDR II and QDR II+ SRAM Write

■ Full-Rate QDR II and QDR II+ SRAM Read

■ Full-Rate QDR II and QDR II+ SRAM Write
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–11
QDR II and QDR II+ Timing Diagrams
Notes for Figure 12–9:

(1) Controller receives read command.
(2) Controller issues two read commands to PHY.
(3) PHY issues two read commands to memory.
(4) PHY receives read data from memory.
(5) Controller receives read data from PHY.
(6) User logic receives read data from controller.

Figure 12–9. Half-Rate QDR II and QDR II+ SRAM Read

afi_clk

avl_r_ready

avl_r_read_req

avl_r_size[2:0]

avl_r_addr[19:0]

avl_r_rdata_valid

avl_r_rdata[71:0]

afi_rps_n[1:0]

afi_wps_n[1:0]

afi_addr[39:0]

afi_rdata_en_full

afi_rdata_en

afi_rdata_valid

afi_rdata[71:0]

mem_k

mem_rps_n

mem_wps_n

mem_a[19:0]

mem_cq

mem_q[17:0]

1

 X X0 X 1

 X X

3 3

3

0 1 X X

 X X

 X X0

 X X2

[1]

[6]

[2]

[5]

[3]

[4]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–12 Chapter 12: Timing Diagrams for UniPHY IP
QDR II and QDR II+ Timing Diagrams
Notes for Figure 12–10:

(1) Controller receives write command.
(2) Controller receives write data.
(3) Controller issues two write commands to PHY.
(4) Controller sends write data to PHY.
(5) PHY issues two write commands to memory.
(6) PHY sends write data to memory.

Figure 12–10. Half-Rate QDR II and QDR II+ SRAM Write

afi_clk

avl_w_ready

avl_w_write_req

avl_w_size[2:0]

avl_w_addr[19:0]

avl_w_wdata[71:0]

afi_rps_n[1:0]

afi_wps_n[1:0]

afi_addr[39:0]

afi_wdata_valid[1:0]

afi_wdata[71:0]

afi_bws_n[7:0]

mem_k

mem_rps_n

mem_wps_n

mem_a[19:0]

mem_d[17:0]

mem_bws_n[1:0]

2

 0 1

3

0 X 1 X X

0 X X

 X X2

 X X0

3 3

3

 X X

 X X

00

 X X

 X X0

[1]

[2]

[3]

[5]

[4]

[6]
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–13
QDR II and QDR II+ Timing Diagrams
Notes for Figure 12–11:

(1) Controller receives read command.
(2) Controller issues two read commands to PHY.
(3) PHY issues two read commands to memory.
(4) PHY receives read data from memory.
(5) Controller receives read data from PHY.
(6) User logic receives read data from controller.

Figure 12–11. Full-Rate QDR II and QDR II+ SRAM Read

afi_clk

avl_r_read_req

avl_r_ready

avl_r_size[2:0]

avl_r_addr[20:0]

avl_r_rdata_valid

avl_r_rdata[35:0]

afi_rdata_valid

afi_rdata_en_full

afi_rdata_en

afi_wps_n[1:0]

afi_addr[41:0]

afi_rps_n[1:0]

afi_rdata[35:0]

mem_rps_n

mem_cq

mem_k

mem_wps_n

mem_a[20:0]

mem_q[17:0]

 0 1

2

 X X2

 X X0

 X X

3

3 3

 X X

 X X

 X X 0 X 1

[1]

[2]

[3]

[4]

[5]

[6]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–14 Chapter 12: Timing Diagrams for UniPHY IP
QDR II and QDR II+ Timing Diagrams
Notes for Figure 12–12:

(1) Controller receives write command.
(2) Controller receives write data.
(3) Controller issues two write commands to PHY.
(4) Controller sends write data to PHY.
(5) PHY issues two write commands to memory.
(6) PHY sends write data to memory.

Figure 12–12. Full-Rate QDR II and QDR II+ SRAM Write

afi_clk

avl_w_write_req

avl_w_ready

avl_w_size[2:0]

avl_w_addr[20:0]

avl_w_wdata[35:0]

afi_wdata_valid

afi_wps_n[1:0]

afi_addr[41:0]

afi_wdata[35:0]

afi_rps_n[1:0]

afi_bws_n[3:0]

mem_rps_n

mem_k

mem_wps_n

mem_a[20:0]

mem_d[17:0]

mem_bws_n[1:0]

2

 0 1

0 X 1 X X

0

2

0 X

 X

 X

 X

 X X

3

3 3

 X X

 X X

 X 0 X

[1]

[2]

[3]

[4]

[5]

[6]

 X X
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–15
RLDRAM II Timing Diagrams
RLDRAM II Timing Diagrams
This section contains timing diagrams for RLDRAM protocols.

Figure 12–13 through Figure 12–16 present the following timing diagrams, based on a
Stratix III device:

■ Half-Rate RLDRAM II Read

■ Half-Rate RLDRAM II Write

■ Full-Rate RLDRAM II Read

■ Full-Rate RLDRAM II Write

Figure 12–13. Half-Rate RLDRAM II Read

afi_clk

avl_ready

avl_read_req

avl_size[2:0]

avl_addr[22:0]

avl_rdata_valid

avl_rdata[71:0]

afi_cs_n[1:0]

afi_we_n[1:0]

afi_ref_n[1:0]

afi_ba[5:0]

afi_addr[37:0]

afi_rdata_en_full

afi_rdata_en

afi_rdata_valid

afi_rdata[71:0]

mem_ck

mem_cs_n

mem_we_n

mem_ref_n

mem_ba[2:0]

mem_a[18:0]

mem_qk

mem_dq[17:0]

1

 X X0

 X X2

 X X

3 3

 X 0 X

 X 0 X

 X X

0

0

 X

 X

 X

 X

3

3

[1]

[6]

[2]

[5]

[3]

[4]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–16 Chapter 12: Timing Diagrams for UniPHY IP
RLDRAM II Timing Diagrams
Notes for Figure 12–13:

(1) Controller receives read command.
(2) Controller issues read command to PHY.
(3) PHY issues read command to memory.
(4) PHY receives read data from memory.
(5) Controller receives read data from PHY.
(6) User logic receives read data from controller.

Notes for Figure 12–14:

(1) Controller receives write command.
(2) Controller receives write data.
(3) Controller issues write command to PHY.
(4) PHY issues write command to memory.
(5) Controller sends write data to PHY.
(6) PHY sends write data to memory.

Figure 12–14. Half-Rate RLDRAM II Write

afi_clk

avl_ready

avl_write_req

avl_size[2:0]

avl_addr[22:0]

avl_wdata[71:0]

afi_cs_n[1:0]

afi_we_n[1:0]

afi_ref_n[1:0]

afi_ba[5:0]

afi_addr[37:0]

afi_wdata_valid[1:0]

afi_wdata[71:0]

afi_dm[3:0]

mem_ck

mem_cs_n

mem_we_n

mem_ref_n

mem_ba[2:0]

mem_a[18:0]

mem_dk

mem_dq[17:0]

mem_dm

1

1

3

3

0

2 X X

2 X X

33

33

 X

 X X

 X0

0

00

3 3

 X X

0

0

 X

 X

 X

 X

 X X

[1]

[2]

[3]

[5]

[4]

[6]
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–17
RLDRAM II Timing Diagrams
Notes for Figure 12–15:

(1) Controller receives read command.
(2) Controller issues read command to PHY.
(3) PHY issues read command to memory.
(4) PHY receives read data from memory.
(5) Controller receives read data from PHY.
(6) User logic receives read data from controller.

Figure 12–15. Full-Rate RLDRAM II Read

afi_clk

avl_ready

avl_read_req

avl_rdata_valid

avl_size[2:0]

avl_addr[23:0]

avl_rdata[35:0]

afi_rdata[35:0]

afi_ba[2:0]

afi_addr[19:0]

afi_ref_n

afi_rdata_en

afi_cs_n

afi_we_n

afi_rdata_valid

afi_rdata_en_full

mem_qk

mem_dq[17:0]

mem_ba[2:0]

mem_a[19:0]

mem_we_n

mem_ck

mem_ref_n

mem_cs_n

 X 0 X

 X 0 X

 X X

 X

 X X

 X0

0

 X X

 X X0

 X X2

[1]

[6]

[2]

[5]

[3]

[4]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–18 Chapter 12: Timing Diagrams for UniPHY IP
RLDRAM II Timing Diagrams
Notes for Figure 12–16:

(1) Controller receives write command.
(2) Controller receives write data.
(3) Controller issues write command to PHY.
(4) PHY issues write command to memory.
(5) Controller sends write data to PHY.
(6) PHY sends write data to memory.

Figure 12–16. Full-Rate RLDRAM II Write

afi_clk

avl_ready

avl_write_req

avl_size[2:0]

avl_wdata[35:0]

afi_dm[1:0]

afi_ba[2:0]

afi_wdata[35:0]

afi_addr[19:0]

afi_wdata_valid

afi_ref_n

afi_cs_n

afi_we_n

mem_dq[17:0]

mem_ba[2:0]

mem_a[19:0]

mem_we_n

mem_ck

mem_dm

mem_ref_n

mem_cs_n

mem_dk

0

2 X X

avl_addr[23:0] 0 X X

 X X

 X

 X X

 X0

0

 X X

3 3

 X 0 X

 X 0 X

[1]

[2]

[3]

[5]

[4]

[6]
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–19
LPDDR2 Timing Diagrams
LPDDR2 Timing Diagrams
This section contains timing diagrams for LPDDR2 protocols.

Figure 12–17 through Figure 12–20 present the following timing diagrams:

■ Half-Rate LPDDR2 Read

■ Half-Rate LPDDR2 Write

■ Full-Rate LPDDR2 Read

■ Full-Rate LPDDR2 Write

Notes for Figure 12–17:

(1) Controller receives read command.
(2) Controller issues activate command to PHY.
(3) PHY issues activate command to memory.

Figure 12–17. Half-Rate LPDDR2 Read

afi_clk

avl_ready

avl_read_req

avl_size[2:0]

avl_addr[22:0]

avl_burstbegin

avl_rdata_valid

avl_rdata[31:0]

afi_addr[39:0]

afi_cs_n[1:0]

afi_rdata_en_full[1:0]

afi_rdata_en[1:0]

afi_rdata_valid[1:0]

afi_rdata[31:0]

mem_ck

mem_cs_n

mem_ca[9:0]

mem_dqs

mem_dq[7:0]

X

2 X 1

3

3

X

AB

ABA...

X X

00

3 00

00

X AB

[1]

[2] [4][3] [5] [6] [7]

[8]

1 XX

1 XX

X X

X X
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–20 Chapter 12: Timing Diagrams for UniPHY IP
LPDDR2 Timing Diagrams
(4) Controller issues read command to PHY.
(5) PHY issues read command to memory.
(6) PHY receives read data from memory.
(7) Controller receives read data from PHY.
(8) User logic receives read data from controller.

Notes for Figure 12–18:

(1) Controller receives write command.
(2) Controller receives write data.
(3) Controller issues activate command to PHY.
(4) PHY issues activate command to memory.
(5) Controller issues write command to PHY.
(6) PHY issues write command to memory.
(7) Controller sends write data to PHY.
(8) PHY sends write data to memory.

Figure 12–18. Half-Rate LPDDR2 Write

afi_clk

avl_ready

avl_write_req

avl_size[2:0]

avl_addr[22:0]

avl_burstbegin

avl_wdata[31:0]

afi_cs_n[1:0]

afi_addr[39:0]

afi_dqs_burst[1:0]

afi_wdata_valid[1:0]

afi_wdata[31:0]

afi_dm[3:0]

afi_wlat[5:0]

mem_ck

mem_cs_n

mem_ca[9:0]

mem_dq[7:0]

mem_dqs

2 3 1

0... X 0...

2 3

3

0

X

AB

[1] [3] [5][2]

[4] [6] [7] [8]

000000

0

ABAB...

3

X

X

0

0

ABABABAB

X

03

X

0

0

F

X

X

avl_be[7:0] FFX X
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–21
LPDDR2 Timing Diagrams
Notes for Figure 12–19:

(1) Controller receives read command.
(2) Controller issues activate command to PHY.
(3) PHY issues activate command to memory.
(4) Controller issues read command to PHY.
(5) PHY issues read command to memory.
(6) PHY receives read data from memory.
(7) Controller receives read data from PHY.
(8) User logic receives read data from controller.

Figure 12–19. Full-Rate LPDDR2 Read

afi_clk

avl_ready

avl_read_req

avl_size[2:0]

avl_addr[24:0]

avl_burstbegin

avl_rdata_valid

avl_rdata[63:0]

afi_cs_n

afi_addr[19:0]

afi_rdata[63:0]

mem_ck

mem_cs_n

mem_ca[9:0]

mem_dqs[3:0]

mem_dq[31:0]

1

X

afi_rdata_en_full

afi_rdata_en

afi_rdata_valid

X

0

AAA...

[1] [4] [8][2]

[3] [5] [6]

X

X

X

X

X

X

X X

X X

X

X

[7]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–22 Chapter 12: Timing Diagrams for UniPHY IP
LPDDR2 Timing Diagrams
Notes for Figure 12–20:

(1) Controller receives write command.
(2) Controller receives write data.
(3) Controller issues activate command to PHY.
(4) PHY issues activate command to memory.
(5) Controller issues write command to PHY.
(6) PHY issues write command to memory.
(7) Controller sends write data to PHY.
(8) PHY sends write data to memory.

Figure 12–20. Full-Rate LPDDR2 Write

afi_clk

avl_ready

avl_write_req

avl_size[2:0]

avl_addr[24:0]

avl_burstbegin

avl_wdata[63:0]

avl_be[7:0]

afi_cs_n

afi_addr[19:0]

afi_dqs_burst[3:0]

afi_wdata_valid[3:0]

afi_wdata[63:0]

afi_dm[7:0]

afi_wlat[5:0]

mem_ck

mem_cs_n

mem_ca[9:0]

mem_dqs[3:0]

mem_dq[31:0]

mem_dm[3:0]

0... X 0...

F

F

00

X

0 0 F F 0 F

ABABABAB

0

1X X

X X

0 0

0 0

ABABABABAB...X

F X

00

F 0 0

F F

X X

[1]

[4]

[3] [5]

[6]

[2]

[7] [8]

1X X

AB...X X

FFX X

XX

FF
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–23
RLDRAM 3 Timing Diagrams
RLDRAM 3 Timing Diagrams
This section contains timing diagrams for RLDRAM 3 protocols.

Figure 12–21 through Figure 12–22 present the following timing diagrams:

■ Quarter-Rate RLDRAM 3 Read

■ Quarter-Rate RLDRAM 3 Write

■ Half-rate RLDRAM 3 Read

■ Half-Rate RLDRAM 3 Write

Notes for Figure 12–21:

(1) Controller issues read command to PHY.
(2) PHY issues read command to memory.
(3) PHY receives data from memory.
(4) Controller receives read data from PHY.

Figure 12–21. Quarter-Rate RLDRAM 3 Read

000c8000c8000c8000c8

7 3 0

8421 9c63 0000

8 c f

c8c8c8c8c8c8c8c8c8c8c8c8c8c8c8c8c8c8

7 3 0

c8c8c8c8c8c...zzzz...

7 3 0

0

000c8

afi_clk

afi_addr

afi_rdata_en_full

afi_rdata_valid

afi_we_n

afi_ba

afi_cs_n

afi_wdata

afi_rdata_en

afi_rst_n

afi_rlat

afi_rdata

afi_wdata_valid

afi_dm

mem_ck

mem_ck_n

global_reset

mem_cs_n

mem_we_n

mem_ba

mem_a

mem_qk

mem_qk_n

mem_dq

mem_dk

mem_dk_n

mem_ref_n

mem_dm

0

f

f

00

00

0000

[1]

[2]

[3]

[4]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–24 Chapter 12: Timing Diagrams for UniPHY IP
RLDRAM 3 Timing Diagrams
Notes for Figure 12–22:

(1) Controller issues write command to PHY.
(2) Data ready from controller for PHY.
(3) PHY issues write command to memory.
(4) PHY sends read data to memory.

Figure 12–22. Quarter-Rate RLDRAM 3 Write

000e9000e9000e9000e9

e

9c63

e

f

0000

f

e9e9e9e9e9e9e9e9e9e9e9e9e9e9e9e9e9e9

3c 03 00

1 2 4 8 3 6 c 9 0

3 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 0 3

afi_clk

afi_addr

afi_rdata_en_full

afi_rdata_valid

afi_we_n

afi_ba

afi_cs_n

afi_wdata

afi_rdata_en

afi_rst_n

afi_rlat

afi_rdata

afi_wdata_valid

afi_dm

mem_ck

mem_ck_n

global_reset

mem_cs_n

mem_we_n

mem_ba

mem_a

mem_qk

mem_qk_n

mem_dq

mem_dk

mem_dk_n

mem_ref_n

mem_dm

9

8421

9

0 3 0 3 0

3 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 0 3 0 3 0 30

3 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 0 3 0 3 0 3 0

3 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 03 0 3 0 3 0 3 0 3 0 30

00

000e9

[1]

[2]

[3]

[4]
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–25
RLDRAM 3 Timing Diagrams
Notes for Figure 12–23:

(1) Controller issues read command to PHY.
(2) PHY issues read command to memory.
(3) PHY receives data from memory.
(4) Controller receives read data from PHY.

Figure 12–23. Half-rate RLDRAM 3 Read

3

[1]

[2]

[3]

[4]

0... 0000800008
0
0
3

3

00 21

1 0

63 00
3 0 2 3
9... 888888888888888888
0 3 1 0
3
00

0
00

xxxxxxxxx88... 888888888888888888

00009 00008
0 1 2 3 6 0

afi_clk
afi_addr

afi_rdata_en_full
afi_rdata_valid

afi_we_n
afi_ba

afi_cs_n
afi_wdata

afi_rdata_en
afi_rst_n

afi_rlat
afi_rdata

afi_wdata_valid
afi_dm

mem_ck
mem_ck_n

global_reset_n
mem_cs_n
mem_we_n

mem_a
mem_ba
mem_qk

mem_qk_n
mem_dq
mem_dk

mem_dk_n
mem_ref_n

mem_dm

3 3 03 0 3 0 03 3 0 3 0 3 0 3 0
3 3 03 0 3 0 3 0 3 3 00 3 0 30

3 3 03 0 3 0 03 3 0 3 0 3 0 3 0
3 3 03 0 3 0 3 0 3 3 00 3 0 30

3 0 3 0
0 3 0 3

3 3 03 0 3 0 03 3 0 3 0 3 0 3 0
3 3 03 0 3 0 3 0 3 3 00 3 0 30

3 3 03 0 3 0 03 3 0 3 0 3 0 3 0
3 3 03 0 3 0 3 0 3 3 00 3 0 30

3 0 3 0
0 3 0 3
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–26 Chapter 12: Timing Diagrams for UniPHY IP
RLDRAM 3 Timing Diagrams
Notes for Figure 12–24:

(1) Controller issues write command to PHY.
(2) Data ready from controller for PHY.
(3) PHY issues write command to memory.
(4) PHY sends read data to memory.

Figure 12–24. Half-Rate RLDRAM 3 Write

afi_clk
afi_addr

afi_rdata_en_full
afi_rdata_valid

afi_we_n
afi_ba

afi_cs_n
afi_wdata

afi_rdata_en
afi_rst_n

afi_rlat
afi_rdata

afi_wdata_valid
afi_dm

mem_ck
mem_ck_n

global_reset_n
mem_cs_n
mem_we_n

mem_a
mem_ba
mem_qk

mem_qk_n
mem_dq
mem_dk

mem_dk_n
mem_ref_n

mem_dm
local_cal_success

0000700007
0
0
3 1 3
21 63 00
3 1 3
777777777777777777
0
3
00
fffffffffxxxxxxxxx
0 c 0
00

00008 00007
0 1 2 3 6 0
3 3 03 0 3 0 3 0 3 0 3 0

3 3 03 0 3 0 3 3 00 30
3 3 03 0 3 0 3 0 3 0 3 0 3

3 3 03 0 3 0 3 3 00 3 00

3 3 03 0 3 0 3 0 3 0 3 0
3 3 03 0 3 0 3 3 00 30

3 3 03 0 3 0 3 0 3 0 3 0 3
3 3 03 0 3 0 3 3 00 3 00

[1]

[2]

[3]

[4]
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 12: Timing Diagrams for UniPHY IP 12–27
Document Revision History
Document Revision History
Table 12–1 lists the revision history for this document.

Table 12–1. Document Revision History

Date Version Changes

November 2012 2.1
■ Added timing diagrams for RLDRAM 3.

■ Changed chapter number from 10 to 12.

June 2012 2.0
■ Added timing diagrams for LPDDR2.

■ Added Feedback icon.

November 2011 1.1

■ Consolidated timing diagrams from 11.0 DDR2 and DDR3 SDRAM Controller with
UniPHY User Guide, QDR II and QDR II+ SRAM Controller with UniPHY User Guide, and
RLDRAM II Controller with UniPHY IP User Guide.

■ Added Read and Write diagrams for DDR3 quarter-rate.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

12–28 Chapter 12: Timing Diagrams for UniPHY IP
Document Revision History
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_011-2.2

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_011-2.2
13. UniPHY External Memory Interface
Debug Toolkit
This chapter describes the UniPHY External Memory Interface Toolkit. It explains the
architecture and workflow, as well as how to launch the toolkit, link your project to a
device, and establish communications over a selected connection. The chapter also
discussses several operational considerations to enhance your productivity with the
toolkit.

Introduction
The EMIF Toolkit lets you diagnose and debug calibration problems and produce
margining reports for your external memory interface. The toolkit is compatible with
UniPHY-based external memory interfaces that use the Nios II-based sequencer, with
toolkit communication enabled. Toolkit communication is on by default in versions
10.1 and 11.0 of UniPHY IP; for version 11.1 and later, toolkit communication is on
whenever debugging is enabled on the Diagnostics tab of the IP core interface.

The EMIF Toolkit can communicate with several different memory interfaces on the
same device, but can communicate with only one memory device at a time.

Architecture
The EMIF toolkit provides a graphical user interface for communication with
connections, however all functions provided in the toolkit are also available directly
from the quartus_sh TCL shell, through the external_memif_toolkit TCL package.
The availablity of TCL support allows you to create scripts to run automatically from
TCL. You can find information about specific TCL commands by running help -pkg
external_memif_toolkit from the quartus_sh TCL shell.

If you want, you can begin interacting with the toolkit through the GUI, and later
automate your workflow by creating TCL scripts. The toolkit GUI records a history of
the commands that you run. You can see the command history on the History tab in
the toolkit GUI.

Communication
Communication between the EMIF Toolkit and external memory interface
connections varies, depending on the connection type and version. In versions 10.1
and 11.0 of the EMIF IP, communication is achieved using direct communication to
the Nios II-based sequencer. In version 11.1 and later, communication is achieved
using a JTAG Avalon-MM master attached to the sequencer bus.

Figure 13–1 shows the structure of UniPHY-based IP version 11.1 and later, with JTAG
Avalon-MM master attached to sequencer bus masters.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_011
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_011-2.2 (EMI HB, Vol 3, Ch13: UniPHY External Memory Interface Debug Toolkit)

13–2 Chapter 13: UniPHY External Memory Interface Debug Toolkit
Setup and Use
Calibration and Report Generation
For versions 10.1 and 11.0 UniPHY-based interfaces, the EMIF Toolkit causes the
memory interface to calibrate several times, to produce the data from which the
toolkit generates its reports. In version 11.1 and later, report data is generated during
calibration, without need to repeat calibration. For version 11.1 and later, generated
reports reflect the result of the previous calibration, without need to recalibrate unless
you choose to do so.

Setup and Use
Before using the EMIF Toolkit, you should compile your design and program the
target device with the resulting SRAM Object File (.sof). For designs compiled in the
Quartus II software version 12.0 or earlier, debugging information is contained in the
JTAG Debugging Information file (.jdi); however, for designs compiled in the Quartus
II software version 12.1 or later, all debugging information resides in the .sof file.

You can run the toolkit using all your project files, or using only the Quartus II Project
File (.qpf), Quartus II Settings File (.qsf), and .sof file; the .jdi file is also required for
designs compiled prior to version 12.1. To ensure that all debugging information is
correctly synchronized for designs compiled prior to version 12.1, ensure that the .sof
and .jdi files that you used are generated during the same run of the Quartus II
Assembler.

After you have programmed the target device, you can run the EMIF Toolkit and open
your project. You can then use the toolkit to create connections to the external memory
interface.

Figure 13–1. UniPHY IP Version 11.1 and Later, with JTAG Avalon-MM Master

SCC PHY AFI Tracking

JTAG Avalon
Master
(new)

Combined
ROM/RAM
(Variable

Size)

Sequencer Managers

Bridge

NIOS II

Avalon-MM

Avalon-MM

Debug Bus

Sequencer Bus

Register
 File

EMIF Toolkit
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 13: UniPHY External Memory Interface Debug Toolkit 13–3
Setup and Use
General Workflow
To use the EMIF Toolkit, you must link your compiled project to a device, and create a
communication channel to the connection that you want to examine. This section
explains how to perform these major steps.

Linking the Project to a Device
1. To launch the toolkit, select External Memory Interface Toolkit from the Tools

menu in the Quartus II software.

2. After you have launched the toolkit, open your project and click the Initialize
connections task in the Tasks window, to initialize a list of all known connections.

3. To link your project to a specific device on specific hardware, perform the
following steps:

a. Click the Link Project to Device task in the Tasks window.

b. Select the desired hardware from the Hardware dropdown menu in the Link
Project to Device dialog box.

c. Select the desired device on the hardware from the Device dropdown menu in
the Link Project to Device dialog box.

d. Select the correct Link file type, depending on the version of Quartus II
software in which your design was compiled:

■ If your design was compiled in the Quartus II software version 12.0 or
earlier, select JDI as the Link file type, verify that the .jdi file is correct for
your .sof file, and click Ok.

■ If your design was compiled in the Quartus II software version 12.1 or later,
select SOF as the Link file type, verify that the .sof file is correct for your
programmed device, and click Ok.

Figure 13–2 illustrates the Link Project to Device dialog box.

When you link your project to the device, the toolkit verifies all connections on the
device against the information in the JDI or SOF file, as appropriate. If the toolkit
detects any mismatch between the JDI file and the device connections, an error
message is displayed.

Figure 13–2. Link Project to Device Dialog Box
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

13–4 Chapter 13: UniPHY External Memory Interface Debug Toolkit
Setup and Use
For designs compiled using the Quartus II software version 12.1 or later, the SOF file
contains a design hash to ensure the SOF file used to program the device matches the
SOF file specified for linking to a project. If the hash does not match, an error message
appears.

If the toolkit successfully verifies all connections, it then attempts to determine the
connection type for each connection. Connections of a known type are listed in the
Linked Connections report, and are available for the toolkit to use.

Establishing Communication to Connections
After you have completed linking the project, you can establish communication to the
connections

1. In the Tasks window,

■ Click Establish Memory Interface Connection to create a connection to the
external memory interface.

■ Click Establish Efficiency Monitor Connection to create a connection to the
efficiency monitor.

2. To create a communication channel to a connection, select the desired connection
from the displayed pulldown menu of connections, and click Ok.

The toolkit establishes a communication channel to the connection, creates a report
folder for the connection, and creates a folder of tasks for the connection.

1 By default, the connection and the reports and tasks folders are named
according to the hierarchy path of the connection. If you want, you can
specify a different name for the connection and its folders.

3. You can run any of the tasks in the folder for the connection; any resulting reports
appear in the reports folder for the connection.

Reports
The toolkit can generate a variety of reports, including summary, calibration, and
margining reports for external memory interface connections. To generate a
supported type of report for a connection, you run the associated task in the tasks
folder for that connection.

Summary Report
The Summary Report provides an overview of the memory interface; it consists of the
following tables:

■ Summary table. Provides a high-level summary of calibration results. This table
lists details about the connection, IP version, IP protocol, and basic calibration
results, including calibration failures. This table also lists the estimated average
read and write data valid windows, and the calibrated read and write latencies.

■ Interface Details table. Provides details about the parameterization of the memory
IP. This table allows you to verify that the parameters in use match the actual
memory device in use.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 13: UniPHY External Memory Interface Debug Toolkit 13–5
Setup and Use
■ Groups Masked from Calibration table. Lists any groups that were masked from
calibration when calibration occurred. Masked groups are ignored during
calibration.

■ Ranks Masked from Calibration tables (DDR2 and DDR3 only). Lists any ranks
that were masked from calibration when calibration occurred. Masked ranks are
ignored during calibration.

Calibration Report
The Calibration Report provides detailed information about the margins observed
before and after calibration, and the settings applied to the memory interface during
calibration; it consists of the following tables:

■ Per DQS Group Calibration table. Lists calibration results for each group. If a
group fails calibration, this table also lists the reason for the failure.

1 If a group fails calibration, the calibration routine skips all remaining
groups. You can deactivate this behaviour by running the Enable
Calibration for All Groups On Failure command in the toolkit.

■ DQ Pin Margins Observed Before Calibration table. Lists the DQ pin margins
observed before calibration occurs. You can refer to this table to see the per-bit
skews resulting from the specific silicon and board that you are using.

■ DQS Group Margins Observed During Calibration table. Lists the DQS group
margins observed during calibration.

■ DQ Pin Settings After Calibration and DQS Group Settings After Calibration table.
Lists the settings made to all dynamically controllable parts of the memory
interface as a result of calibration. You can refer to this table to see the
modifications made by the calibration algorithm.

Margin Report
The Margin Report lists the post-calibration margins for each DQ and data mask pin,
keeping all other pin settings constant; it consists of the following tables:

■ DQ Pin Post Calibration Margins table. Lists the margin data in tabular format.

■ Read Data Valid Windows report. Shows read data valid windows in graphical
format.

■ Write Data Valid Windows report. Shows write data valid windows in graphical
format.

Operational Considerations
This section provides additional information about specific features and
considerations.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

13–6 Chapter 13: UniPHY External Memory Interface Debug Toolkit
Troubleshooting
Specifying a Particular JDI File
Correct operation of the EMIF Toolkit depends on the correct JDI being used when
linking the project to the device. The JDI file is produced by the Quartus II Assembler,
and contains a list of all system level debug nodes and their heirarchy path names. If
the default .jdi file name is incorrect for your project, you must specify the correct .jdi
file. The .jdi file is supplied during the link-project-to-device step, where the
revision_name.jdi file in the project directory is used by default. To supply an
alternative .jdi file, click on the ellipse then select the correct .jdi file.

PLL Status
When connecting to DDR-based external memory interface connections, the PLL
status appears in the Establish Connection dialog box when the IP is generated to use
the CSR controller port, allowing you to immediately see whether the PLL status is
locked. If the PLL is not locked, no communication can occur until the PLL becomes
locked and the memory interface reset is deasserted.

When you are linking your project to a device, an error message will occur if the
toolkit detects that a JTAG Avalon-MM master has no clock running. You can run the
Reindex Connections task to have the toolkit rescan for connections and update the
status and type of found connections in the Linked Connections report.

Margining Reports
The EMIF Toolkit can display margining information showing the post-calibration
data-valid windows for reads and writes. Margining information is determined by
individually modifying the input and output delay chains for each data and
strobe/clock pin to determine the working region. The toolkit can display margining
data in both tabular and hierarchial formats.

Group Masks
To aid in debugging your external memory interface, the EMIF Toolkit allows you to
mask individual groups and ranks from calibration. Masked groups and ranks are
skipped during the calibration process, meaning that only unmasked groups and
ranks are included in calibration. Subsequent mask operations overwrite any
previous masks.

f For information about calibration stages, refer to UniPHY Calibration Stages in
section 1 of this volume.

Troubleshooting
In the event of calibration failure, refer to Figure 13–3 to assist in troubleshooting your
design. Calibration results and failing stages are available through the external
memory interface toolkit.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 13:
UniPHY External M

em
ory Interface Debug Toolkit

13–7
Troubleshooting

Novem
ber 2012

Altera Corporation
External M

em
ory Interface Handbook

Volum
e 3: Reference M

aterial

t

IFO Tuning

Stage 3
d Calibration

 unexpected here.
re occurs at this
, it is probably
 (Write Leveling)
at is failing.

Stage 4 Write
Calibration

Per-bit write
deskew

Mask the failing DQ
group and rerun

calibration

Check margins to see
if failure is all bits in

group or only some bits

Check DQ-to-DQS
phase

Verify board traces
and solder joints
Figure 13–3 shows the recommended flow for troubleshooting calibration failure.

Figure 13–3. Debugging Tips

Stage 1
Read Calibration

Guaranteed Read
Failure

Address/Command
Skew Issue

Check
Address/Command

Clock Phase

Check
Address/Command
Board Skew and

Delays

Ensure DQ and DQS
are matched on the

board

Failing stage of group

Calibration Failure

DQ/DQS
Centering Issue

Add or subtract delay
to DQS to center DQS

within DQ window

Check DQS enable
calibration margin

Check DQ-to-DQS
phase; it should
be edge aligned.

No working DQSen
phase found

Ensure board parameters
are correct and include
complete path to the

memory device

Ensure board parameters
are correct and include
complete path to the

memory device

Per-bit Read
deskew failure

No first write levelling
phase found

Verify the write leveling
window to ensure all
groups are within the

maximum write
leveling range

Increase the D6
delay on CLK Contac

Altera

No last working write
leveling phase found

Write leveling copy
failure

Stage 2
Write Leveling

Verify the write leveling
window to ensure all
groups are within the

maximum write
leveling range

Increase the D6 delay
on DQ and DQS for the

groups that cannot
write level

LF

Rea

Failure is
If a failu

point
Stage 2

th

13–8 Chapter 13: UniPHY External Memory Interface Debug Toolkit
EMIF On-Chip Debug Toolkit
EMIF On-Chip Debug Toolkit
The EMIF On-Chip Debug Toolkit allows user logic to access the same calibration data
used by the EMIF Toolkit, and allows user logic to send commands to the sequencer.

Introduction
You can use the EMIF On-Chip Debug Toolkit to access calibration data for your
design and to send commands to the sequencer just as the EMIF Toolkit would. The
following information is available:

■ Pass/fail status for each DQS group

■ Read and write data valid windows for each group

In addition, user logic can request the following commands from the sequencer:

■ Destructive recalibration of all groups

■ Masking of groups and ranks

■ Generation of per-DQ pin margining data as part of calibration

The user logic communicates through an Avalon-MM slave interface as shown in
Figure 13–4.

Access Protocol
The EMIF On-Chip Debug Toolkit provides access to calibration data through an
Avalon-MM slave interface. To send a command to the sequencer, user logic sends a
command code to the command space in sequencer memory. The sequencer polls the
command space for new commands after each group completes calibration, and
continuously after overall calibration has completed.

The communication protocol to send commands from user logic to the sequencer uses
a multistep handshake with a data structure as shown below, and an algorithm as
shown in Figure 13–5.

typedef struct_debug_data_struct {
...
// Command interaction
alt_u32 requested_command;
alt_u32 command_status;
alt_u32 command_parameters[COMMAND_PARAM_WORDS];
...

}

Figure 13–4. User Logic Access

User logic
Altera

Memory Interface
Avalon
Slave
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 13: UniPHY External Memory Interface Debug Toolkit 13–9
EMIF On-Chip Debug Toolkit
To send a command to the sequencer, user logic must first poll the command_status
word for a value of TCLDBG_TX_STATUS_CMD_READY, which indicates that the sequencer
is ready to accept commands. When the sequencer is ready to accept commands, user
logic must write the command parameters into command_parameters, and then write
the command code into requested_command.

The sequencer detects the command code and replaces command_status with
TCLDBG_TX_STATUS_CMD_EXE, to indicate that it is processing the command. When the
sequencer has finished running the command, it sets command_status to
TCLDBG_TX_STATUS_RESPONSE_READY to indicate that the result of the command is
available to be read. (If the sequencer rejects the requested command as illegal, it sets
command_status to TCLDBG_TX_STATUS_ILLEGAL_CMD.)

User logic acknowledges completion of the command by writing
TCLDBG_CMD_RESPONSE_ACK to requested_command. The sequencer responds by setting
command_status back to STATUS_CMD_READY. (If an illegal command is received, it must
be cleared using CMD_RESPONSE_ACK.)

Figure 13–5. Debugging Algorithm Flowchart

Read
Command_status

Yes

Nocommand_status ==
CMD_READY ?

End

Yes

Nocommand_status ==
RESPONSE_READY ?

Write command
payload

Write command code

Read command_status

Write
RESPONSE_ACK code
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

13–10 Chapter 13: UniPHY External Memory Interface Debug Toolkit
EMIF On-Chip Debug Toolkit
Command Codes Reference
Table 13–1 lists the supported command codes for the On-Chip Debug Toolkit.

Header Files
The UniPHY-based external memory interface IP generates header files which
identify the debug data structures and memory locations used with the EMIF On-
Chip Debug Toolkit. You should refer to these header files for information required
for use with your core user logic. It is highly recommended to use a software
component (such as a Nios II processor) to access the calibration debug data.

The header files are unique to your IP parameterization and version, therefore you
must ensure that you are referring to the correct version of header for your design.
The names of the header files are: core_debug.h and core_debug_defines.h.

Generating UniPHY IP With the Debug Port
The following steps summarize the procedure for implementing your IP with the
EMIF On-Chip Debug Toolkit enabled:

1. Add the variable alt_mem_if_enable_core_debug_data=1 to the quartus.ini file.

2. Start the Quartus II software and generate a new DDR3 external memory interface
with UniPHY.

3. On the Diagnostics tab of the parameter editor, turn on Enable core sequencer
debug access.

4. Ensure that the Core sequencer debug interface type is set to Avalon-MM Slave.

5. Click Finish to generate your IP.

6. Find the Avalon interface in the top-level generated file. Connect this interface to
your debug component.

Table 13–1. Supported Command Codes

Command Parameters Description

TCLDBG_RUN_MEM_CALIBRATE None Runs the calibration routine.

TCLDBG_MARK_ALL_DQS_GROUPS_AS_
VALID None Marks all groups as valid for

calibration.

TCLDBG_MARK_GROUP_AS_SKIP Group to skip Mark the specified group to be
skipped by calibration.

TCLDBG_MARK_ALL_RANKS_AS_VALID None Mark all ranks as valid for
calibration

TCLDBG_MARK_RANK_AS_SKIP Rank to skip Mark the specified rank to be
skipped by calibration.

TCLDBG_ENABLE_MARGIN_REPORT None Enables generation of the margin
report.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 13: UniPHY External Memory Interface Debug Toolkit 13–11
EMIF On-Chip Debug Toolkit
input wire [19:0] seq_debug_addr, // seq_debug.address
input wire seq_debug_read_req, // .read
output wire [31:0] seq_debug_rdata, // .readdata
input wire seq_debug_write_req, // .write
input wire [31:0] seq_debug_wdata, // .writedata
output wire seq_debug_waitrequest, // .waitrequest
input wire [3:0] seq_debug_be, // .byteenable
output wire seq_debug_rdata_valid // .readdatavalid

7. Find the core_debug.h and core_debug_defines.h header files in
<design_name>/<design_name>_s0_software/sequencer and include these files in
your debug component code.

8. Write your debug component using the supported command codes, to read and
write to the Avalon-MM interface.

The debug data structure resides at the memory address SEQ_CORE_DEBUG_BASE, which
is defined in the core_debug_defines.h header file.

Example C Code for Accessing Debug Data
A typical use of the EMIF On-Chip Debug Toolkit might be to recalibrate the external
memory interface, and then access the reports directly using the summary_report_ptr,
cal_report_ptr, and margin_report_ptr pointers, which are part of the debug data
structure.

The following code sample illustrates:

/*

 * DDR3 UniPHY sequencer core access example

 */

#include <stdio.h>

#include <unistd.h>

#include <io.h>

#include "core_debug_defines.h"

int send_command(volatile debug_data_t* debug_data_ptr, int command, int

args[], int num_args)

{

volatile int i, response;

// Wait until command_status is ready

do {

 response = IORD_32DIRECT(&(debug_data_ptr‐>command_status), 0);

} while(response != TCLDBG_TX_STATUS_CMD_READY);

// Load arguments

if(num_args > COMMAND_PARAM_WORDS)

{

November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

13–12 Chapter 13: UniPHY External Memory Interface Debug Toolkit
EMIF On-Chip Debug Toolkit
// Too many arguments

return 0;

}

for(i = 0; i < num_args; i++)

{

IOWR_32DIRECT(&(debug_data_ptr‐>command_parameters[i]), 0,

args[i]);

}

// Send command code

IOWR_32DIRECT(&(debug_data_ptr‐>requested_command), 0, command);

// Wait for acknowledgment

do {

 response = IORD_32DIRECT(&(debug_data_ptr‐>

command_status), 0);

} while(response != TCLDBG_TX_STATUS_RESPOSE_READY && response !=

TCLDBG_TX_STATUS_ILLEGAL_CMD);

// Acknowledge response

IOWR_32DIRECT(&(debug_data_ptr‐>requested_command), 0,

TCLDBG_CMD_RESPONSE_ACK);

// Return 1 on success, 0 on illegal command

return (response != TCLDBG_TX_STATUS_ILLEGAL_CMD);

}

int main()

{

 volatile debug_data_t* my_debug_data_ptr;

 volatile debug_summary_report_t* my_summary_report_ptr;

 volatile debug_cal_report_t* my_cal_report_ptr;

 volatile debug_margin_report_t* my_margin_report_ptr;

 volatile debug_cal_observed_dq_margins_t*

cal_observed_dq_margins_ptr;

 int i, j, size;

 int args[COMMAND_PARAM_WORDS];

 // Initialize pointers to the debug reports

 my_debug_data_ptr = (debug_data_t*)SEQ_CORE_DEBUG_BASE;

 my_summary_report_ptr =

(debug_summary_report_t*)(IORD_32DIRECT(&(my_debug_data_ptr‐>

summary_report_ptr), 0));

 my_cal_report_ptr =

(debug_cal_report_t*)(IORD_32DIRECT(&(my_debug_data_ptr‐>

cal_report_ptr), 0));
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 13: UniPHY External Memory Interface Debug Toolkit 13–13
EMIF On-Chip Debug Toolkit
 my_margin_report_ptr =

(debug_margin_report_t*)(IORD_32DIRECT(&(my_debug_data_ptr‐>

margin_report_ptr), 0));

 // Activate all groups and ranks

 send_command(my_debug_data_ptr,

TCLDBG_MARK_ALL_DQS_GROUPS_AS_VALID, 0, 0);

 send_command(my_debug_data_ptr, TCLDBG_MARK_ALL_RANKS_AS_VALID,

0, 0);

 send_command(my_debug_data_ptr, TCLDBG_ENABLE_MARGIN_REPORT, 0,

0);

 // Mask group 4

 args[0] = 4;

 send_command(my_debug_data_ptr, TCLDBG_MARK_GROUP_AS_SKIP,

args, 1);

 send_command(my_debug_data_ptr, TCLDBG_RUN_MEM_CALIBRATE, 0, 0);

 // SUMMARY

 printf("SUMMARY REPORT\n");

 printf("mem_address_width: %u\n",

IORD_32DIRECT(&(my_summary_report_ptr‐>mem_address_width), 0));

 printf("mem_bank_width: %u\n",

IORD_32DIRECT(&(my_summary_report_ptr‐>mem_bank_width), 0));

 // etc...

 // CAL REPORT

 printf("CALIBRATION REPORT\n");

 // DQ read margins

 for(i = 0; i < RW_MGR_MEM_DATA_WIDTH; i++)

 {

 cal_observed_dq_margins_ptr = &(my_cal_report_ptr‐>

cal_dq_in_margins[i]);

 printf("0x%x DQ %d Read Margin (taps): ‐%d : %d\n",

(unsigned int)cal_observed_dq_margins_ptr, i,

 IORD_32DIRECT(&(cal_observed_dq_margins_ptr‐>

left_edge), 0),

 IORD_32DIRECT(&(cal_observed_dq_margins_ptr‐>

right_edge), 0));

 }

 // etc...

 return 0;

}

November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

13–14 Chapter 13: UniPHY External Memory Interface Debug Toolkit
Document Revision History
Document Revision History
Table 13–2 lists the revision history for this document.

Table 13–2. Document Revision History

Date Version Changes

November 2012 2.2

■ Changes to Setup and Use and General Workflow sections.

■ Added EMIF On-Chip Debug Toolkit section

■ Changed chapter number from 11 to 13.

August 2012 2.1 ■ Added table of debugging tips.

June 2012 2.0
■ Revised content for new UnIPHY EMIF Toolkit.

■ Added Feedback icon.

November 2011 1.0 Harvested 11.0 DDR2 and DDR3 SDRAM Controller with UniPHY EMIF Toolkit content.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_012-2.3

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_012-2.3
14. Upgrading to UniPHY-based
Controllers from ALTMEMPHY-based

Controllers
This chapter describes upgrading the following ALTMEMPHY-based controller
designs to UniPHY-based controllers:

■ DDR2 or DDR3 SDRAM High-Performance Controller II with ALTMEMPHY
designs

■ DDR2 or DDR3 SDRAM High-Performance Controller with ALTMEMPHY
designs

1 Altera does not support upgrading designs that do not use the AFI.

If your design uses non-AFI IP cores, Altera recommends that you start a new design
with the UniPHY IP core . In addition, Altera recommends that any new designs
targeting Stratix III, Stratix IV, or Stratix V use the UniPHY datapath.

Upgrading from DDR2 or DDR3 SDRAM High-Performance Controller II
with ALTMEMPHY Designs

To upgrade to the DDR2 or DDR3 SDRAM controller with UniPHY IP core from
DDR2 or DDR3 SDRAM High-Performance Controller II with ALTMEMPHY designs,
follow these steps:

1. Generating Equivalent Design

2. Replacing the ALTMEMPHY Datapath with UniPHY Datapath

3. Resolving Port Name Differences

4. Creating OCT Signals

5. Running Pin Assignments Script

6. Removing Obsolete Files

7. Simulating your Design

The following sections describes these steps.

Generating Equivalent Design
Create a new DDR2 or DDR3 SDRAM controller with UniPHY IP core, by following
the steps in volume 2, section 1, chapter 8, Implementing and Parameterizing Memory IP
and use the following guidelines:

■ Specify the same variation name as the ALTMEMPHY variation.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_012
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_012-2.3 (EMI HB, Vol 3, Ch14: Upgrading to UniPHY-based Controllers from ALTMEMPHY-based Controllers)

14–2 Chapter 14: Upgrading to UniPHY-based Controllers from ALTMEMPHY-based Controllers
Upgrading from DDR2 or DDR3 SDRAM High-Performance Controller II with ALTMEMPHY Designs
■ Specify a directory different than the ALTMEMPHY design directory to prevent
files from overwriting each other during generation.

To ease the migration process, ensure the UniPHY-based design you create is as
similar as possible to the existing ALTMEMPHY-based design. In particular, you
should ensure the following settings are the same in your UniPHY-based design:

■ PHY settings tab

■ FPGA speed grade

■ PLL reference clock

■ Memory clock frequency

■ There is no need to change the default Address and command clock phase
settings; however, if you have board skew effects in your ALTMEMPHY
design, enter the difference between that clock phase and the default clock
phase into the Address and command clock phase settings.

■ Memory Parameters tab—all parameters must match.

■ Memory Timing tab—all parameters must match.

■ Board settings tab—all parameters must match.

■ Controller settings tab—all parameters must match

1 In ALTMEMPHY-based designs you can turn off dynamic OCT. However, all
UniPHY-based designs use dynamic parallel OCT and you cannot turn it off.

Replacing the ALTMEMPHY Datapath with UniPHY Datapath
To replace the ALTMEMPHY datapath with the UniPHY datapath, follow these steps:

1. In the Quartus II software, open the Assignment Editor, on the Assignments menu
click Assignment Editor.

2. Manually, delete all of the assignments related to the external memory interface
pins, except for the location assignments if you are preserving the pinout. By
default, these pin names start with the mem prefix, though in your design they may
have a different name.

3. Remove the old ALTMEMPHY .qip file from the project:

■ On the Assignments menu click Settings.

■ Specify the old .qip, and click Remove.

Your design now uses the UniPHY datapath.

Resolving Port Name Differences
Several port names in the ALTMEMPHY datapath are different than in the UniPHY
datapath. The different names may cause compilation errors. This section describes
the changes you must make in the RTL for the entity that instantiates the memory IP
core. Each change applies to a specific port in the ALTMEMPHY datapath.
Unconnected ports require no changes.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 14: Upgrading to UniPHY-based Controllers from ALTMEMPHY-based Controllers 14–3
Upgrading from DDR2 or DDR3 SDRAM High-Performance Controller II with ALTMEMPHY Designs
In some instances, multiple ports in ALTMEMPHY-based designs are mapped to a
single port in UniPHY-based designs. If you use both ports in ALTMEMPHY-based
designs, assign a temporary signal to the common port and connect it to the original
wires. Table 14–1 shows the changes you must make.

Table 14–1. Changes to ALTMEMPHY Port Names

ALTMEMPHY Port Changes

aux_full_rate_clk
The UniPHY-based design does not generate this signal. You can generate it if
you require it.

aux_scan_clk
The UniPHY-based design does not generate this signal. You can generate it if
you require it.

aux_scan_clk_reset_n
The UniPHY-based design does not generate this signal. You can generate it if
you require it.

dll_reference_clk
The UniPHY-based design does not generate this signal. You can generate it if
you require it.

dqs_delay_ctrl_export
This signal is for DLL sharing between ALTMEMPHY instances and is not
applicable for UniPHY-based designs.

local_address Rename to avl_addr.

local_be Rename to avl_be.

local_burstbegin Rename to avl_burstbegin.

local_rdata Rename to avl_rdata.

local_rdata_valid Rename to avl_rdata_valid.

local_read_req Rename to avl_read_req.

local_ready Rename to avl_ready.

local_size Rename to avl_size.

local_wdata Rename to avl_wdata.

local_write_req Rename to avl_write_req.

mem_addr Rename to mem_a.

mem_clk Rename to mem_ck.

mem_clk_n Rename to mem_ck_n.

mem_dqsn Rename to mem_dqs_n.

oct_ctl_rs_value Remove from design (“Creating OCT Signals” on page 14–4).

oct_ctl_rt_value Remove from design (“Creating OCT Signals” on page 14–4).

phy_clk Rename to afi_clk.

reset_phy_clk_n Rename to afi_reset_n.

local_refresh_ack
local_wdata_req
reset_request_n

The controller no longer exposes these signals to the top-level design, so
comment out these outputs. If you need it, bring the wire out from the
high-performance II controller entity in <project
directory>/uniphy/rtl/<variation name>_controller_phy.sv.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

14–4 Chapter 14: Upgrading to UniPHY-based Controllers from ALTMEMPHY-based Controllers
Upgrading from DDR2 or DDR3 SDRAM High-Performance Controller II with ALTMEMPHY Designs
Creating OCT Signals
In ALTMEMPHY-based designs, the Quartus II Fitter creates the alt_oct block
outside the IP core and connects it to the oct_ctl_rs_value and oct_ctl_rt_value
signals. In UniPHY-based designs, the OCT block is part of the IP core, so the design
no longer requires these two ports. Instead, the UniPHY-based design requires two
additional ports, oct_rup and oct_rdn. You must create these ports in the
instantiating entity as input pins and connect to the UniPHY instance. Then route
these pins to the top-level design and connect to the OCT RUP and RDOWN resistors on
the board.

For information on OCT control block sharing, refer to “The OCT Sharing Interface”
in this volume.

Running Pin Assignments Script
Remap your design by running analysis and synthesis. When analysis and synthesis
completes, run the pin assignments Tcl script and then verify the new pin assignments
in the Assignment Editor.

Removing Obsolete Files
After you upgrade the design, you may remove the unnecessary ALTMEMPHY
design files from your project. To identify these files, examine the original
ALTMEMPHY-generated .qip file in any text editor.

Simulating your Design
You must use the UniPHY memory model to simulate your new design. To use the
UniPHY memory model, follow these steps:

1. Edit your instantiation of the UniPHY datapath to ensure the local_init_done,
local_cal_success, local_cal_fail, soft_reset_n, oct_rdn, oct_rup,
reset_phy_clk_n, and phy_clk signals are at the top-level entity so that an
instantiating testbench can refer to those signals.

2. To use the UniPHY testbench and memory model, generate the example design
when generating your IP instantiation.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 14: Upgrading to UniPHY-based Controllers from ALTMEMPHY-based Controllers 14–5
Upgrading from DDR2 or DDR3 SDRAM High-Performance Controller II with ALTMEMPHY Designs
3. Specify that your third-party simulator should use the UniPHY testbench and
memory model instead of the ALTMEMPHY memory model:

a. On the Assignments menu, point to Settings and click the Project Settings
window.

b. Select the Simulation tab, click Test Benches, click Edit, and replace the
ALTMEMPHY testbench files with the following files:

■ \<project directory>\<variation name>_example_design\simulation\verilog\
submodules\altera_avalon_clock_source.sv
or
\<project directory>\<variation name>_example_design\simulation\vhdl\
submodules\altera_avalon_clock_source.vhd

■ \<project directory>\<variation name>_example_design\simulation\verilog\
submodules\altera_avalon_reset_source.sv
or
\<project directory>\<variation name>_example_design\simulation\vhdl\
submodules\altera_avalon_reset_source.vhd

■ \<project directory>\<variation name>_example_design\simulation\verilog\
<variation name>_example_sim.v
or
\uniphy\<variation name>_example_design\simulation\vhdl\
<variation name>_example_sim.vhd

■ \<project directory>\<variation
name>_example_design\simulation\verilog\submodules\verbosity_pkg.sv

■ \<project directory>\<variation name>_example_design\simulation\verilog\
submodules\status_checker_no_ifdef_params.sv
or
\<project directory>\<variation name>_example_design\simulation\vhdl\
submodules\status_checker_no_ifdef_params.sv

■ \<project directory>\<variation name>_example_design\simulation\verilog\
submodules\alt_mem_if_common_ddr_mem_model_ddr3_mem_if_dm_
pins_en_mem_if_dqsn_en.sv
or
\<project directory>\<variation name>_example_design\simulation\vhdl\
submodules\alt_mem_if_common_ddr_mem_model_ddr3_mem_if_dm_
pins_en_mem_if_dqsn_en.sv

■ \<project directory>\<variation name>_example_design\simulation\verilog\
submodules\alt_mem_if_ddr3_mem_model_top_ddr3_mem_if_dm_pins_
en_mem_if_dqsn_en
or
\<project directory>\<variation name>_example_design\simulation\vhdl\
submodules\alt_mem_if_ddr3_mem_model_top_ddr3_mem_if_dm_pins_
en_mem_if_dqsn_en

4. Open the <variation name>_example_sim.v file and find the UniPHY-generated
simulation example design module name below: <variation
name>_example_sim_e0.

5. Change the module name above to the name of your top-level design module.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

14–6 Chapter 14: Upgrading to UniPHY-based Controllers from ALTMEMPHY-based Controllers
Document Revision History
6. Update the following port names of the example design in the UniPHY-generated
<variation name>_example_sim.v file. (Table 14–2).

f For more information about generating example simulation files, refer to Simulating
Memory IP, in volume 2 of the External Memory Interface Handbook.

Document Revision History
Table 14–3 lists the revision history for this document.

Table 14–2. Example Design Port Names

Example Design Name New Name

pll_ref_clk Rename to clock_source.

mem_a Rename to mem_addr.

mem_ck Rename to mem_clk.

mem_ck_n Rename to mem_clk_n.

mem_dqs_n Rename to mem_dqsn.

drv_status_pass Rename to pnf.

afi_clk Rename to phy_clk.

afi_reset_n Rename to reset_phy_clk_n.

drv_status_fail
This signal is not available, so comment out this
output.

afi_half_clk
This signal is not exposed to the top-level
design, so comment out this output.

Table 14–3. Document Revision History

Date Version Changes

November 2012 2.3 Changed chapter number from 12 to 14.

June 2012 2.2 Added Feedback icon.

November 2011 2.1 Revised Simulating your Design section.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

November 2012 Altera Corporation
Section III. ALTMEMPHY Reference
This section provides reference information about the ALTMEMPHY-based external
memory interface IP.

This section includes the following chapters:

■ Chapter 15, Introduction to ALTMEMPHY IP

■ Chapter 16, Latency for ALTMEMPHY IP

■ Chapter 17, Timing Diagrams for ALTMEMPHY IP

■ Chapter 18, ALTMEMPHY External Memory Interface Debug Toolkit

f For information about the revision history for chapters in this section, refer to
“Document Revision History” in each individual chapter.
External Memory Interface Handbook
Volume 3: Reference Material

III–2 Section III: ALTMEMPHY Reference
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_013-1.2

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_013-1.2
15. Introduction to ALTMEMPHY IP
The Altera® DDR, DDR2, and DDR3 SDRAM Controllers with ALTMEMPHY IP
provide simplified interfaces to industry-standard DDR, DDR2, and DDR3 SDRAM.
The ALTMEMPHY megafunction is an interface between a memory controller and the
memory devices, and performs read and write operations to the memory. The DDR,
DDR2, and DDR3 SDRAM Controllers with ALTMEMPHY IP work in conjunction
with the Altera ALTMEMPHY megafunction.

The DDR and DDR2 SDRAM Controllers with ALTMEMPHY IP and ALTMEMPHY
megafunction offer full-rate or half-rate DDR and DDR2 SDRAM interfaces.The
DDR3 SDRAM Controller with ALTMEMPHY IP and ALTMEMPHY megafunction
support DDR3 SDRAM interfaces in half-rate mode. The DDR, DDR2, and DDR3
SDRAM Controllers with ALTMEMPHY IP offer the high-performance controller II
(HPC II), which provides high efficiency and advanced features.

Figure 15–1 shows a system-level diagram including the example top-level file that
the DDR, DDR2, or DDR3 SDRAM Controller with ALTMEMPHY IP creates for you.

The MegaWizard™ Plug-In Manager generates an example top-level file, consisting of
an example driver, and your DDR, DDR2, or DDR3 SDRAM high-performance
controller custom variation. The controller instantiates an instance of the
ALTMEMPHY megafunction which in turn instantiates a phase-locked loop (PLL)
and DLL. You can also instantiate the DLL outside the ALTMEMPHY megafunction
to share the DLL between multiple instances of the ALTMEMPHY megafunction. You
cannot share a PLL between multiple instances of the ALTMEMPHY megafunction,
but you may share some of the PLL clock outputs between these multiple instances.

Figure 15–1. System-Level Diagram

Note to Figure 15–1:

(1) When you choose Instantiate DLL Externally, delay-locked loop (DLL) is instantiated outside the ALTMEMPHY
megafunction.

Pass or Fail
External
Memory
Device

ALTMEMPHY
High-

Performance
Controller

Example
Driver

PLL

Example Top-Level File

DLL (1)
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_013
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_013-1.2 (EMI HB, Vol 3, Ch15: Introduction to ALTMEMPHY IP)

15–2 Chapter 15: Introduction to ALTMEMPHY IP
Release Information
The example top-level file is a fully-functional design that you can simulate,
synthesize, and use in hardware. The example driver is a self-test module that issues
read and write commands to the controller and checks the read data to produce the
pass or fail, and test complete signals.

The ALTMEMPHY megafunction creates the datapath between the memory device
and the memory controller. The megafunction is available as a stand-alone product or
can be used in conjunction with the Altera high-performance memory controller.
When using the ALTMEMPHY megafunction as a stand-alone product, use with
either custom or third-party controllers.

1 For new designs, Altera recommends using a UniPHY-based external memory
interface, such as the DDR2 and DDR3 SDRAM controllers with UniPHY, QDR II and
QDR II+ SRAM controllers with UniPHY, or RLDRAM II controller with UniPHY.

Release Information
Table 15–1 provides information about this release of the DDR3 SDRAM Controller
with ALTMEMPHY IP.

Altera verifies that the current version of the Quartus® II software compiles the
previous version of each MegaCore function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release. For information
about issues on the DDR, DDR2, or DDR3 SDRAM high-performance controller and
the ALTMEMPHY megafunction in a particular Quartus II version, refer to the
Quartus II Software Release Notes.

Table 15–1. Release Information

Item Description

Version 11.1

Release Date November 2011

Ordering Codes

IP-SDRAM/HPDDR (DDR SDRAM HPC)

IP-SDRAM/HPDDR2 (DDR2 SDRAM HPC)

IP-HPMCII (HPC II)

Product IDs

00BE (DDR SDRAM)

00BF (DDR2 SDRAM)

00C2 (DDR3 SDRAM)

00CO (ALTMEMPHY Megafunction)

Vendor ID 6AF7
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/literature/rn/rn_qts.pdf

Chapter 15: Introduction to ALTMEMPHY IP 15–3
Device Family Support
Device Family Support
Table 15–2 defines the device support levels for Altera IP cores.

Table 15–3 shows the level of support offered by the DDR, DDR2, and DDR3 SDRAM
Controllers with ALTMEMPHY IP for Altera device families.

Table 15–2. Altera IP Core Device Support Levels

FPGA Device Families HardCopy Device Families

Preliminary support—The IP core is verified with
preliminary timing models for this device family. The IP core
meets all functional requirements, but might still be
undergoing timing analysis for the device family. It can be
used in production designs with caution.

HardCopy Companion—The IP core is verified with
preliminary timing models for the HardCopy companion
device. The IP core meets all functional requirements, but
might still be undergoing timing analysis for the HardCopy
device family. It can be used in production designs with
caution.

Final support—The IP core is verified with final timing
models for this device family. The IP core meets all
functional and timing requirements for the device family and
can be used in production designs.

HardCopy Compilation—The IP core is verified with final
timing models for the HardCopy device family. The IP core
meets all functional and timing requirements for the device
family and can be used in production designs.

Table 15–3. Device Family Support

Device Family
Protocol

DDR and DDR2 DDR3

Arria® GX Final No support

Arria II GX Final Final

Cyclone® III Final No support

Cyclone III LS Final No support

Cyclone IV E Final No support

Cyclone IV GX Final No support

HardCopy II Refer to the What’s New in Altera
IP page of the Altera website. No support

Stratix® II Final No support

Stratix II GX Final No support

Other device families No support No support
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html

15–4 Chapter 15: Introduction to ALTMEMPHY IP
Features
Features

ALTMEMPHY Megafunction
Table 15–4 summarizes key feature support for the ALTMEMPHY megafunction.

In addition, the ALTMEMPHY megafunction supports DDR3 SDRAM components
without leveling:

■ The ALTMEMPHY megafunction supports DDR3 SDRAM components without
leveling for Arria II GX devices using T-topology for clock, address, and command
bus:

■ Supports multiple chip selects.

■ The DDR3 SDRAM PHY without leveling fMAX is 400 MHz for single chip selects.

■ No support for data-mask (DM) pins for ×4 DDR3 SDRAM DIMMs or
components, so select No for Drive DM pins from FPGA when using ×4 devices.

■ The ALTMEMPHY megafunction supports half-rate DDR3 SDRAM interfaces
only.

High-Performance Controller II
Table 15–5 summarizes key feature support for the DDR, DDR2, and DDR3 SDRAM
HPC II.

Table 15–4. ALTMEMPHY Megafunction Feature Support

Feature DDR and DDR2 DDR3

Support for the Altera PHY Interface (AFI) on all supported
devices. v v

Automated initial calibration eliminating complicated read data
timing calculations. v v

Voltage and temperature (VT) tracking that guarantees maximum
stable performance for DDR, DDR2, and DDR3 SDRAM
interfaces.

v v

Self-contained datapath that makes connection to an Altera
controller or a third-party controller independent of the critical
timing paths.

v v

Full-rate interface v —

Half-rate interface v v

Easy-to-use parameter editor v v

Table 15–5. Feature Support (Part 1 of 2)

Feature DDR and DDR2 DDR3

Half-rate controller v v

Support for AFI ALTMEMPHY v v

Support for Avalon®Memory Mapped (Avalon-MM) local
interface v v
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 15: Introduction to ALTMEMPHY IP 15–5
Features
Configurable command look-ahead bank management with
in-order reads and writes v v

Additive latency v v

Support for arbitrary Avalon burst length v v

Built-in flexible memory burst adapter v v

Configurable Local-to-Memory address mappings v v

Optional run-time configuration of size and mode register
settings, and memory timing v v

Partial array self-refresh (PASR) v v

Support for industry-standard DDR3 SDRAM devices

Optional support for self-refresh command v v

Optional support for user-controlled power-down command v v

Optional support for automatic power-down command with
programmable time-out v v

Optional support for auto-precharge read and auto-precharge
write commands v v

Optional support for user-controller refresh v v

Optional multiple controller clock sharing in SOPC Builder Flow

Integrated error correction coding (ECC) function 72-bit v v

Integrated ECC function, 16, 24, and 40-bit v v

Support for partial-word write with optional automatic error
correction v v

SOPC Builder ready

Support for OpenCore Plus evaluation v v

IP functional simulation models for use in Altera-supported VHDL
and Verilog HDL simulator v v

Notes to Table 15–5:

(1) HPC II supports additive latency values greater or equal to tRCD-1, in clock cycle unit (tCK).
(2) This feature is not supported with DDR3 SDRAM with leveling.

Table 15–5. Feature Support (Part 2 of 2)

Feature DDR and DDR2 DDR3
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

15–6 Chapter 15: Introduction to ALTMEMPHY IP
Unsupported Features
Unsupported Features
Table 15–6 summarizes unsupported features for Altera’s ALTMEMPHY-based
external memory interfaces.

MegaCore Verification
Altera performs extensive random, directed tests with functional test coverage using
industry-standard Denali models to ensure the functionality of the DDR, DDR2, and
DDR3 SDRAM Controllers with ALTMEMPHY IP.

Resource Utilization
This section provides typical resource utilization information for the external memory
controllers with ALTMEMPHY for supported device families. This information is
provided as a guideline only; for precise resource utilization data, you should
generate your IP core and refer to the reports generated by the Quartus II software.

Table 15–7 shows resource utilization data for the ALTMEMPHY megafunction, and
the DDR3 high-performance controller II for Arria II GX devices.

Table 15–6. Unsupported Features

Memory Protocol Unsuppoted Feature

DDR and DDR2 SDRAM

Timing simulation

Burst length of 2

Partial burst and unaligned burst in ECC
and non-ECC mode when DM pins are
disabled

DDR3 SDRAM

Timing simulation

Partial burst and unaligned burst in ECC
and non-ECC mode when DM pins are
disabled

Stratix III and Stratix IV

DIMM support

Full-rate interfaces

Table 15–7. Resource Utilization in Arria II GX Devices (Part 1 of 2)

Protocol
Memory
Width
(Bits)

Combinational
ALUTS

Logic
Registers

Mem
ALUTs

M9K
Blocks

M144K
Blocks

Memor
y (Bits)

Controller

DDR3
(Half rate)

8 1,883 1,505 10 2 0 4,352

16 1,893 1,505 10 4 0 8,704

64 1,946 1,521 18 15 0 34,560

72 1,950 1,505 10 17 0 39,168
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 15: Introduction to ALTMEMPHY IP 15–7
Resource Utilization
Table 15–8 shows resource utilization data for the DDR2 high-performance controller
and controller plus PHY, for half-rate and full-rate configurations for Arria II GX
devices.

Controller+PHY

DDR3
(Half rate)

8 3,389 2,760 12 4 0 4,672

16 3,457 2,856 12 7 0 9,280

64 3,793 3,696 20 24 0 36,672

72 3,878 3,818 12 26 0 41,536

Table 15–8. DDR2 Resource Utilization in Arria II GX Devices

Protocol
Memory
Width
(Bits)

Combinational
ALUTS

Logic
Registers

Mem
ALUTs

M9K
Blocks

M144K
Blocks

Memory
(Bits)

Controller

DDR2
(Half rate)

8 1,971 1,547 10 2 0 4,352

16 1,973 1,547 10 4 0 8,704

64 2,028 1,563 18 15 0 34,560

72 2,044 1,547 10 17 0 39,168

DDR2
(Full rate)

8 2,007 1,565 10 2 0 2,176

16 2,013 1,565 10 2 0 4,352

64 2,022 1,565 10 8 0 17,408

72 2,025 1,565 10 9 0 19,584

Controller+PHY

DDR2
(Half rate)

8 3,481 2,722 12 4 0 4,672

16 3,545 2,862 12 7 0 9,280

64 3,891 3,704 20 24 0 36,672

72 3,984 3,827 12 26 0 41,536

DDR2
(Full rate)

8 3,337 2,568 29 2 0 2,176

16 3,356 2,558 11 4 0 4,928

64 3,423 2,836 31 12 0 19,200

72 3,445 2,827 11 14 0 21,952

Table 15–7. Resource Utilization in Arria II GX Devices (Part 2 of 2)

Protocol
Memory
Width
(Bits)

Combinational
ALUTS

Logic
Registers

Mem
ALUTs

M9K
Blocks

M144K
Blocks

Memor
y (Bits)
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

15–8 Chapter 15: Introduction to ALTMEMPHY IP
System Requirements
Table 15–9 shows resource utilization data for the DDR2 high-performance controller
and controller plus PHY, for half-rate and full-rate configurations for Cyclone III
devices.

System Requirements
The DDR3 SDRAM Controller with ALTMEMPHY IP is a part of the MegaCore IP
Library, which is distributed with the Quartus II software and downloadable from the
Altera website, www.altera.com.

f For system requirements and installation instructions, refer to Altera Software
Installation & Licensing.

Table 15–9. DDR2 Resource Utilization in Cyclone III Devices

Protocol Memory
Width (Bits)

Logic
Registers Logic Cells M9K Blocks Memory

(Bits)

Controller

DDR2
(Half rate)

8 1,513 3,015 4 4,464

16 1,513 3,034 6 8,816

64 1,513 3,082 18 34,928

72 1,513 3,076 19 39,280

DDR2
(Full rate)

8 1,531 3,059 4 2,288

16 1,531 3,108 4 4,464

64 1,531 3,134 10 17,520

72 1,531 3,119 11 19,696

Controller+PHY

DDR2
(Half rate)

8 2,737 5,131 6 4,784

16 2,915 5,351 9 9,392

64 3,969 6,564 27 37,040

72 4,143 6,786 28 41,648

DDR2
(Full rate)

8 2,418 4,763 6 2,576

16 2,499 4,919 6 5,008

64 2,957 5,505 15 19,600

72 3,034 5,608 16 22,032
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
www.altera.com

Chapter 15: Introduction to ALTMEMPHY IP 15–9
Installation and Licensing
Installation and Licensing
Figure 15–2 shows the directory structure after you install the DDR3 SDRAM
Controller with ALTMEMPHY IP, where <path> is the installation directory. The
default installation directory on Windows is c:\altera\<version>; on Linux it is
/opt/altera<version>.

You need a license for the MegaCore function only when you are completely satisfied
with its functionality and performance, and want to take your design to production.

To use the DDR3 SDRAM HPC, you can request a license file from the Altera web site
at www.altera.com/licensing and install it on your computer. When you request a
license file, Altera emails you a license.dat file. If you do not have Internet access,
contact your local representative.

To use the DDR3 SDRAM HPC II, contact your local sales representative to order a
license.

Free Evaluation
Altera's OpenCore Plus evaluation feature is only applicable to the DDR3 SDRAM
HPC. With the OpenCore Plus evaluation feature, you can perform the following
actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM
megafunction) within your system.

■ Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily.

■ Generate time-limited device programming files for designs that include
MegaCore functions.

■ Program a device and verify your design in hardware.

You need to purchase a license for the megafunction only when you are completely
satisfied with its functionality and performance, and want to take your design to
production.

Figure 15–2. Directory Structure

<path>

ddr3_high_perf
Contains the DDR3 SDRAM Controller with ALTMEMPHY IP files.

lib
Contains encypted lower-level design files and other support files.

common
Contains shared components.

Installation directory.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.r

altera
Contains the Altera MegaCore IP Library.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

www.altera.com/support/licensing/lic-index.html

15–10 Chapter 15: Introduction to ALTMEMPHY IP
Document Revision History
OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation can support the following two modes of
operation:

■ Untethered—the design runs for a limited time

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely

All megafunctions in a device time-out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction's time-out behavior may be masked by the time-out behavior of
the other megafunctions.

1 For MegaCore functions, the untethered time-out is 1 hour; the tethered time-out
value is indefinite.

Your design stops working after the hardware evaluation time expires and the
local_ready output goes low.

Document Revision History
Table 15–10 lists the revision history for this document.

Table 15–10. Document Revision History

Date Version Changes

November 2012 1.2 Changed chapter number from 13 to 15.

June 2012 1.1 Added Feedback icon.

November 2011 1.0 Combined Release Information, Device Family Support, Features list, and Unsupported
Features list for DDR, DDR2, and DDR3.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM014-1.2

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM014-1.2
16. Latency for ALTMEMPHY IP
Latency is defined using the local (user) side frequency and absolute time (ns). There
are two types of latencies that exists while designing with memory controllers—read
and write latencies, which have the following definitions:

■ Read latency—the amount of time it takes for the read data to appear at the local
interface after initiating the read request.

■ Write latency—the amount of time it takes for the write data to appear at the
memory interface after initiating the write request.

1 For a half-rate controller, the local side frequency is half of the memory interface
frequency. For a full-rate controller, the local side frequency is equal to the memory
interface frequency.

Altera defines read and write latencies in terms of the local interface clock frequency
and by the absolute time for the memory controllers. These latencies apply to
supported device families with half-rate and full-rate HPC II memory controllers.

The latency defined in this section uses the following assumptions:

■ The row is already open, there is no extra bank management needed.

■ The controller is idle, there is no queued transaction pending, indicated by the
local_ready signal asserted high.

■ No refresh cycles occur before the transaction.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_014
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_014-1.2 (EMI HB, Vol 3, Ch16: Latency for ALTMEMPHY IP)

16–2 Chapter 16: Latency for ALTMEMPHY IP
Latency Stages
Latency Stages
The latency for the high-performance controller II comprises many different stages of
the memory interface. Figure 16–1 shows a typical memory interface read latency
path showing read latency from the time a local_read_req signal assertion is
detected by the controller up to data available to be read from the dual-port RAM
(DPRAM) module.

Table 16–1 shows the different stages that make up the whole read and write latency
that Figure 16–1 shows.

From Figure 16–1, the read latency in the high-performance controllers is made up of
four components:

read latency = controller latency (T1) + command output latency (T2) +
CAS latency (T3) + PHY read data input latency (T4)

Figure 16–1. Typical Latency Path

Shifted
DQS Clk

High-
Performance

Controller

PLLphy_clk

local_rdata

local_read_req

control_doing_rd

PLL
0° or 180°

PHY

FPGA Device Memory Device

Latency T3
(includes CAS

latency)

Latency T1

local_addr
mem_cs_n

mem_dq []

mem_dqs []

Latency T2
Address/Command Generation

Core I/O

Alignment and
Synchronization

Capture

Shifted
DQS Clock

Resynchronization
 Clock

Half-
rate

DPRAM

Read Datapath
Latency T4

mem_clk []

mem_clk_n []

Table 16–1. High-Performance Controller Latency Stages and Descriptions

Latency Number Latency Stage Description

T1 Controller local_read_req or local_write_req signal assertion to
ddr_cs_n signal assertion.

T2 Command Output ddr_cs_n signal assertion to mem_cs_n signal assertion.

T3 CAS or WL Read command to DQ data from the memory or write command to DQ
data to the memory.

T4 ALTMEMPHY
read data input Read data appearing on the local interface.

T2 + T3 Write data latency Write data appearing on the memory interface.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 16: Latency for ALTMEMPHY IP 16–3
Latency Stages
Similarly, the write latency in the high-performance controller II is made up of three
components:

write latency = controller latency (T1) + write data latency (T2+T3)

You can separate the controller and ALTMEMPHY read data input latency into
latency that occurred in the I/O element (IOE) and latency that occurred in the FPGA
fabric.

Table 16–2 shows the minimum and maximum supported CAS latency for the DDR
and DDR2 SDRAM high-performance controller II.

Table 16–3 and Table 16–4 show a typical latency that can be achieved in Arria GX,
Arria II GX, Cyclone III, Cyclone IV, Stratix IV, Stratix III, Stratix II, and Stratix II GX
devices. The exact latency for your memory controller depends on your precise
configuration. You can obtain precise latency from simulation, but this figure can vary
slightly in hardware because of the automatic calibration process.

The actual memory CAS and write latencies shown are halved in half-rate designs as
the latency calculation is based on the local clock.

The read latency also depends on your board trace delay. The latency found in
simulation can be different from that found in board testing as functional simulation
does not take into account the board trace delays. For a given design on a given board,
the latency may change by one clock cycle (for full-rate designs) or two clock cycles
(for half-rate designs) upon resetting the board. Different boards could also show
different latencies even with the same design.

Table 16–2. Supported CAS Latency (1)

Device Family

Minimum Supported
CAS Latency

Maximum Supported CAS
Latency

DDR DDR2 DDR DDR2

Arria GX 3.0 3.0 3.0 6.0

Arria II GX 3.0 3.0 3.0 6.0

Cyclone III 2.0 3.0 3.0 6.0

Cyclone IV 2.0 3.0 3.0 6.0

HardCopy III 3.0 3.0 3.0 6.0

HardCopy IV 3.0 3.0 3.0 6.0

Stratix II 3.0 3.0 3.0 6.0

Stratix III 3.0 3.0 3.0 6.0

Stratix IV 3.0 3.0 3.0 6.0

Note to Table 16–2:

(1) The registered DIMMs, where supported, effectively introduce one extra cycle of CAS latency. For the registered
DIMMs, you need to subtract 1.0 from the CAS figures to determine the minimum supported CAS latency, and add
1.0 to the CAS figures to determine the maximum supported CAS latency.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

16–4 Chapter 16: Latency for ALTMEMPHY IP
Latency Stages
The CAS and write latencies are different between DDR and DDR2 SDRAM
interfaces. To calculate latencies for DDR SDRAM interfaces, use the numbers from
DDR2 SDRAM listed below and replace the CAS and write latency with the DDR
SDRAM values.

Table 16–3. Typical Read Latency in HPC II (1), (2)

Device Frequency
(MHz) Interface

Controller
Latency

(3)

Address and
Command
Latency CAS

Latency
(4)

Read Data
Latency

Total Read
Latency (5)

FPGA I/O FPGA I/O
Local
Clock
Cycles

Time
(ns)

Arria GX
233 Half-rate 5 3 1 2 4.5 1 18 154

167 Full-rate 5 2 1 4 5 1 19 114

Arria II GX
233 Half-rate 5 3 1 2.5 5.5 1 18 154

167 Full-rate 5 2 1 4 6 1 20 120

Cyclone III and
Cyclone IV

200 Half-rate 5 3 1 2 4.5 1 18 180

167 Full-rate 5 2 1 4 5 1 19 114

Stratix II and
Stratix II GX

333 Half-rate 5 3 1 2 4.5 1 18 108

267 Half-rate 5 3 1 2 4.5 1 18 135

200 Full-rate 5 2 1 4 5 1 19 95

Stratix III and
Stratix IV

400 Half-rate 5 3 1 2.5 7.125 1.5 20 100

267 Full-rate 4 2 1.5 4 7 1 20 75

Notes to Table 16–3:

(1) These are typical latency values using the assumptions listed in the beginning of the section. Your actual latency may be different than shown.
Perform your own simulation for your actual latency.

(2) Numbers shown may have been rounded up to the nearest higher integer.
(3) The controller latency value is from the Altera high-performance controller.
(4) CAS latency is per memory device specification and is programmable in the MegaWizard Plug-In Manager.
(5) Total read latency is the sum of controller, address and command, CAS, and read data latencies.

Table 16–4. Typical Write Latency in HPC II (1), (2) (Part 1 of 2)

Device Frequency
(MHz) Interface

Controller
Latency

(3)

Address and
Command Latency Memory

Write
Latency

(4)

Total Write
Latency (5)

FPGA I/O
Local
Clock
Cycles

Time
(ns)

Arria GX
233 Half-rate 5 3 1 1.5 12 103

167 Full-rate 5 2 1 3 12 72

Arria II GX
233 Half-rate 5 3 1 2.5 12 103

167 Full-rate 5 2 1 4 12 72

Cyclone III and
Cyclone IV

200 Half-rate 5 3 1 1.5 12 120

167 Full-rate 5 2 1 3 12 72
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 16: Latency for ALTMEMPHY IP 16–5
Document Revision History
f To see the latency incurred in the IOE for both read and write paths for ALTMEMPHY
variations in Stratix IV and Stratix III devices refer to the IOE figures in the External
Memory Interfaces in Stratix III Devices chapter of the Stratix III Device Handbook and the
External Memory Interfaces in Stratix IV Devices chapter of the Stratix IV Device
Handbook.

Document Revision History
Table 16–5 lists the revision history for this document.

Stratix II and
Stratix II GX

333 Half-rate 5 3 1 1.5 12 72

267 Half-rate 5 3 1 1.5 12 90

200 Full-rate 5 2 1 3 12 60

Stratix III and
Stratix IV

400 Half-rate 5 3 1 2 12 60

267 Full-rate 5 2 1.5 3 13 49

Notes to Table 16–4:

(1) These are typical latency values using the assumptions listed in the beginning of the section. Your actual latency may be different than shown.
Perform your own simulation for your actual latency.

(2) Numbers shown may have been rounded up to the nearest higher integer.
(3) The controller latency value is from the Altera high-performance controller.
(4) Memory write latency is per memory device specification. The latency from when you provide the command to write to when you need to

provide data at the memory device.
(5) Total write latency is the sum of controller, address and command, and memory write latencies.

Table 16–4. Typical Write Latency in HPC II (1), (2) (Part 2 of 2)

Device Frequency
(MHz) Interface

Controller
Latency

(3)

Address and
Command Latency Memory

Write
Latency

(4)

Total Write
Latency (5)

FPGA I/O
Local
Clock
Cycles

Time
(ns)

Table 16–5. Document Revision History

Date Version Changes

November 2012 1.2 Changed chapter number from 14 to 16.

June 2012 1.1 Added Feedback icon.

November 2011 1.0
Consolidated latency information from 11.0 DDR and DDR2 SDRAM Controller with
ALTMEMPHY IP User Guide, and DDR3 SDRAM Controller with ALTMEMPHY IP User
Guide.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
www.altera.com/literature/hb/stratix-iv/stx4_siv51007.pdf

16–6 Chapter 16: Latency for ALTMEMPHY IP
Document Revision History
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_015-1.3

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_015-1.3
17. Timing Diagrams for ALTMEMPHY IP
This chapter shows timing diagrams for the DDR, DDR2, and DDR3 SDRAM
high-performance controllers II (HPC II).

DDR and DDR2 High-Performance Controllers II
This section discusses the following timing diagrams for the DDR and DDR2 HPC II:

■ “Half-Rate Read”

■ “Half-Rate Write”

■ “Full-Rate Read”

■ “Full-Rate Write”
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_015
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_015-1.3 (EMI HB, Vol 3, Ch17: Timing Diagrams for ALTMEMPHY IP)

17–2
Chapter 17:

Tim
ing Diagram

s for ALTM
EM

PHY IP
DDR and DDR2 High-Perform

ance Controllers II

External M
em

ory Interface Handbook
Novem

ber 2012
Altera Corporation

Volum
e 3: Reference M

aterial

EFF0011 AABBCCDD EEFF0011 AABBCCDD EEFF0011

0000000

3

F

EFF0011 AABBCCDD EEFF0011 AABBCCDD EEFF0011

[6]

[7]
Half-Rate Read

The following sequence corresponds with the numbered items in Figure 17–1:

Figure 17–1. Half-Rate Read Operation for HPC II

phy_clk

Local Interface
local_address[25:0]

local_size[4:0]
local_ready

local_burstbegin
local_read_req

local_rdata[31:0]
local_rdata_valid

local_be[3:0]

afi_addr[27:0]

Controller - AFI

afi_ba[5:0]
afi_cs_n[3:0]

AFI Command[2:0]
afi_dm[3:0]

afi_dqs_burst[0]
afi_dqs_burst[1]

afi_doing_rd[1:0]
afi_rdata[31:0]

afi_rdata_valid[1:0]

mem_cke[1:0]

AFI Memory Interface

mem_clk
mem_ba[2:0]

mem_addr[13:0]
mem_cs_n[0]

Mem Command[2:0]
mem_dqs
mem_dm

mem_dq[7:0]
mem_odt[1:0]

00000020000000
2

0000004 0000000

AABBCCDD E

0000000 0000000 0000008 0000000
0

0000010

B F B F B
RD NOP RD NOPRD

F

3
AABBCCDD E

0000 0000 0008 0000
0

0010

RD NOPNOP NOPRD NOP RD

DDCCBB AA 11 00 FF EE DDCCBB AA 11 00 FF EE DDCCBB AA 11 00 FF EE

[5]

[1] [2] [3] [4]

Chapter 17: Timing Diagrams for ALTMEMPHY IP 17–3
DDR and DDR2 High-Performance Controllers II
1. The user logic requests the first read by asserting the local_read_req signal, and
the size and address for this read. In this example, the request is a burst of length
of 2 to the local address 0×000000. This local address is mapped to the following
memory address in half-rate mode:

mem_row_address = 0×000000

mem_col_address = 0×0000

mem_bank_address = 0×00

2. The user logic initiates a second read to a different memory column within the
same row. The request for the second write is a burst length of 2. In this example,
the user logic continues to accept commands until the command queue is full.
When the command queue is full, the controller deasserts the local_ready signal.
The starting local address 0x000002 is mapped to the following memory address in
half-rate mode:

mem_row_address = 0×0000

mem_col_address = 0×0002<<2 = 0×0008

mem_bank_address = 0×00

3. The controller issues the first read memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

4. The controller asserts the afi_doing_rd signal to indicate to the ALTMEMPHY
megafunction the number of clock cycles of read data it must expect for the first
read. The ALTMEMPHY megafunction uses the afi_doing_rd signal to enable its
capture registers for the expected duration of memory burst.

5. The ALTMEMPHY megafunction issues the first read command to the memory
and captures the read data from the memory.

6. The ALTMEMPHY megafunction returns the first data read to the controller after
resynchronizing the data to the phy_clk domain, by asserting the
afi_rdata_valid signal when there is valid read data on the afi_rdata bus.

7. The controller returns the first read data to the user by asserting the
local_rdata_valid signal when there is valid read data on the local_rdata bus. If
the ECC logic is disabled, there is no delay between the afi_rdata and the
local_rdata buses. If there is ECC logic in the controller, there is one or three clock
cycles of delay between the afi_rdata and local_rdata buses.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

17–4
Chapter 17:

Tim
ing Diagram

s for ALTM
EM

PHY IP
DDR and DDR2 High-Perform

ance Controllers II

External M
em

ory Interface Handbook
Novem

ber 2012
Altera Corporation

Volum
e 3: Reference M

aterial

0000000

[4] [5] [6]

D AABBCCDDEEFF0011 EEFF0011

0000000

F

F0

3

000 0010

OP NOPWR

D CC BB AA11 00 FF EE DD CC BB AA11 00 FF EEDD CC BB AA11 00 FF EE
Half-Rate Write

Figure 17–2. Half-Rate Write Operation for HPC II

Local Interface

local_address[25:0]

local_size[4:0]

local_ready

local_burstbegin

local_be[3:0]

local_write_req

local_wdata[31:0]

afi_addr[27:0]

Controller - AFI

afi_ba[5:0]

afi_cs_n[3:0]

AFI Command[2:0]

afi_dm[3:0]

afi_wlat[4:0]

afi_dqs_burst[0]

afi_dqs_burst[1]

afi_wdata[31:0]

afi_wdata_valid[1:0]

mem_cke[1:0]
AFI Memory Interface

mem_clk

mem_ba[2:0]

mem_addr[13:0]

mem_cs_n[0]

Mem Command[2:0]

mem_dqs

mem_dm

mem_dq[7:0]

mem_odt[1:0]

phy_clk

00000020000000 0000004
2

[1] [2] [3]

AABBCCDD AABBCCDD AABBCCDDEEFF0011 EEFF0011 EEFF0011

AABBCCDD AABBCCDEEFF0011

0000000 0000000 0000000 0000000 0000008 0000000 0000010

B F B F B F B F B

ACT NOP WR NOP WR NOP WR NOPNOP WR

0 FF

2

3 0

0000 0000 0000 0000 0008 0

NOP ACT NOP WR NOP NOP NWR WR

00 00 D

Chapter 17: Timing Diagrams for ALTMEMPHY IP 17–5
DDR and DDR2 High-Performance Controllers II
The following sequence corresponds with the numbered items in Figure 17–2:

1. The user logic asserts the first write request to row 0 so that row 0 is open before
the next transaction.

2. The user logic asserts a second local_write_req signal with size of 2 and address
of 0 (col = 0, row = 0, bank = 0, chip = 0). The local_ready signal is asserted along
with the local_write_req signal, which indicates that the controller has accepted
this request, and the user logic can request another read or write in the following
clock cycle. If the local_ready signal was not asserted, the user logic must keep
the write request, size, and address signals asserted until the local_ready signal is
registered high.

3. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

4. The controller asserts the afi_wdata_valid signal to indicate to the ALTMEMPHY
megafunction that valid write data and write data masks are present on the inputs
to the ALTMEMPHY megafunction.

5. The controller asserts the afi_dqs_burst signals to control the timing of the DQS
signal that the ALTMEMPHY megafunction issues to the memory.

6. The ALTMEMPHY megafunction issues the write command, and sends the write
data and write DQS to the memory.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

17–6
Chapter 17:

Tim
ing Diagram

s for ALTM
EM

PHY IP
DDR and DDR2 High-Perform

ance Controllers II

External M
em

ory Interface Handbook
Novem

ber 2012
Altera Corporation

Volum
e 3: Reference M

aterial

ABCD EF01 ABCD EF01

ABCD EF01 ABCD EF01

[6]

[5]
Full-Rate Read

Figure 17–3. Full-Rate Read Operation for HPC II

phy_clk

local_address[23:0]
local_size[2:0]

local_ready
local_burstbegin
local_read_req

local_rdata_valid
local_rdata[15:0]

local_be[1:0]

afi_addr[12:0]
afi_ba[1:0]

afi_cs_n
AFI Command[2:0]

afi_dm[1:0]
afi_dqs_burst
afi_doing_rd

afi_rdata[15:0]
afi_rdata_valid

mem_cke
mem_clk

mem_ba[1:0]
mem_addr[12:0]

mem_cs_n
Mem Command[2:0]

mem_dqs
mem_dm

mem_dq[7:0]
mem_odt

000000000000 000002

2

FFFFFFFF

3

0000

0

NOP NOP NOP

NOP NOP NOP

RD RD

RDRD

000000 000004

3

FFFFFFFF

0

00000000 0004

0000 00CD AB 01 EF CD AB 01 EF

AFI Memory Interface

Local Interface

Controller - AFI

[1] [2] [3]

[4]

Chapter 17: Timing Diagrams for ALTMEMPHY IP 17–7
DDR and DDR2 High-Performance Controllers II
The following sequence corresponds with the numbered items in Figure 17–3:

1. The user logic requests the first read by asserting local_read_req signal, and the
size and address for this read. In this example, the request is a burst length of 2 to a
local address 0x000000. This local address is mapped to the following memory
address in full-rate mode:

mem_row_address = 0×0000

mem_col_address = 0×0000<<2 = 0×0000

mem_bank_address = 0×00

2. The controller issues the first read memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

3. The controller asserts the afi_doing_rd signal to indicate to the ALTMEMPHY
megafunction the number of clock cycles of read data it must expect for the first
read. The ALTMEMPHY megafunction uses the afi_doing_rd signal to enable its
capture registers for the expected duration of memory burst.

4. The ALTMEMPHY megafunction issues the first read command to the memory
and captures the read data from the memory.

5. The ALTMEMPHY megafunction returns the first data read to the controller after
resynchronizing the data to the phy_clk domain, by asserting the
afi_rdata_valid signal when there is valid read data on the afi_rdata bus.

6. The controller returns the first read data to the user by asserting the
local_rdata_valid signal when there is valid read data on the local_rdata bus. If
the ECC logic is disabled, there is no delay between the afi_rdata and the
local_rdata buses. If there is ECC logic in the controller, there is one or three clock
cycles of delay between the afi_rdata and local_rdata buses.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

17–8
Chapter 17:

Tim
ing Diagram

s for ALTM
EM

PHY IP
DDR and DDR2 High-Perform

ance Controllers II

External M
em

ory Interface Handbook
Novem

ber 2012
Altera Corporation

Volum
e 3: Reference M

aterial

000000

0000

0000

NOP

0 3

EF01 ABCD EF01 ABCD EF01

0 0010 0000

OP WR NOP

CD AB 01 EF CD AB 01 EF CD AB 01 EF

[5]

[4]
Full-Rate Write

Figure 17–4. Full-Rate Write Operation for HPC II

phy_clk

local_address[23:0]
local_size[2:0]

local_ready
local_burstbegin

local_be[1:0]
local_write_req

local_rdata[15:0]
local_wdata[15:0]

afi_addr[12:0]
afi_ba[1:0][1:0]

afi_cs_n
AFI Command[2:0]

afi_dm[1:0]
afi_wlat[4:0]

afi_dqs_burst
afi_wdata[15:0]
afi_wdata_valid

mem_cke
mem_clk

mem_ba[1:0]
mem_addr[12:0]

mem_cs_n
Mem Command[2:0]

mem_dqs
mem_dm

mem_dq[7:0]
mem_odt

000000 000004 000008

2

3

FFFF

0000 ABCD EF01 ABCD EF01 ABCD EF01

0000 0008 0000 0010

0

NOP ACT NOP WR NOP WR NOP WR NOP WR

3 0 3

04

0000 ABCD

0

0000 0008 000

NOP ACT NOP WR NOP WR NOP WR N

00

Local Interface

Controller - AFI

AFI Memory Interface

[3][2][1]

[6]

Chapter 17: Timing Diagrams for ALTMEMPHY IP 17–9
DDR3 High-Performance Controller II
The following sequence corresponds with the numbered items in Figure 17–4:

1. The user logic asserts the first write request to row 0 so that row 0 is open before
the next transaction.

2. The user logic asserts a second local_write_req signal with a size of 2 and
address of 0 (col = 0, row = 0, bank = 0, chip = 0). The local_ready signal is
asserted along with the local_write_req signal, which indicates that the
controller has accepted this request, and the user logic can request another read or
write in the following clock cycle. If the local_ready signal was not asserted, the
user logic must keep the write request, size, and address signals asserted until the
local_ready signal is registered high.

3. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

4. The controller asserts the afi_wdata_valid signal to indicate to the ALTMEMPHY
megafunction that valid write data and write data masks are present on the inputs
to the ALTMEMPHY megafunction.

5. The controller asserts the afi_dqs_burst signals to control the timing of the DQS
signal that the ALTMEMPHY megafunction issues to the memory.

6. The ALTMEMPHY megafunction issues the write command, and sends the write
data and write DQS to the memory.

DDR3 High-Performance Controller II
This section discusses the following timing diagrams for the DDR3 HPC II:

■ “Half-Rate Read”

■ “Half-Rate Write”

■ “Half-Rate Read (Non Burst-Aligned Address)”

■ “Half-Rate Write (Non Burst-Aligned Address)”

■ “Half-Rate Read With Gaps”

■ “Full-Rate Read”

■ “Half-Rate Write Operation (Merging Writes)”

■ “Write-Read-Write-Read Operation”
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

17–10
Chapter 17:

Tim
ing Diagram

s for ALTM
EM

PHY IP
DDR3 High-Perform

ance Controller II

External M
em

ory Interface Handbook
Novem

ber 2012
Altera Corporation

Volum
e 3: Reference M

aterial

EFF0011 AABBCCDD EEFF0011 AABBCCDD EEFF0011

0000000

3

F

EFF0011 AABBCCDD EEFF0011 AABBCCDD EEFF0011

[6]

[7]
Half-Rate Read (Burst-Aligned Address)

Figure 17–5. Half-Rate Read Operation for HPC II—Burst-Aligned Address

phy_clk

Local Interface
local_address[25:0]

local_size[4:0]
local_ready

local_burstbegin
local_read_req

local_rdata[31:0]
local_rdata_valid

local_be[3:0]

afi_addr[27:0]

Controller - AFI

afi_ba[5:0]
afi_cs_n[3:0]

AFI Command[2:0]
afi_dm[3:0]

afi_dqs_burst[0]
afi_dqs_burst[1]

afi_doing_rd[1:0]
afi_rdata[31:0]

afi_rdata_valid[1:0]

mem_cke[1:0]

AFI Memory Interface

mem_clk
mem_ba[2:0]

mem_addr[13:0]
mem_cs_n[0]

Mem Command[2:0]
mem_dqs
mem_dm

mem_dq[7:0]
mem_odt[1:0]

00000020000000
2

0000004 0000000

AABBCCDD E

0000000 0000000 0000008 0000000
0

0000010

B F B F B
RD NOP RD NOPRD

F

3
AABBCCDD E

0000 0000 0008 0000
0

0010

RD NOPNOP NOPRD NOP RD

DDCCBB AA 11 00 FF EE DDCCBB AA 11 00 FF EE DDCCBB AA 11 00 FF EE

[5]

[1] [2] [3] [4]

Chapter 17: Timing Diagrams for ALTMEMPHY IP 17–11
DDR3 High-Performance Controller II
The following sequence corresponds with the numbered items in Figure 17–1:

1. The user logic requests the first read by asserting the local_read_req signal, and
the size and address for this read. In this example, the request is a burst of length
of 2 to the local address 0×000000. This local address is mapped to the following
memory address in half-rate mode:

mem_row_address = 0×000000

mem_col_address = 0×0000

mem_bank_address = 0×00

2. The user logic initiates a second read to a different memory column within the
same row. The request for the second read is a burst length of 2. In this example,
the user logic continues to accept commands until the command queue is full.
When the command queue is full, the controller deasserts the local_ready signal.
The starting local address 0x000002 is mapped to the following memory address in
half-rate mode:

mem_row_address = 0×0000

mem_col_address = 0×0002<<2 = 0×0008

mem_bank_address = 0×00

3. The controller issues the first read memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

4. The controller asserts the afi_doing_rd signal to indicate to the ALTMEMPHY
megafunction the number of clock cycles of read data it must expect for the first
read. The ALTMEMPHY megafunction uses the afi_doing_rd signal to enable its
capture registers for the expected duration of memory burst.

5. The ALTMEMPHY megafunction issues the first read command to the memory
and captures the read data from the memory.

6. The ALTMEMPHY megafunction returns the first data read to the controller after
resynchronizing the data to the phy_clk domain, by asserting the
afi_rdata_valid signal when there is valid read data on the afi_rdata bus.

7. The controller returns the first read data to the user by asserting the
local_rdata_valid signal when there is valid read data on the local_rdata bus. If
the ECC logic is disabled, there is no delay between the afi_rdata and the
local_rdata buses. If there is ECC logic in the controller, there is one or three clock
cycles of delay between the afi_rdata and local_rdata buses.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

17–12
Chapter 17:

Tim
ing Diagram

s for ALTM
EM

PHY IP
DDR3 High-Perform

ance Controller II

External M
em

ory Interface Handbook
Novem

ber 2012
Altera Corporation

Volum
e 3: Reference M

aterial

0000000

[4] [5] [6]

D AABBCCDDEEFF0011 EEFF0011

0000000

F

F0

3

000 0010

OP NOPWR

D CC BB AA11 00 FF EE DD CC BB AA11 00 FF EEDD CC BB AA11 00 FF EE
Half-Rate Write (Burst-Aligned Address)

Figure 17–6. Half-Rate Write Operation for HPC II—Burst-Aligned Address

Local Interface

local_address[25:0]

local_size[4:0]

local_ready

local_burstbegin

local_be[3:0]

local_write_req

local_wdata[31:0]

afi_addr[27:0]

Controller - AFI

afi_ba[5:0]

afi_cs_n[3:0]

AFI Command[2:0]

afi_dm[3:0]

afi_wlat[4:0]

afi_dqs_burst[0]

afi_dqs_burst[1]

afi_wdata[31:0]

afi_wdata_valid[1:0]

mem_cke[1:0]
AFI Memory Interface

mem_clk

mem_ba[2:0]

mem_addr[13:0]

mem_cs_n[0]

Mem Command[2:0]

mem_dqs

mem_dm

mem_dq[7:0]

mem_odt[1:0]

phy_clk

00000020000000 0000004
2

[1] [2] [3]

AABBCCDD AABBCCDD AABBCCDDEEFF0011 EEFF0011 EEFF0011

AABBCCDD AABBCCDEEFF0011

0000000 0000000 0000000 0000000 0000008 0000000 0000010

B F B F B F B F B

ACT NOP WR NOP WR NOP WR NOPNOP WR

0 FF

2

3 0

0000 0000 0000 0000 0008 0

NOP ACT NOP WR NOP NOP NWR WR

00 00 D

Chapter 17: Timing Diagrams for ALTMEMPHY IP 17–13
DDR3 High-Performance Controller II
The following sequence corresponds with the numbered items in Figure 17–2:

1. The user logic asserts the first write request to row 0 so that row 0 is open before
the next transaction.

2. The user logic asserts a second local_write_req signal with size of 2 and address
of 0 (col = 0, row = 0, bank = 0, chip = 0). The local_ready signal is asserted along
with the local_write_req signal, which indicates that the controller has accepted
this request, and the user logic can request another read or write in the following
clock cycle. If the local_ready signal was not asserted, the user logic must keep
the write request, size, and address signals asserted until the local_ready signal is
registered high.

3. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

4. The controller asserts the afi_wdata_valid signal to indicate to the ALTMEMPHY
megafunction that valid write data and write data masks are present on the inputs
to the ALTMEMPHY megafunction.

5. The controller asserts the afi_dqs_burst signals to control the timing of the DQS
signal that the ALTMEMPHY megafunction issues to the memory.

6. The ALTMEMPHY megafunction issues the write command, and sends the write
data and write DQS to the memory.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

17–14
Chapter 17:

Tim
ing Diagram

s for ALTM
EM

PHY IP
DDR3 High-Perform

ance Controller II

External M
em

ory Interface Handbook
Novem

ber 2012
Altera Corporation

Volum
e 3: Reference M

aterial

BBCCDD EEFFEEFFAABBAABB AABBAABBEEFF0011 AABBCCDD EEFF0011AABBCCDD EEFFEEFFAABBAABB EEFF0011

BBCCDD EEFFEEFFAABBAABB AABBAABBEEFF0011 AABBCCDD EEFF0011AABBCCDD EEFFEEFFAABBAABBEEFF0011

00000

F

F

3 0 3 0 3 0 3 0 3 0 3

P 7

A

[5]

[6]
Half-Rate Read (Non Burst-Aligned Address)

Figure 17–7. Half-Rate Read Operation for HPC II—Non Burst-Aligned Address

phy_clk

local_address[25:0]
local_size[4:0]

local_ready
local_burstbegin
local_read_req

local_rdata[31:0]
local_rdata_valid

local_be[3:0]

afi_addr[27:0]
afi_ba[5:0]

afi_cs_n[3:0]
AFI Command[2:0]

afi_dm[3:0]
afi_dqs_burst[0]
afi_dqs_burst[1]

afi_doing_rd[1:0]
afi_rdata[31:0]

afi_rdata_valid[1:0]

mem_cke[1:0]

AFI Memory Interface

Controller - AFI

Local Interface

mem_clk
mem_ba[2:0]

mem_addr[13:0]
mem_cs_n[0]

Mem Command[2:0]
mem_dqs
mem_dm

mem_dq[7:0]
mem_odt[1:0]

00000 00001 00003 00005 00000

2

AA

AA

00000 10004 00000 20008 00000 3000C 00000 40010 00000 50014 00000 60018

B F B F B F B F B F B

NOP NOPNOPNOPNOPNOPNOP RD RD RD RD RD RD

3 0 3 0 3 0 3 0 3 0 3

00

0

0000 0004 0000 0008 0000 000C 0000 0010 0000 0014 0000 0018

NOP NOP NOP NOP NOP NOP NORD RD RD RD RD RD

AADD BBCC 00 FF EE11 AADD BBCC ADD BBCC00 FF EE1100 00 00 00 00

[1] [2] [3]

[4]

Chapter 17: Timing Diagrams for ALTMEMPHY IP 17–15
DDR3 High-Performance Controller II
The following sequence corresponds with the numbered items in Figure 17–7:

1. The user logic requests the first read by asserting the local_read_req signal, and
the size and address for this read. In this example, the request is a burst of length
of 2 to the local address 0×000001. This local address is mapped to the following
memory address in half-rate mode:

mem_row_address = 0×0000

mem_col_address = 0×0001<<2 = 0×0004

mem_bank_address = 0×00

2. The controller issues the first read memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

3. The controller asserts the afi_doing_rd signal to indicate to the ALTMEMPHY
megafunction the number of clock cycles of read data it must expect for the first
read. The ALTMEMPHY megafunction uses the afi_doing_rd signal to enable its
capture registers for the expected duration of memory burst.

4. The ALTMEMPHY megafunction issues the first read command to the memory
and captures the read data from the memory.

5. The ALTMEMPHY megafunction returns the first data read to the controller after
resynchronizing the data to the phy_clk domain, by asserting the
afi_rdata_valid signal when there is valid read data on the afi_rdata bus.

6. The controller returns the first read data to the user by asserting the
local_rdata_valid signal when there is valid read data on the local_rdata bus. If
the ECC logic is disabled, there is no delay between the afi_rdata and the
local_rdata buses. If there is ECC logic in the controller, there is one or three clock
cycles of delay between the afi_rdata and local_rdata buses.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

17–16
Chapter 17:

Tim
ing Diagram

s for ALTM
EM

PHY IP
DDR3 High-Perform

ance Controller II

External M
em

ory Interface Handbook
Novem

ber 2012
Altera Corporation

Volum
e 3: Reference M

aterial

0000000

F
NOP

F 0

D
0 3

0010 0000

NOPWR

00 DD CC BB AA 00 11 00 FF EE
Half-Rate Write (Non Burst-Aligned Address)

Figure 17–8. Half-Rate Write Operation for HPC II—Non Burst-Aligned Address

local_address[25:0]
local_size[4:0]

local_ready
local_burstbegin

local_be[3:0]
local_write_req

local_wdata[31:0]

afi_addr[27:0]
afi_ba[5:0]

afi_cs_n[3:0]
AFI Command[2:0]

afi_dm[3:0]
afi_wlat[4:0]

afi_dqs_burst[0]
afi_dqs_burst[1]
afi_wdata[31:0]

afi_wdata_valid[1:0]

mem_cke[1:0]
mem_clk

mem_ba[2:0]
mem_addr[13:0]

mem_cs_n[0]
Mem Command[2:0]

mem_dqs
mem_dm

mem_dq[7:0]
mem_odt[1:0]

phy_clk

0000001 0000003
2

0000001 0000003 0000005

AABBCCDD EEFF0011 AABBCCDD EEFF0011

0010004 0000000 0020008 0000000 003000C 0000000 0040010

B F B F B F B
WR NOP NOP NOPWR WR WR

0 F 0 F 0

AABBCCDD EEFF0011 AABBCCD
3 0 3 0 3

0004 0000 0008 0000 000C 0000

WR NOP WR NOP WR NOP

DD CC BB AA 00 11 00 FF EE

Local Interface

Controller - AFI

AFI Memory Interface

[5][4]

[1] [2] [3]

Chapter 17: Timing Diagrams for ALTMEMPHY IP 17–17
DDR3 High-Performance Controller II
The following sequence corresponds with the numbered items in Figure 17–8:

1. The user logic asserts the first local_write_req signal with a size of 2 and an
address of 0×000001. The local_ready signal is asserted along with the
local_write_req signal, which indicates that the controller has accepted this
request, and the user logic can request another read or write in the following clock
cycle. If the local_ready signal was not asserted, the user logic must keep the
write request, size, and address signals asserted until the local_ready signal is
registered high. The local address 0x000001 is mapped to the following memory
address in half-rate mode:

mem_row_address = 0×0000

mem_col_address = 0×000001<<2 = 0×000004

mem_bank_address = 0×00

2. The user logic asserts the second local_write_req signal with a size of 2 and an
address of 0×000003. The local address 0×000003 is mapped to the following
memory address in half-rate mode:

mem_row_address = 0×0000

mem_col_address = 0×000003<<2 = 0×00000C

mem_bank_address = 0×00

3. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

4. The controller asserts the afi_wdata_valid signal to indicate to the ALTMEMPHY
megafunction that valid write data and write data masks are present on the inputs
to the ALTMEMPHY megafunction.

5. The controller asserts the afi_dqs_burst signals to control the timing of the DQS
signal that the ALTMEMPHY megafunction issues to the memory.

6. The ALTMEMPHY megafunction issues the write command, and sends the write
data and write DQS to the memory.

7. The controller generates another write because the first write is to a non-aligned
memory address, 0×0004. The controller performs the second write burst at the
memory address of 0×0008.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

17–18
Chapter 17:

Tim
ing Diagram

s for ALTM
EM

PHY IP
DDR3 High-Perform

ance Controller II

External M
em

ory Interface Handbook
Novem

ber 2012
Altera Corporation

Volum
e 3: Reference M

aterial

00000000

00000000

0 3 0 3
Half-Rate Read With Gaps

Figure 17–9. Half-Rate Read Operation for HPC II—With Gaps

Local Interface
local_address[25:0]

local_size[4:0]
local_ready

local_burstbegin
local_read_req

local_rdata[31:0]
local_rdata_valid

local_be[3:0]

afi_addr[27:0]

Controller - AFI

afi_ba[5:0]
afi_cs_n[3:0]

AFI Command[2:0]
afi_dm[3:0]

afi_dqs_burst[0]
afi_dqs_burst[1]

afi_doing_rd[1:0]
afi_rdata[31:0]

afi_rdata_valid[1:0]

mem_cke[1:0]

AFI Memory Interface

mem_clk
mem_ba[2:0]

mem_addr[13:0]
mem_cs_n[0]

Mem Command[2:0]
mem_dqs
mem_dm

mem_dq[7:0]
mem_odt[1:0]

0000912

2

0000810 0000A14

5101440 0004001 000000000000000000000 4121048 0004001 0000000 4141050 0000000

00 24 00 09 00 09 12 2D 00 09 00 09 12 00 12

F B F B F B F B F B F

NOP NOP NOP NOPRD ACT RD ACT RD

FF

0 3 0 3 0 3

0 3

7 0 1 0 1 2 0 2

0000 0001 0000 1440 0001 0000 1048 0001 0000 1050

ACT RD NOP ACT RD NOP ACT RD NOP ACT RD NOP

00 00 00 00 00 00 00 00

phy_clk

[1] [2] [3] [4] [5]

Chapter 17: Timing Diagrams for ALTMEMPHY IP 17–19
DDR3 High-Performance Controller II
The following sequence corresponds with the numbered items in Figure 17–9:

1. The user logic requests the first read by asserting the local_read_req signal, and
the size and address for this read. In this example, the request is a burst of length
of 2 to the local address 0×0000810. This local address is mapped to the following
memory address in half-rate mode:

mem_row_address = 0×0001

mem_col_address = 0×0010<<2 = 0×0040

mem_bank_address = 0×00

2. When the command queue is full, the controller deasserts the local_ready signal
to indicate that the controller has not accepted the command. The user logic must
keep the read request, size, and address signal until the local_ready signal is
asserted again.

3. The user logic asserts a second local_read_req signal with a size of 2 and address
of 0×0000912.

4. The controller issues the first read memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

5. The ALTMEMPHY megafunction issues the read command to the memory and
captures the read data from the memory.

Half-Rate Write With Gaps

Figure 17–10. Half-Rate Write Operation for HPC II—With Gaps

phy_clk

local_address[25:0]
Local Interface

local_size[4:0]
local_ready

local_burstbegin
local_be[3:0]

local_write_req
local_wdata[31:0]

afi_addr[27:0]
Controller - AFI

afi_ba[5:0]
afi_cs_n[3:0]

AFI Command[2:0]
afi_dm[3:0]

afi_wlat[4:0]
afi_dqs_burst[0]
afi_dqs_burst[1]
afi_wdata[31:0]

afi_wdata_valid[1:0]

mem_cke[1:0]
AFI Memory Interface

mem_clk
mem_ba[2:0]

mem_addr[13:0]
mem_cs_n[0]

Mem Command[2:0]
mem_dqs
mem_dm

mem_dq[7:0]
mem_odt[1:0]

0000F1C
2

AABBCCDD EEFF0011 AABBCCDD

0000000 40C1030
3F

F B F
WR NOPNOP

F 0 F

EEFF0011 AABBCCDD EEFF0011
0 3 0

7
1030

WR NOPNOP

00 DD CC BB AA 11 00 FF EE 00

[1] [6]

[2] [5] [3][4]
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

17–20 Chapter 17: Timing Diagrams for ALTMEMPHY IP
DDR3 High-Performance Controller II
The following sequence corresponds with the numbered items in Figure 17–10:

1. The user logic asserts a local_write_req signal with a size of 2 and an address of
0×0000F1C.

2. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

3. The controller asserts the afi_wdata_valid signal to indicate to the ALTMEMPHY
megafunction that valid write data and write data masks are present on the inputs
to the ALTMEMPHY megafunction.

4. The controller asserts the afi_dqs_burst signals to control the timing of the DQS
signal that the ALTMEMPHY megafunction issues to the memory.

5. The ALTMEMPHY megafunction issues the write command, and sends the write
data and write DQS to the memory.

6. For transactions with a local size of two, the local_write_req and local_ready
signals must be high for two clock cycles so that all the write data can be
transferred to the controller.

Half-Rate Write Operation (Merging Writes)

Figure 17–11. Write Operation for HPC II—Merging Writes

local_address[25:0]

Local Interface

local_size[4:0]
local_ready

local_burstbegin
local_be[3:0]

local_write_req
local_wdata[31:0]

afi_addr[27:0]
Controller - AFI

afi_ba[5:0]
afi_cs_n[3:0]

AFI Command[2:0]
afi_dm[3:0]

afi_wlat[4:0]
afi_dqs_burst[0]
afi_dqs_burst[1]
afi_wdata[31:0]

afi_wdata_valid[1:0]

mem_cke
AFI Memory Interface

mem_clk
mem_ba[2:0]

mem_addr[13:0]
mem_cs_n[0]

Mem Command[2:0]
mem_dqs
mem_dm

mem_dq[7:0]
mem_odt[1:0]

00000010000000 0000002 0000003

22222222 3333333300000000 00000000

0000000 4001000 0000000 4021008 0000000

F B F B F B F
ACT NOP

NOPACT

NOP NOPWR WR
0

00000000 22222222 33333333 00000000
3 0 3

1000 0000 1008 0000

WR NOP WR NOP

00 22 33 00

phy_clk

[2][1] [5] [4] [6][3]
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 17: Timing Diagrams for ALTMEMPHY IP 17–21
DDR3 High-Performance Controller II
The following sequence corresponds with the numbered items in Figure 17–11:

1. The user logic asserts the first local_write_req signal with a size of 1 and an
address of 0×000000. The local_ready signal is asserted along with the
local_write_req signal, which indicates that the controller has accepted this
request, and the user logic can request another read or write in the following clock
cycle. If the local_ready signal was not asserted, the user logic must keep the
write request, size, and address signals asserted until the local_ready signal is
registered high. The local address 0x000000 is mapped to the following memory
address in half-rate mode:

mem_row_address = 0×0000

mem_col_address = 0×0000<<2 = 0×0000

mem_bank_address = 0×00

2. The user logic asserts a second local_write_req signal with a size of 1 and
address of 1. The local_ready signal is asserted along with the local_write_req
signal, which indicates that the controller has accepted this request. Since the
second write request is to a sequential address (same row, same bank, and column
increment by 1), this write and the first write can be merged at the memory
transaction.

3. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

4. The controller asserts the afi_wdata_valid signal to indicate to the ALTMEMPHY
megafunction that valid write data and write data masks are present on the inputs
to the ALTMEMPHY megafunction.

5. The controller asserts the afi_dqs_burst signals to control the timing of the DQS
signal that the ALTMEMPHY megafunction issues to the memory.

6. The ALTMEMPHY megafunction issues the write command, and sends the write
data and write DQS to the memory.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

17–22
Chapter 17:

Tim
ing Diagram

s for ALTM
EM

PHY IP
DDR3 High-Perform

ance Controller II

External M
em

ory Interface Handbook
Novem

ber 2012
Altera Corporation

Volum
e 3: Reference M

aterial

00000000 00000010

0

3

00000000 00000010
0 3

0 0018

NOP

WR

10 1800 00

[13]

[12]
Write-Read-Write-Read Operation

Figure 17–12. Write-Read Sequential Operation for HPC II

Local Interface

local_address[25:0]
local_size[4:0]

local_ready
local_burstbegin
local_read_req

local_rdata[31:0]
local_rdata_valid

local_be[3:0]
local_write_req

local_wdata[31:0]

afi_addr[27:0]

Controller - AFI

afi_ba[5:0]
afi_cs_n[3:0]

AFI Command[2:0]
afi_dm[3:0]

afi_wlat[4:0]
afi_wdata[31:0]

afi_doing_rd[1:0]
afi_wdata_valid[1:0]

afi_dqs_burst[1]
afi_dqs_burst[0]

afi_rdata[31:0]
afi_rdata_valid[1:0]

mem_cke[1:0]

AFI Memory Interface

mem_clk
mem_ba[2:0]

mem_addr[13:0]
mem_cs_n[0]

Mem Command[2:0]
mem_dqs
mem_dm

mem_dq[7:0]
mem_odt[1:0]

0000002 0000004 0000006

0000000000000000 00000008

00000008 00000010 00000018

0040010 0040010 00600180000000 0020008 00200080000000 0000000 0000000 0000000

F B F B F B F B F B

F 0 F 0 F

00000000 00000008 00000010

00 3 0 3
0 3 0 3 0

0000000000000000 00000008
0 3

0000 0008 0000 0008 0000 0010 0000 0010 000

NOP WR NOP RD

NOP WR WR WRNOP NOP NOP NOPRD RD

NOP NOP NOPWR RD

00 08 1008 00 00 00 00 00 00

phy_clk

[1] [2] [3] [4] [5] [8] [9]

[6][7][10] [11]

Chapter 17: Timing Diagrams for ALTMEMPHY IP 17–23
DDR3 High-Performance Controller II
The following sequence corresponds with the numbered items in Figure 17–12:

1. The user logic requests the first write by asserting the local_write_req signal, and
the size and address for this write. In this example, the request is a burst length of
1 to a local address 0x000002. This local address is mapped to the following
memory address in half-rate mode:

mem_row_address = 0×0000

mem_col_address = 0×0002<<2 = 0×0008

mem_bank_address = 0×00

2. The user logic initiates the first read to the same address as the first write. The
request for the read is a burst length of 1. The controller continues to accept
commands until the command queue is full. When the command queue is full, the
controller deasserts the local_ready signal. The starting local address 0x000002 is
mapped to the following memory address in half-rate mode:

mem_row_address = 0×0000

mem_col_address = 0×0002<<2 = 0×0008

mem_bank_address = 0×00

3. The user logic asserts a second local_write_req signal with a size of 1 and
address of 0x000004.

4. The user logic asserts a second local_read_req signal with a size of 1 and address
of 0x000004.

5. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

6. The controller asserts the afi_wdata_valid signal to indicate to the ALTMEMPHY
megafunction that valid write data and write data masks are present on the inputs
to the ALTMEMPHY megafunction.

7. The controller asserts the afi_dqs_burst signals to control the timing of the DQS
signals that the ALTMEMPHY megafunction issues to the memory.

8. The controller issues the first read memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

9. The controller asserts the afi_doing_rd signal to indicate to the ALTMEMPHY
megafunction the number of clock cycles of read data it must expect for the first
read. The ALTMEMPHY megafunction uses the afi_doing_rd signal to enable its
capture registers for the expected duration of memory burst.

10. The ALTMEMPHY megafunction issues the write command, and sends the write
data and write DQS to the memory.

11. The ALTMEMPHY megafunction issues the first read command to the memory
and captures the read data from the memory.

12. The ALTMEMPHY megafunction returns the first data read to the controller after
resynchronizing the data to the phy_clk domain, by asserting the
afi_rdata_valid signal when there is valid read data on the afi_rdata bus.
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

17–24 Chapter 17: Timing Diagrams for ALTMEMPHY IP
Document Revision History
13. The controller returns the first read data to the user by asserting the
local_rdata_valid signal when there is valid read data on the local_rdata bus.
If the ECC logic is disabled, there is no delay between the afi_rdata and the
local_rdata buses. If there is ECC logic in the controller, there is one or three clock
cycles of delay between the afi_rdata and local_rdata buses.

Document Revision History
Table 17–1 lists the revision history for this document.

Table 17–1. Document Revision History

Date Version Changes

November 2012 1.3 Changed chapter number from 15 to 17.

June 2012 1.2 Added Feedback icon.

November 2011 1.1
Consolidated timing diagrams from 11.0 version DDR and DDR2 SDRAM Controller with
ALTMEMPHY IP User Guide and DDR3 SDRAM Controller with ALTMEMPHY IP User
Guide.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

EMI_RM_016-1.2

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

External Memory Interface Handbook
Volume 3: Reference Material
November 2012

November 2012
EMI_RM_016-1.2
18. ALTMEMPHY External Memory
Interface Debug Toolkit
This chapter describes a debug toolkit for ALTMEMPHY-based high performance
controllers. The debug toolkit uses a JTAG connection to a Windows PC. The debug
toolkit supports the following Altera AFI-based IP:

■ ALTMEMPHY megafunction

■ DDR2 and DDR3 SDRAM High-Performance Controller and High Performance
Controller II

The debug toolkit supports all FPGA device families supported by the
high-performance controller (HPC) and high-performance controller II (HPC II) and
ALTMEMPHY.

1 The debug toolkit does not support the QDR II and II+ SRAM, RLDRAM II with
UniPHY controllers.

The debug toolkit provides detailed information regarding the calibration process.
The debug toolkit and the SignalTap II logic analyzer can be run at the same time.
However using Autorun Analysis in the SignalTap II logic analyzer slows down the
JTAG communication with the debug toolkit.

This chapter provides the following information:

■ “Debug Toolkit Overview”

■ “Install the Debug Toolkit”

■ “Modify the Example Top-Level File to use the Debug Toolkit”

■ “Use the Debug Toolkit”

■ “Interpret the Results”

■ “Understand the Checksum and Failure Code”

1 The debug toolkit provides information on the failures and calibration results that
assist and direct the hardware debug process. The debug toolkit does not fix a failing
design. Before you use the debug toolkit, refer to Debugging Memory IP in volume 2,
section 1, of the External Memory Interface Handbook.

Debug Toolkit Overview
The debug TOOLKIT provides the following information:

■ Lists the various calibration stages and indicates whether each stage was
successful or not.

■ States an error code specific to the exact type of calibration failure.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback Subscribe

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=EMI_RM_016
mailto:TechDocFeedback@altera.com?subject=Feedback on EMI_RM_016-1.2 (EMI HB, Vol 3, Ch18: ALTMEMPHY External Memory Interface Debug Toolkit)

18–2 Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit
Install the Debug Toolkit
■ Provides possible causes for calibration failures.

■ Provides graphics to visualize the following parameters:

■ Resync clock phase setup (per pin)

■ Read deskew multipurpose registers (MPR) (prime DQ pins only)

■ Read deskew block training pattern (per pin)

■ Write deskew (per pin)

■ Write leveling report

You can export a .doom file from the debug toolkit. This file provides a record of your
calibration results and the ALTMEMPHY IOE configuration specific to your system,
allowing you to refer to this data offline later.

Install the Debug Toolkit
To install the debug toolkit, follow these steps:

1. Download the debug toolkit, debug-toolkit.zip, file from Altera website.

2. Unzip the debug-toolkit.zip file.

3. To start the debug toolkit, navigate to the directory where you unzipped the .zip
file and run debug-toolkit.exe.

To install the debug toolkit on a Quartus II production programming PC, follow these
steps:

1. On a PC running the Windows OS, copy the debug-toolkit.zip file to your project
directory or a common programming directory that you also use to program your
test platform using a USB-Blaster™ download cable.

2. Unzip the debug-toolkit.zip file to either your project folder or a common
programming folder.

Modify the Example Top-Level File to use the Debug Toolkit
Before you use the debug toolkit, you must modify your design’s example-top-level
file, by following these steps:

■ Verify the Design

■ Regenerate the IP

■ Instantiate the JTAG Avalon-MM port in to the Example-Top Level Project

■ Add Additional Signals

■ Add alt_jtagavalon.v to your Quartus II Project Settings Files List

■ Recompile your Quartus II Test Design

■ Program Hardware with Debug Enabled .sof

1 Your design must follow the recommended flow; refer to the Recommended Design
Flow chapter in volume 1 of the External Memory Interface Handbook.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

http://www.altera.com/technology/memory/dram/altmemphy/debug/debug-toolkit.zip

Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit 18–3
Modify the Example Top-Level File to use the Debug Toolkit
Verify the Design
Ensure your design meets the following conditions:

■ The parameters entered into the IP are correct for the memory and data rate.

■ The design passes functional simulation.

■ The Quartus II project has the correct board trace models specified for the PCB you
are using.

■ For Cyclone III devices, ensure that the set t(additional_addresscmd_tpd)
parameter is correctly specified in your .sdc file.

■ For Arria II GX devices, ensure that the Address and Command to CK skew
parameter is correctly specified in the Board Settings tab of the IP wizard.

■ The address and command clock phase is correct, to ensure optimum balanced
setup and hold times.

■ The Quartus II design successfully closes timing.

■ The Quartus II project has the correct pin location assignments for the PCB that
you are using.

■ The autogenerated IP assignments are correctly applied to the example top-level
file.

■ The .sdc constraint files are correctly applied to the example top-level file.

■ The Quartus II settings are correctly applied.

■ The RUP/RDN pin locations are correctly specified in the example top-level file if
required.

■ The SignalTap II logic analyzer is added to the example top-level file.

Before you use the debug toolkit, follow these steps:

1. Edit the example top-level file to enable debugging:

a. Open the <variation name>.v or .vhd and find the export_debug_port private
value.

1 Do not edit this value in the file <variation name>_phy.v or .vhd file.

The value is at the bottom of the file:

// ===

// DDR3 High Performance Controller Wizard Data

// ===============================

// DO NOT EDIT FOLLOWING DATA

// @Altera, IP Toolbench@

...

...

// Retrieval info: <PRIVATE name = "export_debug_port" value="false"
type="STRING" enable="1" />

b. Edit the export_debug_port private value to true:
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

18–4 Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit
Modify the Example Top-Level File to use the Debug Toolkit
// Retrieval info: <PRIVATE name = "export_debug_port" value="true"
type="STRING" enable="1" />

Regenerate the IP
To regenerate the IP, follow these steps:

1. Open the MegaWizard Plug In Manager, and select Edit an existing custom
megafunction variation.

2. Select your modified high-performance controller.

3. Click Next to open the IP.

4. Click Finish to regenerate the IP.

You now have a version of the design with debug enabled. Seven new ports with the
prefix dbg_* are added to the controller instance through the design hierarchy up to
the <variation name>_example_top.v or .vhd.

Instantiate the JTAG Avalon-MM port in to the Example-Top Level Project
To instantiate the JTAG Avalon-MM port, follow these steps:

1. Declare the following wires in <variation name>_example_top.v or .vhd.

 wire [12: 0] av_address;

 wire av_write_n;

 wire [31: 0] av_writedata;

 wire av_read_n;

 wire av_waitrequest;

 wire [31: 0] av_readdata;

2. Add the following instances in <variation name>_example_top.v or .vhd.

// inst jtag avalon:

alt_jtagavalon alt_jtagavalon(

.clk (phy_clk),

 .rst_n (reset_phy_clk_n),

 .av_address (av_address),

 .av_write_n (av_write_n),

 .av_writedata (av_writedata),

 .av_read_n (av_read_n),

 .av_readdata (av_readdata),

 .av_waitrequest (av_waitrequest)

);

defparam alt_jtagavalon.SLD_NODE_INFO = 203976192;

defparam alt_jtagavalon.ADDR_WIDTH = 13;

defparam alt_jtagavalon.DATA_WIDTH = 32;

defparam alt_jtagavalon.MODE_WIDTH = 3;
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit 18–5
Modify the Example Top-Level File to use the Debug Toolkit
3. Update the following port connections in the DDR2 or DDR3 SDRAM instance in
<variation name>_example_top.v or .vhd:

a. Locate the PHY or controller instance in the top-level file and locate the
following debug port connections:

//<< START MEGAWIZARD INSERT WRAPPER_NAME

<variation_name> <variation_name>_inst

(

.dbg_addr (13'b0),

.dbg_cs (1'b0),

.dbg_rd (1'b0),

.dbg_rd_data (dbg_rd_data_sig),

.dbg_waitrequest (dbg_waitrequest_sig),

.dbg_wr (1'b0),

.dbg_wr_data (32'b0),

b. Change the following debug port connections to:

//<< START MEGAWIZARD INSERT WRAPPER_NAME

<variation_name> <variation_name>_inst

(

.dbg_addr (av_address),

.dbg_cs (1'b1),

.dbg_rd (~av_read_n),

.dbg_rd_data (av_readdata),

.dbg_waitrequest (av_waitrequest),

.dbg_wr (~av_write_n),

.dbg_wr_data (av_writedata),

The debug toolkit is added to your example top-level file.

Add Additional Signals
In addition to the standard SignalTap II signals, you can add the following signals
during debug to understand the following situations:

■ Where calibration failed:

■ *ctl_init_fail -phy_inst

■ *ctl_init_success -phy_inst

■ ctl_cal_fail -phy_inst

■ ctl_cal_success -phy_inst

■ How much resynchronization margin is available:

■ *cal_codvw_phase *DT-phy_inst

■ *cal_codvw_size *DT-phy_inst

■ *codvw_trk_shift *DT-phy_inst
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

18–6 Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit
Modify the Example Top-Level File to use the Debug Toolkit
■ What the read and write latency is calibrated as:

■ ctl_rlat *DT-phy_inst

■ ctl_wlat *DT-phy_inst

■ If the PLL is locked and phase stepping as expected:

■ Locked -altpll_component

■ Phasecounterselect *DT-altpll_component

■ Phaseupdown -altpll_component

■ Phasestep -altpll_component

■ phasedone -altpll_component

■ dqs_delay_ctrl_export *DT-phy_inst

1 For signals marked with *DT, disable trigger enable in the SignalTap II logic
analyzer to reduce memory requirement.

Table 18–1 shows sequencer signals that you can also probe using the SignalTap II
logic analyzer, to help you understand where calibration failure is occurring. The
signals are in the <vaiation_name>_alt_mem_phy_seq.vhd file.

1 All signals are active high.

Table 18–1. Sequencer Signals (Part 1 of 2)

Port Name Description

Flag_done_timeout Calibration stage timeout failure, memory did not respond.

Flag_ack_timeout Sequencer failed to respond.

state.s_phy_initialise PHY initialization Stage: wait for DLL lock and init_done.

state.s_init_dram DRAM initialization stage: reset sequence.

State.s_prog_cal_mrs
DRAM initialization stage: programming mode registers (once per chip
select).

state.s_write_ihi Write internal RAM header initialization.

state.s_cal Calibration required stage.

state.s_write_btp Write block training pattern stage: 00001111.

state.s_write_mtp Write memory training patterns: 00110101.

state.s_rrp_reset Read resynchronization phase reset: PLL initial condition.

state.s_rrp_sweep Read resynchronization phase sweep: sweep PLL phases per chip select.

state.s_read_mtp Read memory training patterns to find correct alignment.

State.s_rrp_seek
Read resynchronization phase setup stage: set PLL to center of valid
window.

state.s_rdv Read data valid stage.

state.s_poa Postamble calibration stage.

state.s_was
Write datapath setup: write data to DRAM so that latency can be
determined.

state.s_adv_rd_lat Advertise read latency stage.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit 18–7
Modify the Example Top-Level File to use the Debug Toolkit
Add alt_jtagavalon.v to your Quartus II Project Settings Files List
Before you compile your design, you must add the alt_jtagavalon.v file to your
projects file list. This alt_jtagavalon.v file is included with the debug toolkit.

Recompile your Quartus II Test Design
You must compile your modified design to generate a new .sof for testing that
includes the debug toolkit code. Altera recommends you ensure that this modified
design continues to pass timing analysis. Any timing failures should be assessed and
corrected before using the debug toolkit.

Program Hardware with Debug Enabled .sof
To program hardware with the debug enabled .sof, program the device using the
SignalTap II logic analyzer. Then click Run Analysis to run once. Typically, the
SignalTap II logic analyzer is initially configured to trigger on the signal
test_complete, which is fine for working designs.

For designs that are failing calibration, Altera recommends modifying the trigger
based on the observed results. Combine this SignalTap II trigger fault isolation
activity with use of the debug toolkit. For example:

1. Initially trigger on test_complete, if the interface works first time.

2. Trigger on cal_fail, if the PHY is failing calibration.

3. Trigger on the same state.s_* or error code that is reported as the calibration
failure point in the debug toolkit.

4. Trigger on init_fail, if the memory is failing to initialize.

5. Trigger on pll_locked, if the PLL is operating incorrectly.

state.s_adv_wr_lat Advertise write latency stage.

state.s_tracking_setup Tracking setup stage (first pass to setup mimic window).

state.s_prep_customer_mr_setup Set custom mode register settings (admin).

state.s_tracking Tracking stage (mimic path tracking in user mode).

state.s_operational Calibration success: user mode.

state.s_non_operational Calibration failed or tracking failed in user mode.

state.s_reset Reset stage.

dgrb_ctrl.command_err Error in the data gather read bias block.

dgrb_ctrl.command_result[7..0] Data gather read block (DGRB) error code.

dgwb_ctrl.command_err Error in the data gather write bias block.

dgwb_ctrl.command_result[7..0] Data gather write block (DGWB) error bode.

admin_ctrl.command_err Error in the admin (DRAM initialization and control) block.

admin_ctrl.command_result[7..0] Admin block error code.

Table 18–1. Sequencer Signals (Part 2 of 2)

Port Name Description
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

18–8 Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit
Use the Debug Toolkit
Use the Debug Toolkit
To use the debug toolkit, follow these steps:

1. Double-click debug-toolkit.exe.

2. On the File menu, click Connect via JTAG (Figure 18–1).

3. Navigate down the hierarchy and click on the Avalon-MM JTAG node
(Figure 18–2).

1 If you encounter connection problems, Altera recommends that you have
only a single USB-Blaster™ download cable programming adaptor
connected to your PC.

4. If you receive a prompt stating the following message, verify you have the latest
debug toolkit, and click Yes (Figure 18–3).

Figure 18–1. Connect to JTAG

Figure 18–2. Select Hardware
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit 18–9
Interpret the Results
Hardware Version Number Mismatch –
this_debug_GUI_release_doesnt_match_the_altmemphy_version_used_in_g
eneration

Interpret the Results
This topic discusses:

■ Calibration Successful

■ Calibration Fails

Calibration Successful
If calibration is successful, you see the following screen (Figure 18–4).

Figure 18–3. Hardware Mismatch

Figure 18–4. Calibration Successful
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

18–10 Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit
Interpret the Results
For optimum operation of the debug toolkit, ensure that you turn on Enable Debug
(Figure 18–5).

Click internal RAM to display the calibration memory results (Figure 18–6).

1 This setting is not typically used.

The debug toolkit can dynamically alter the PLL clock phases (Figure 18–7).

Figure 18–5. Enable Debug

Figure 18–6. Calibration Memory Results
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit 18–11
Interpret the Results
1 This setting is not typically used.

The debug toolkit states the number of resynchronization clock phase steps that are
valid at calibration time. For example, the resynchronization window size in PLL
phase steps at calibration in Figure 18–7 is 26 PLL phase steps wide.

1 The address and command phase sweep is limited to either address and command
pin margins or address and command core-to-I/O transfer margins.

1 In Figure 18–7, moving the slider to the left increases the value, while moving the
slider to the right decreases the value.

Click Visualization: resync clock phase setup (Figure 18–8) to show the PHY
resynchronization pass and fail results in an expandable tree structure:

■ For the whole interface including the chosen phase (black dot)

■ On a DQS group basis

■ On a per DQ pin basis

Figure 18–7. Altering PLL Clock Phases
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

18–12 Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit
Interpret the Results
The debug toolkit additionally states the number of passing phase steps that it finds
during calibration. Thus to calculate the resynchronization margin in this design, the
resynchronization clock (C6) from the PLL has a phase-shift step resolution of 78.12 ps
or 5.62 degrees. So 30 valid steps means that the window size = 2.343 ns or 168.6
degrees.

Click PHY parameterization (Figure 18–9), to show the exact calibration
configuration of the generated IP.

Figure 18–8. Visualization

Figure 18–9. PHY Parameterization
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit 18–13
Interpret the Results
Calibration Fails
If calibration fails, you see the following screen (Figure 18–10).

The stage at which calibration fails is highlighted in red; the stages that have
successfully passed are in green. When possible, the debug toolkit also provides a
possible cause for the failure code.

This failure code is: 0x92177307, for more information on failure codes, refer to
“Understand the Checksum and Failure Code” on page 18–15.

Save the Calibration Results
Often the calibration failure stage, the reported suggested failure cause, or the
combined debug toolkit result and waveforms viewed in the SignalTap II logic
analyzer provide enough detail to resolve the failure directly. However, you may wish
to save your calibration results, so that you can refer to them later.

Figure 18–10. Calibration Fails
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

18–14 Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit
Interpret the Results
With your calibration process results still displayed on the File menu, click Export
(Figure 18–11).

Figure 18–11. Export
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit 18–15
Understand the Checksum and Failure Code
In the Save dialog box (Figure 18–12), specify a file name and any comments to help
with the identification and understanding of the controller configuration that you
have evaluated, and details on what you may have tested.

You can save this .doom file with a Quartus II archive (.qar) file of the test design, and
a copy of the captured SignalTap II waveform files, as a single design archive. This
archive provides a record of your calibration results and the ALTMEMPHY IOE
configuration specific to your system, so you can refer to this data at a later date.

Understand the Checksum and Failure Code
The debug toolkit checksum provides a direct correlation to the exact stage that
calibration failed and the error code for that failure.

For example, the hexadecimal code in the format 0xAABBCCDD represents the full 32-bit
contents of the calibration status register.

The code and the subcode have the following definitions:

■ The code or calibration stage is the first byte (DD) or [7..0]

■ The subcode or error code is the third byte (BB) or [23..16]

Take the hexadecimal value of each code and convert that to decimal. When you have
these two numbers in decimal format, you can open the failuremessages_nl.csv
spreadsheet file and look up the likely causes of your calibration failure.

1 In a passing interface, these two numbers are zero.

Figure 18–12. Save
November 2012 Altera Corporation External Memory Interface Handbook
Volume 3: Reference Material

18–16 Chapter 18: ALTMEMPHY External Memory Interface Debug Toolkit
Document Revision History
Table 18–2 shows the codes that correspond to the indicated calibration stages.

You can find the same information from the SignalTap II logic analyzer if the
*_ctrl.command_err, *_ctrl.command_result * and state.s_* signals are added.
The command error and state signals identify within which calibration stage the
interface fails. The corresponding command result then includes the same
information as the subcode.

For more information on the stages of calibration, refer to “ALTMEMPHY Calibration
Stages” in section 1, chapter 2, of this volume.

Document Revision History
Table 18–3 lists the revision history for this document.

Table 18–2. Calibration Stages

Stage Code

Enter calibration state 0

PHY initialization 1

DRAM initialization 2

Writing header information in the internal RAM 3

Writing the burst training pattern 4

Writing more training patterns 5

Testing more training pattern writes 6

Read resynchronization phase calibration—reset stage 7

Read resynchronization phase calibration—sweep stage 8

Read resynchronization phase calibration—seek stage 9

Read data valid window calibration 10

Postamble calibration 11

Calibration of the write datapath (including finding write latency) 12

Output of read latency 13

Output of write latency 14

Writing of customer mode register settings 15

Tracking 16

Table 18–3. Document Revision History

Date Version Changes

November 2012 1.2 Changed chapter number from 16 to 18.

June 2012 1.1 Added Feedback icon.

November 2011 1.0 Harvested 11.0 Debug Toolkit for DDR2 and DDR3 SDRAM Controllers with ALTMEMPHY
IP content.
External Memory Interface Handbook November 2012 Altera Corporation
Volume 3: Reference Material

	External Memory Interface Handbook Volume 3: Reference Material
	Contents
	Chapter Revision Dates
	Section I. Functional Descriptions
	1. Functional Description—UniPHY
	Block Description
	I/O Pads
	Reset and Clock Generation
	Dedicated Clock Networks
	Address and Command Datapath
	Write Datapath
	Leveling Circuitry

	Read Datapath
	Sequencer
	Nios II-Based Sequencer
	RTL-based Sequencer

	Shadow Registers
	Description
	Operation

	DLL Offset Control Block

	Interfaces
	AFI
	The Memory Interface
	The DLL and PLL Sharing Interface
	About PLL Simulation

	The OCT Sharing Interface

	UniPHY Signals
	PHY-to-Controller Interfaces
	Using a Custom Controller
	Using a Vendor-Specific Memory Model
	AFI 3.0 Specification
	Implementation
	Bus Width and AFI Ratio

	AFI Parameters
	Parameters Affecting Bus Width

	AFI Signals
	Clock and Reset Signals
	Address and Command Signals
	Write Data Signals
	Read Data Signals
	Calibration Status Signals
	Tracking Management Signals

	Register Maps
	UniPHY Register Map
	Controller Register Map

	Ping Pong PHY
	Feature Description
	Architecture
	Ping Pong Gasket
	Calibration

	Operation

	Efficiency Monitor and Protocol Checker
	Efficiency Monitor
	Protocol Checker
	Read Latency Counter
	Using the Efficiency Monitor and Protocol Checker
	Avalon CSR Slave and JTAG Memory Map

	UniPHY Calibration Stages
	Overview
	Calibration Stages
	Assumptions
	Memory Initialization
	Stage 1: Read Calibration Part One—DQS Enable Calibration and DQ/DQS Centering
	Guaranteed Write
	DQS Enable Calibration
	Centering DQ/DQS

	Stage 2: Write Calibration Part One
	Stage 3: Write Calibration Part Two—DQ/DQS Centering
	Stage 4: Read Calibration Part Two—Read Latency Minimization
	Read Latency Tuning

	Calibration Signals
	Calibration Time

	Document Revision History

	2. Functional Description—ALTMEMPHY
	Block Description
	Calibration
	Address and Command Datapath
	Arria II GX Devices

	Clock and Reset Management
	Clock Management
	Reset Management

	Read Datapath
	Arria II GX Devices

	ALTMEMPHY Signals
	PHY-to-Controller Interfaces
	Using a Custom Controller
	Preliminary Steps
	Design Considerations
	Clocks and Resets
	Calibration Process Requirements
	Other Local Interface Requirements
	Address and Command Interfacing
	Handshake Mechanism Between Read Commands and Read Data
	Handshake Mechanism Between Write Commands and Write Data
	Partial Writes

	Controller Register Map
	ALTMEMPHY Calibration Stages
	Enter Calibration (s_reset)
	Initialize PHY (s_phy_initialize)
	Initialize DRAM
	Initialize DRAM Power Up Sequence (s_int_dram)
	Program Mode Registers for Calibration (s_prog_mr)

	Write Header Information in the internal RAM (s_write_ihi)
	Load Training Patterns
	Write Block Training Pattern (s_write_btp)
	Write More Training Patterns (s_write_mtp)

	Test More Pattern Writes
	Calibrate Read Resynchronization Phase
	Initialize Read Resynchronisation Phase Calibration (s_rrp_reset)
	Calibrate Read Resynchronization Phase (s_rrp_sweep)
	Calculate Read Resynchronization Phase (s_rrp_seek)
	Calculate Read Data Valid Window (s_rdv)

	Advertize Write Latency (s_was)
	Calculate Read Latency (s_adv_rlat)
	Output Write Latency (s_adv_wlat)
	Calibrate Postamble (s_poa)
	Set Up Address and Command Clock Cycle
	Write User Mode Register Settings (s_prep_customer_mr_setup)
	Voltage and Temperature Tracking
	Setup the Mimic Window (s_tracking_setup)
	Perform Tracking (s_tracking)

	Document Revision History

	3. Functional Description—Hard Memory Interface
	Hard Memory Interface
	High-Level Feature Description

	Multi-Port Front End (MPFE)
	Fabric Interface
	Operation Ordering
	Multi-port Scheduling
	Port Scheduling
	DRAM Burst Scheduling

	DRAM Power Saving Modes
	MPFE Signal Descriptions

	Hard Memory Controller
	Clocking
	DRAM Interface
	ECC
	Controller ECC

	Bonding of Memory Controllers
	Data Return Bonding
	FIFO Ready
	Bonding Latency Impact
	Bonding Controller Usage

	Hard PHY
	Interconnections
	Clock Domains
	Hard Sequencer

	Hard Memory Interface Implementation Guidelines
	MPFE Setup Guidelines
	Soft Memory Interface to Hard Memory Interface Migration Guidelines
	Pin Connections
	Software Interface Preparation
	Latency

	Bonding Interface Guidelines

	Document Revision History

	4. Functional Description—HPS Memory Controller
	Features of the SDRAM Controller Subsystem
	SDRAM Controller Subsystem Block Diagram and System Integration
	SDRAM Controller
	DDR PHY
	SDRAM Controller Subsystem Interfaces
	MPU Subsystem Interface
	L3 Interconnect Interface
	CSR Interface
	FPGA-to-HPS SDRAM Interface

	Memory Controller Architecture
	MPFE
	Command Block
	Write Data Block
	Read Data Block

	Single-Port Controller
	Command Generator
	Timer Bank Pool
	Arbiter
	Rank Timer
	Write Data Buffer
	ECC Block
	AFI Interface

	CSR Interface

	Functional Description of the SDRAM Controller Subsystem
	MPFE Operational Behavior
	Operation Ordering
	Multiport Scheduling
	SDRAM Burst Scheduling
	Clocking

	Single-Port Controller Operational Behavior
	SDRAM Interface
	ECC
	Interleaving Options
	AXI-Exclusive Support
	Memory Protection

	SDRAM Power Management
	DDR PHY
	Clocks
	Resets
	Initialization
	Protocol Details

	SDRAM Controller Subsystem Programming Model
	Initialization
	Timing Parameters

	SDRAM Controller Address Map and Register Definitions
	Using EMI-Related HPS Features in SoC Devices
	Architecture
	Configuration
	Simulation

	Document Revision History

	5. Functional Description—HPC II Controller
	Memory Controller Architecture
	Avalon-ST Input Interface
	AXI to Avalon-ST Converter
	Handshaking
	Command Channel Implementation
	Data Ordering
	Burst Types

	Backpressure Support
	Command Generator
	Timing Bank Pool
	Arbiter
	Arbitration Rules

	Rank Timer
	Read Data Buffer
	Write Data Buffer
	ECC Block
	AFI Interface
	CSR Interface

	Controller Features Descriptions
	Data Reordering
	Pre-emptive Bank Management
	Quasi-1T and Quasi-2T
	User Autoprecharge Commands
	Half-Rate Bridge
	Address and Command Decoding Logic
	Low-Power Logic
	User-Controlled Self-Refresh
	Automatic Power-Down with Programmable Time-Out

	ODT Generation Logic
	DDR2 SDRAM
	DDR3 SDRAM

	Burst Merging
	ECC
	Partial Writes
	Partial Bursts

	External Interfaces
	Clock and Reset Interface
	Avalon-ST Data Slave Interface
	AXI Data Slave Interface
	Enabling the AXI Interface

	Controller-PHY Interface
	Memory Side-Band Signals
	Self-Refresh (Low Power) Interface
	User-Controlled Refresh Interface
	Configuration and Status Register (CSR) Interface

	Top-Level Signals Description
	Controller Register Map

	Sequence of Operations
	Write Command
	Read Command
	Read-Modify-Write Command

	Document Revision History

	6. Functional Description—QDR II Controller
	Block Description
	Avalon-MM Slave Read and Write Interfaces
	Command Issuing FSM
	AFI

	Avalon-MM and Memory Data Width
	Signal Description
	Avalon-MM Slave Read Interface
	Avalon-MM Slave Write Interface

	Document Revision History

	7. Functional Description—RLDRAM II Controller
	Block Description
	Avalon-MM Slave Interface
	Write Data FIFO Buffer
	Command Issuing FSM
	Refresh Timer
	Timer Module
	AFI

	User-Controlled Features
	Error Detection Parity
	User-Controlled Refresh

	Avalon-MM and Memory Data Width
	Signal Description
	Avalon-MM Slave Interface

	Document Revision History

	8. Functional Description—RLDRAM 3 PHY-Only IP
	Block Description
	Features
	RLDRAM III AFI Protocol
	Document Revision History

	9. Functional Description—Example Designs
	Synthesis Example Design
	Simulation Example Design
	Traffic Generator and BIST Engine
	Read and Write Generation
	Individual Read and Write Generation
	Block Read and Write Generation

	Address and Burst Length Generation
	Sequential Addressing
	Random Addressing
	Sequential and Random Interleaved Addressing

	Traffic Generator Signals
	Traffic Generator Add-Ons
	User Refresh Generator

	Traffic Generator Timeout Counter

	Creating and Connecting the UniPHY Memory Interface and the Traffic Generator in Qsys
	Creating the Qsys System
	Notes on Configuring UniPHY IP in Qsys

	Document Revision History

	Section II. UniPHY Reference
	10. Introduction to UniPHY IP
	Release Information
	Device Family Support
	Features
	Unsupported Features
	System Requirements
	MegaCore Verification
	Resource Utilization
	DDR2, DDR3, and LPDDR2 SDRAM Controllers with UniPHY
	QDR II and QDR II+ SRAM Controllers with UniPHY
	RLDRAM II Controller with UniPHY

	Document Revision History

	11. Latency for UniPHY IP
	DDR2, DDR3, and LPDDR2
	QDR II and QDR II+
	RLDRAM II
	RLDRAM 3
	Variable Controller Latency
	Document Revision History

	12. Timing Diagrams for UniPHY IP
	DDR2 and DDR3 Timing Diagrams
	QDR II and QDR II+ Timing Diagrams
	RLDRAM II Timing Diagrams
	LPDDR2 Timing Diagrams
	RLDRAM 3 Timing Diagrams
	Document Revision History

	13. UniPHY External Memory Interface Debug Toolkit
	Introduction
	Architecture
	Communication
	Calibration and Report Generation

	Setup and Use
	General Workflow
	Linking the Project to a Device
	Establishing Communication to Connections

	Reports
	Summary Report
	Calibration Report
	Margin Report

	Operational Considerations
	Specifying a Particular JDI File
	PLL Status
	Margining Reports
	Group Masks

	Troubleshooting
	EMIF On-Chip Debug Toolkit
	Introduction
	Access Protocol
	Command Codes Reference
	Header Files

	Generating UniPHY IP With the Debug Port
	Example C Code for Accessing Debug Data

	Document Revision History

	14. Upgrading to UniPHY-based Controllers from ALTMEMPHY-based Controllers
	Upgrading from DDR2 or DDR3 SDRAM High-Performance Controller II with ALTMEMPHY Designs
	Generating Equivalent Design
	Replacing the ALTMEMPHY Datapath with UniPHY Datapath
	Resolving Port Name Differences
	Creating OCT Signals
	Running Pin Assignments Script
	Removing Obsolete Files
	Simulating your Design

	Document Revision History

	Section III. ALTMEMPHY Reference
	15. Introduction to ALTMEMPHY IP
	Release Information
	Device Family Support
	Features
	ALTMEMPHY Megafunction
	High-Performance Controller II

	Unsupported Features
	MegaCore Verification
	Resource Utilization
	System Requirements
	Installation and Licensing
	Free Evaluation
	OpenCore Plus Time-Out Behavior

	Document Revision History

	16. Latency for ALTMEMPHY IP
	Latency Stages
	Document Revision History

	17. Timing Diagrams for ALTMEMPHY IP
	DDR and DDR2 High-Performance Controllers II
	Half-Rate Read
	Half-Rate Write
	Full-Rate Read
	Full-Rate Write

	DDR3 High-Performance Controller II
	Half-Rate Read (Burst-Aligned Address)
	Half-Rate Write (Burst-Aligned Address)
	Half-Rate Read (Non Burst-Aligned Address)
	Half-Rate Write (Non Burst-Aligned Address)
	Half-Rate Read With Gaps
	Half-Rate Write With Gaps
	Half-Rate Write Operation (Merging Writes)
	Write-Read-Write-Read Operation

	Document Revision History

	18. ALTMEMPHY External Memory Interface Debug Toolkit
	Debug Toolkit Overview
	Install the Debug Toolkit
	Modify the Example Top-Level File to use the Debug Toolkit
	Verify the Design
	Regenerate the IP
	Instantiate the JTAG Avalon-MM port in to the Example-Top Level Project
	Add Additional Signals
	Add alt_jtagavalon.v to your Quartus II Project Settings Files List
	Recompile your Quartus II Test Design
	Program Hardware with Debug Enabled .sof

	Use the Debug Toolkit
	Interpret the Results
	Calibration Successful
	Calibration Fails
	Save the Calibration Results

	Understand the Checksum and Failure Code
	Document Revision History

