
The Design and Implementation of AMBA Interfaced High-Performance
SDRAM Controller for HDTV SoC

Pan Guangrong1, Feng Da2, Wang Qin1, Qi Yue1, Yu Meiqiang1
1University of Science and Technology Beijing, Beijing, 100083, China

pennypan.libra@gmail.com, wangqin@ies.ustb.edu.cn, qiy@m165.com,
myairare@yahoo.com.cn

2China Light Industrial Corp. for Foreign Economic and Technical Cooperation, Beijing,
100011, China

fengda1627@hotmail.com

Abstract

For cost reasons, the usage of SDRAM is preferred

in HDTV SoC. However, accessing SDRAM is a
complex task, especially when the same SDRAM is
shared by various functional modules with different
bandwidth requirements and requirements for
responding speeds. For two-way cable networked
HDTV SoC especially when the network data
throughput is very high, the performance of SDRAM
controller is very important. This paper describes a
high-performance AMBA interfaced SDRAM controller
design that exploits SDRAM features and uses popular
IC designing techniques such as the buffering
technology, ping-ponging between buffers and adopts
bank-closing control as well. Simulation results under
a realistic application demonstrate a significant
decrease of total execution time of the program used in
our experiments. The SDRAM controller IP is suitable
for FPGA implementation and is flexible enough to be
used in the application of two-way cable networked
HDTV SoC.

1. Related work and introduction

Dynamic RAM memories are important
components in embedded systems. They have been
used in embedded processors such as Blackfin [1] and
some specific applications including fingerprint
recognition system [2], HDTV SoC and so on.

In order to enhance overall performance, SDRAMs
offer features including multiple internal banks, burst
mode access, and pipelining of operation executions [3].
Accessing one bank while precharging or refreshing
other banks is enabled by the feature of multiple

internal banks. By using burst mode access in a
memory row, current SDRAM architectures can reduce
the overhead due to access latency. The pipelining
feature permits the controller to send commands to
other banks while data is delivered to or from the
currently active bank, so that idle time during access
latency can be eliminated. This technique is also called
interleaving.

Researches on SDRAM controllers have been trying
to deploy the features that SDRAMs can offer. The
interleaving technique and pipelining feature have been
respectively exploited in a memory controller of a
commercial HDTV mixer application [4] and in a
SDRAM controller of a HDTV video decoder [5]. Paper
[6] added arbitration mechanism to the SDRAM
controller and used full page mode to finish the access
requirements. However, due to the complexity and the
cost of IC implementation, SDRAM features are hard
to be applied to a system all together. The most
popular groups researching on SDRAM controllers
should be the numerous IP (Intellectual Property)
suppliers such as XILINX, ALTERA, Lattice
Semiconductor Corporation etc. Using IP cores can
significantly shorten the development time. However,
due to cost issues, it is not always the best way to buy
an IP core from a supplier.

In our project of two-way cable networked HDTV
SoC, due to cost issue of the IP warrant, we decided to
design our own SDRAM controller IP core at the same
time taking advantages of SDRAM features and some
IC design techniques. In Section 2, we describe our
design and its implementation based on a FPGA
platform. The SDRAM controller architecture is given
and some techniques we used are described in details.
In section 3, the testing results from the application

2009 World Congress on Computer Science and Information Engineering

978-0-7695-3507-4/08 $25.00 © 2008 IEEE

DOI 10.1109/CSIE.2009.47

448

2009 World Congress on Computer Science and Information Engineering

978-0-7695-3507-4/08 $25.00 © 2008 IEEE

DOI 10.1109/CSIE.2009.47

448

2009 World Congress on Computer Science and Information Engineering

978-0-7695-3507-4/08 $25.00 © 2008 IEEE

DOI 10.1109/CSIE.2009.47

448

program running in the final two-way cable networked
HDTV SoC are shown, and the typical timing
diagrams are given as well. Section 4 concludes the
paper.

2. Design and implementation of SDRAM
controller

In HDTV SoC, there are usually multiple modules
which need to access memories off chip [7]. In our two-
way cable networked SoC, they are EuroDOCSIS
protocol processor, Godson CPU, DMA and Ethernet
MAC connected by AMBA (Advanced
Microcontroller Bus Architecture) as shown in Figure
1. Each of them has their own bandwidth requirements
and responding speed requirements for SDRAM. By
analyzing the multiple accesses from the 4 modules
and the SDRAM specifications such as its accessing
delay, we take both side 1 and side 2 (shown in Figure
1) into consideration respectively. On side 1, we use
bank closing control. On side 2, the controller employs
two data write buffers to reduce the data access
awaiting time, and uses 2 read buffers to decrease the
CAS delay time when reading data from SDRAM. Due
to the complexity of implementing the interleaving
technique, we haven’t introduced that technique to our
design yet. However our design is proved to be
functionally correct and high-performance in section 3.

According to the data sheet of general SDRAMs, a
SDRAM must be initialized before starting to access it.
In the last part of this section we also give a universal
and configurable initialization scheme considering that
the initializing process might have tiny differences
between different SDRAMs from different
corporations.

Figure 1. Diagram of two-way cable networked HDTV
SoC and the implemented platform in the lab

2.1. Bank closing control

Only one open row in an active bank can be
accessed. An ACTIVE (refer to [8] for details about
SDRAM commands) command can open a row and
make active the bank which the open row is in. A
PRECHARGE command issued to a bank can set the
bank to idle state, i.e. closing the open row in this

bank. If every time after accessing a row AUTO-
PRECHARGE command is performed, and the next
access is actually involving the same row of the same
bank, an ACTIVE command needs to be applied again
in order to access last open row. As we all know, tRCD
(time needed between ACTIVE and READ/WRITE
commands) has to be fulfilled. According to the local
principles of programs, in a successive period of time a
program probably only accesses a small part of
continuous address space. So that it is not necessary to
issue an AUTO-PRECHARGE command after every
read/write access without judging if there’s any need.
We use Bank Status (refer to Figure 2) to record bank
state (active or idle) and pre-accessing row address of
each bank. If the current access is for an open row in
an active bank, the READ or WRITE command is
directly issued to off chip SDRAM, and if it is for an
idle bank, ACTIVE and READ or WRITE commands
in order. When the auto-refresh (controlled by the
Auto-refresh Control in Figure 2) is required, all the
active banks will be inactivated by applying
PRECHARGE ALL command as auto-refresh can only
be issued when the whole SDRAM is in idle state. In
this way, the overhead caused by frequently opening
and closing the SDRAM banks can be decreased.

Figure 2 is the whole architecture for our SDRAM
controller. Only the data path relating to read and write
buffers, AMBA interface and off chip SDRAM is
shown.

Figure 2. Big picture of the SDRAM controller

2.2. Read buffering

An AHB (Advanced High-performance Bus)
transfer consists of two distinct sections, the address
phase and the data phase [9]. The address phase lasts
only a single cycle. The address and some control
signals are transferred from a master to a slave during
this phase. During the data phase, data and responding
signals are delivered. If a slave can’t finish the data
phase in one cycle, it can use HREADY to make the

449449449

master hold the address and control signals. During the
data phase, slave will send the corresponding response
signals to the master to notify if the transfer is
successfully finished or if it needs to retry the transfer.
As we all know, SDRAM can not finish the data access
in a single cycle. So we need some strategies to
decrease the responding time.

We analyzed our application and found that if the
SDRAM is accessed in the single mode (each time
only a beat can be accessed), the needing data is
available at least after 2 cycles (CAS latency). Plus
time consumed by the latching in the bus interface part
and the PRECHARGE command, in fact, it is more
than 2 cycles. To support the fast response time, burst
mode access and read buffering techniques need to be
used whenever possible.

Figure 3. Read buffering

Figure 3 shows the read buffering scheme. When

AHB bus needs to read data, see if data is already in
read buffer by checking if the current accessing
address is in the range of either of the read buffers and
if the corresponding bit in ValidVector is valid.
ValidVector is used to mark if the data stored in data
buffer is valid. ValidVector works like tags for a cache.
Every read buffer is only as big as the capacity of a
SDRAM burst, so that ValidVector is only a several-
bit vector. If the needed data is in read buffers, data can
be directly read from them, otherwise, a READ
command is needed issuing to off chip SDRAM. After
a preset number of clock cycles, the data is available
on the output latches of the SDRAM for reading, and
data is delivered to AHB bus and written to one of the
read buffers at the same time. The whole burst access
data will be loaded in read buffer. In this way, we
implemented prefetching. According to the local
principles of programs, the next read access is possibly
a successive address to the current one. So the next
data can be read from read buffers, which can fasten
the responding speed. In order to reduce the
complexity of implementing read buffering, data from

SDRAM are stored in read buffer0 and read buffer 1 in
turn.

2.3. Write buffering and ping-ponging

As it is described in section2.2 about the AHB, in
order to reduce the responding time to write access,
write buffers are used to pack and align the data when
the AHB bus data transfer size does not match the
SDRAM data bus width. Based on our previous
research on FPGA designs, we didn’t use only one
write buffer, instead, we use 2 buffers. See Figure 2. It
is well known that ping-ponging can reduce or
eliminate the mismatch effects between 2 different
modules which are operating at different speeds. By
utilizing ping-ponging between the two write buffers,
part of the time writing one buffer and part of the time
moving data from another buffer to off chip SDRAM
can be overlapped. If write buffer0 is not empty and
write buffer1 is being written by AHB bus, move
buffer0’s data to off chip SDRAM and this buffer will
be in the progress of moving until all data is moved to
SDRAM, vice versa. This is the ping-ponging
technique we used between write buffer0 and write
buffer1.

The algorithm of moving data from buffers to off
chip SDRAM is as follows:

If write buffer0 is being written by AHB bus and
write buffer1 is not empty, move buffer1’s data to off
chip SDRAM;

Else if write buffer1 is in the progress of AHB
writing and write buffer0 is not empty, move buffer0’s
data to off chip SDRAM.

This algorithm explains how the ping-ponging can
make the time writing buffer and writing SDRAM
overlap. The description of operations about AHB bus
writing buffers is as follows:

If write buffer0 is empty, data will be written to
write buffer0;

Else if write buffer0 is not empty or in the progress
of moving its data to off chip SDRAM and write buffer1
is empty, data will be written to write buffer1;

Else make the AHB bus hold the bus signals until
one of the buffers is empty.

In order to keep the data consistency among the
read buffers, write buffers and the off chip SDRAM,
whenever the data is written to write buffers, match the
write address with the addresses of data in the read
buffers. If the address matches, data will be written to
read buffers at the same time it is written to write
buffers. When reading SDRAM, match the read
address with the read buffer address and the write
buffer address first to see if the data can be read from
those buffers.

450450450

2.4. The initialization scheme

SDRAMs must be powered up and initialized in a
predefined manner. The general initializing process
includes maintaining a period of time before issuing
any commands to the SDRAM after the clock is stable,
applying a PRECHARGE ALL command afterwards,
and then performing several times of AUTO-
REFRESH commands, at last issuing a LOAD MODE
REGISTER command. Different SDRAMs from
different corporations need different periods of
maintaining time and different auto-refresh times. For
example, a kind of SDRAM from MICRON needs
100us [8] after powering up, while a SDRAM from
HYNIX requires 200us [10]. After precharging all banks
in the progress of initialization, auto-refresh command
needs to be applied 2 times for a MICRON SDRAM
MT48LC8M16A2 [8] and 8 times for
HY57V561620C(L)T(P)[10].

We apply a configurable startup register and a
configurable auto-refreshing counting register to our
design. The startup register is used to count for the
maintaining time after powering up. The auto-
refreshing counting register is used to store and count
the auto-refresh times needed during initialization. It is
also used to record the auto-refresh requirement times
generated by the sub-module auto-refresh control
which takes charge of maintaining the accuracy of the
data stored in the off chip SDRAM.

3. Simulation results and analysis

The SDRAM controller was implemented in
Verilog at the RT-Level. The typical read and write
timing diagrams are given in Figure 4 and 5 which
were picked from the simulation results by ModelSim.

Figure 4. Typical read timing diagram

Figure 4 is the typical timing diagram for reading.

At T1 SDRAM controller can see the read request from
AHB bus, and the responding data can be available
between T1 and T2 (i.e. the data phase of AHB
specifications) because the required data is in read
buffer, which is the highest speed at which a SDRAM
controller can respond to a read command from AHB
bus. At T3, controller sees the reading demand and

judges that the requiring data is not in read buffer, so
the signal HREADY is pulled down to make the
master hold the bus signals. At T4, the off chip
SDRAM sees the ACT command. Then after tRCD,
SDRAM can see the read command at T5. After a
delay of CAS latency, the SDRAM places the first data
on the RR_DATA bus between T5 and T6.

Figure 5. Typical write timing diagram

Figure 5 is the timing diagram for writing a burst of

eight words to SDRAM. Because one of the write
buffers is empty, the controller can directly write the
data into the write buffer successively without
extending the data phase by using HREADY. It is also
can be seen that, at T2, off chip SDRAM can see the
write command and the first data from the other write
buffer. That’s how the time responding AHB write
transfer and the time moving data from the other buffer
to SDRAM overlaps, which illustrates the benefits
produced by deploying ping-pong technique. At T3,
AHB wants to read a data from the address that has
just been written to SDRAM. So we can see that data
becomes available at the data phase between T3 and T4
without any delay, because the data is directly read
from write buffer.

After implementation of the whole SoC for a
Xilinx Virtex2P FPGA (refer to Fig.1), the SDRAM
software test programs are executed to verify the
accuracy of the SDRAM controller. We run a program
that fully writes the off-chip SDRAM, and then reads
all the data out from it. The column Bandwidth in
Figure 6 shows the comparison of bandwidth which is
defined to be all data bits divided by the total time that
is used to transfer those data bits. We can see that our
SDRAM controller provides a large bandwidth. After
the verification, we compared the execution time of
running a HDTV application program using our
SDRAM controller to that using the traditional one
which is functionally similar to the descriptions of
XAPP134, an IP application note for an IP from Xilinx.
Note that all the results in Figure 6 are normalized
according to those from the SDRAM controller
described in this paper.

The frequency of the whole SoC got from ISE is
190MHZ for the SoC used the traditional SDRAM
controller and 182MHZ for that used the SDRAM

451451451

controller we described in this paper. By translating
into time the cycles that running the application
program used, we compared the execution time of the
application program used those 2 different SDRAM
controllers. Referring to Figure 6, we can see that our
SDRAM controller has made a significant decrease of
the total execution time of the application program.
The speedup rate is 2.6.

Figure 6. Testing results between our controller and the

traditional controller

Moreover, for the 2 SDRAM controllers, we
compared the times of issuing READ and WRITE
commands to off chip SDRAM while running the
application program. It is shown in Figure 6 that,
running the same application program, our SDRAM
controller can extraordinarily reduce the times of
accessing off chip SDRAM, which has a heuristic
meaning for low power designs as well.

4. Conclusion

An AMBA interfaced high-performance SDRAM
Controller has been proposed, implemented, verified
and evaluated in two-way cable networked HDTV SoC
implemented in FPGA. The SoC environment consists
of all the modules that listed in Figure1. With
reasonable and detailed evaluation, we find this
SDRAM controller has high performance by taking
good use of the features of SDRAM architecture and
utilizing the well-known techniques such as data
buffering and ping-ponging. When running a typical
HDTV application program, the testing result shows a

speedup up to 2.6. The IP can easily and simply
changed to be adapted to other systems.

5. References

[1] AD. Blackfin, “Embedded Processor Data Sheet”,
http://www.analog.com/static/imported-files/data-sheets/.

[2] Xin Zhang, Jian Tang, and Dawei Zhang, “Application of
SDRAM in Fingerprint Recognition System”, Journal of
Shenyang Institute of Technology, Shenyang, China, Vol. 23,
2004, PP. 9-11.

[3] Betty Prince, High Performance Memories: New
Architecture DRAMs and SRAMs Evolution and Function,
John Wiley & Sons, New York, NY, USA, 1999.

[4] Kersten Henriss, Rolf Ernst, and Peter Rüffer,
“Arrangement for Processing Digital Video Signals in
Realtime”, International Patent #WO 01/80549 A1, Oct.
2001.

[5] Qiang Zhao, Rong Luo, Hui Wang, and Yang Hua-zhong,
“High Performance SDRAM Controller Design for HDTV
Video Decoder”, Journal of Electronics & Information
Technology, Beijing, Jun. 2007, PP. 1332-1337.

[6] Shen Dong, Wang Feng, and Yu Song-yu, “SDRAM
Controller Design in HDTV SOC Project”, Microcomputer
Information, Beijing, Vol. 22, No. 5-2, 2006, PP. 110-112.

[7] Yamauchi H., Okada S., Taketa K., Mihara Y., and
Harada Y., “Single Chip Video Processor for Digital HDTV”,
IEEE Trans. on Consumer Electronics, IEEE-Inst Electrical
Electronics Engineers INC, NY, USA, Aug. 2001, PP. 394-
404.

[8] Micron Technology Inc., Synchronous DRAM
(MT48LC128Mb) Data Sheet, 2001.

[9] ARM, AMBA Specification Rev.2.0, 1999.

[10] Hynix Semiconductor Inc., SDRAM Device operation
Rev.1.1, Sep. 2003.

452452452

