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Abstract 

 
For cost reasons, the usage of SDRAM is preferred 

in HDTV SoC. However, accessing SDRAM is a 
complex task, especially when the same SDRAM is 
shared by various functional modules with different 
bandwidth requirements and requirements for 
responding speeds. For two-way cable networked 
HDTV SoC especially when the network data 
throughput is very high, the performance of SDRAM 
controller is very important. This paper describes a 
high-performance AMBA interfaced SDRAM controller 
design that exploits SDRAM features and uses popular 
IC designing techniques such as the buffering 
technology, ping-ponging between buffers and adopts 
bank-closing control as well. Simulation results under 
a realistic application demonstrate a significant 
decrease of total execution time of the program used in 
our experiments. The SDRAM controller IP is suitable 
for FPGA implementation and is flexible enough to be 
used in the application of two-way cable networked 
HDTV SoC.  
 
1. Related work and introduction 
 

Dynamic RAM memories are important 
components in embedded systems. They have been 
used in embedded processors such as Blackfin [1] and 
some specific applications including fingerprint 
recognition system [2], HDTV SoC and so on.  

In order to enhance overall performance, SDRAMs 
offer features including multiple internal banks, burst 
mode access, and pipelining of operation executions [3]. 
Accessing one bank while precharging or refreshing 
other banks is enabled by the feature of multiple 

internal banks. By using burst mode access in a 
memory row, current SDRAM architectures can reduce 
the overhead due to access latency. The pipelining 
feature permits the controller to send commands to 
other banks while data is delivered to or from the 
currently active bank, so that idle time during access 
latency can be eliminated. This technique is also called 
interleaving.  

Researches on SDRAM controllers have been trying 
to deploy the features that SDRAMs can offer. The 
interleaving technique and pipelining feature have been 
respectively exploited in a memory controller of a 
commercial HDTV mixer application [4] and in a 
SDRAM controller of a HDTV video decoder [5]. Paper 
[6] added arbitration mechanism to the SDRAM 
controller and used full page mode to finish the access 
requirements. However, due to the complexity and the 
cost of IC implementation, SDRAM features are hard 
to be applied to a system all together. The most 
popular groups researching on SDRAM controllers 
should be the numerous IP (Intellectual Property) 
suppliers such as XILINX, ALTERA, Lattice 
Semiconductor Corporation etc. Using IP cores can 
significantly shorten the development time. However, 
due to cost issues, it is not always the best way to buy 
an IP core from a supplier. 

In our project of two-way cable networked HDTV 
SoC, due to cost issue of the IP warrant, we decided to 
design our own SDRAM controller IP core at the same 
time taking advantages of  SDRAM features and some 
IC design techniques. In Section 2, we describe our 
design and its implementation based on a FPGA 
platform. The SDRAM controller architecture is given 
and some techniques we used are described in details. 
In section 3, the testing results from the application 
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program running in the final two-way cable networked 
HDTV SoC are shown, and the typical timing 
diagrams are given as well. Section 4 concludes the 
paper. 
 
2. Design and implementation of SDRAM 
controller 
 

In HDTV SoC, there are usually multiple modules 
which need to access memories off chip [7]. In our two-
way cable networked SoC, they are EuroDOCSIS 
protocol processor, Godson CPU, DMA and Ethernet 
MAC connected by AMBA (Advanced 
Microcontroller Bus Architecture) as shown in Figure 
1. Each of them has their own bandwidth requirements 
and responding speed requirements for SDRAM. By 
analyzing the multiple accesses from the 4 modules 
and the SDRAM specifications such as its accessing 
delay, we take both side 1 and side 2 (shown in Figure 
1) into consideration respectively. On side 1, we use 
bank closing control. On side 2, the controller employs 
two data write buffers to reduce the data access 
awaiting time, and uses 2 read buffers to decrease the 
CAS delay time when reading data from SDRAM. Due 
to the complexity of implementing the interleaving 
technique, we haven’t introduced that technique to our 
design yet. However our design is proved to be 
functionally correct and high-performance in section 3.  

According to the data sheet of general SDRAMs, a 
SDRAM must be initialized before starting to access it. 
In the last part of this section we also give a universal 
and configurable initialization scheme considering that 
the initializing process might have tiny differences 
between different SDRAMs from different 
corporations. 

 

 

Figure 1. Diagram of two-way cable networked HDTV 
SoC and the implemented platform in the lab 

 
2.1. Bank closing control 
 

Only one open row in an active bank can be 
accessed. An ACTIVE (refer to [8] for details about 
SDRAM commands) command can open a row and 
make active the bank which the open row is in. A 
PRECHARGE command issued to a bank can set the 
bank to idle state, i.e. closing the open row in this 

bank. If every time after accessing a row AUTO-
PRECHARGE command is performed, and the next 
access is actually involving the same row of the same 
bank, an ACTIVE command needs to be applied again 
in order to access last open row. As we all know, tRCD 
(time needed between ACTIVE and READ/WRITE 
commands) has to be fulfilled. According to the local 
principles of programs, in a successive period of time a 
program probably only accesses a small part of 
continuous address space. So that it is not necessary to 
issue an AUTO-PRECHARGE command after every 
read/write access without judging if there’s any need. 
We use Bank Status (refer to Figure 2) to record bank 
state (active or idle) and pre-accessing row address of 
each bank. If the current access is for an open row in 
an active bank, the READ or WRITE command is 
directly issued to off chip SDRAM, and if it is for an 
idle bank, ACTIVE and READ or WRITE commands 
in order. When the auto-refresh (controlled by the 
Auto-refresh Control in Figure 2) is required, all the 
active banks will be inactivated by applying 
PRECHARGE ALL command as auto-refresh can only 
be issued when the whole SDRAM is in idle state. In 
this way, the overhead caused by frequently opening 
and closing the SDRAM banks can be decreased.  

Figure 2 is the whole architecture for our SDRAM 
controller. Only the data path relating to read and write 
buffers, AMBA interface and off chip SDRAM is 
shown. 

 

 
Figure 2. Big picture of the SDRAM controller 

 
2.2. Read buffering 
 

An AHB (Advanced High-performance Bus) 
transfer consists of two distinct sections, the address 
phase and the data phase [9]. The address phase lasts 
only a single cycle. The address and some control 
signals are transferred from a master to a slave during 
this phase. During the data phase, data and responding 
signals are delivered. If a slave can’t finish the data 
phase in one cycle, it can use HREADY to make the 
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master hold the address and control signals. During the 
data phase, slave will send the corresponding response 
signals to the master to notify if the transfer is 
successfully finished or if it needs to retry the transfer. 
As we all know, SDRAM can not finish the data access 
in a single cycle. So we need some strategies to 
decrease the responding time. 

We analyzed our application and found that if the 
SDRAM is accessed in the single mode (each time 
only a beat can be accessed), the needing data is 
available at least after 2 cycles (CAS latency). Plus 
time consumed by the latching in the bus interface part 
and the PRECHARGE command, in fact, it is more 
than 2 cycles. To support the fast response time, burst 
mode access and read buffering techniques need to be 
used whenever possible. 

 

 
Figure 3. Read buffering 

 
Figure 3 shows the read buffering scheme. When 

AHB bus needs to read data, see if data is already in 
read buffer by checking if the current accessing 
address is in the range of either of the read buffers and 
if the corresponding bit in ValidVector is valid. 
ValidVector is used to mark if the data stored in data 
buffer is valid. ValidVector works like tags for a cache. 
Every read buffer is only as big as the capacity of a 
SDRAM burst, so that ValidVector is only a several-
bit vector. If the needed data is in read buffers, data can 
be directly read from them, otherwise, a READ 
command is needed issuing to off chip SDRAM. After 
a preset number of clock cycles, the data is available 
on the output latches of the SDRAM for reading, and 
data is delivered to AHB bus and written to one of the 
read buffers at the same time. The whole burst access 
data will be loaded in read buffer. In this way, we 
implemented prefetching. According to the local 
principles of programs, the next read access is possibly 
a successive address to the current one. So the next 
data can be read from read buffers, which can fasten 
the responding speed. In order to reduce the 
complexity of implementing read buffering, data from 

SDRAM are stored in read buffer0 and read buffer 1 in 
turn. 

 
2.3. Write buffering and ping-ponging 
 

As it is described in section2.2 about the AHB, in 
order to reduce the responding time to write access, 
write buffers are used to pack and align the data when 
the AHB bus data transfer size does not match the 
SDRAM data bus width. Based on our previous 
research on FPGA designs, we didn’t use only one 
write buffer, instead, we use 2 buffers. See Figure 2. It 
is well known that ping-ponging can reduce or 
eliminate the mismatch effects between 2 different 
modules which are operating at different speeds. By 
utilizing ping-ponging between the two write buffers, 
part of the time writing one buffer and part of the time 
moving data from another buffer to off chip SDRAM 
can be overlapped. If write buffer0 is not empty and 
write buffer1 is being written by AHB bus, move 
buffer0’s data to off chip SDRAM and this buffer will 
be in the progress of moving until all data is moved to 
SDRAM, vice versa. This is the ping-ponging 
technique we used between write buffer0 and write 
buffer1. 

The algorithm of moving data from buffers to off 
chip SDRAM is as follows: 

If write buffer0 is being written by AHB bus and 
write buffer1 is not empty, move buffer1’s data to off 
chip SDRAM; 

Else if write buffer1 is in the progress of AHB 
writing and write buffer0 is not empty, move buffer0’s 
data to off chip SDRAM. 

This algorithm explains how the ping-ponging can 
make the time writing buffer and writing SDRAM 
overlap. The description of operations about AHB bus 
writing buffers is as follows: 

If write buffer0 is empty, data will be written to 
write buffer0; 

Else if write buffer0 is not empty or in the progress 
of moving its data to off chip SDRAM and write buffer1 
is empty, data will be written to write buffer1; 

Else make the AHB bus hold the bus signals until 
one of the buffers is empty. 

In order to keep the data consistency among the 
read buffers, write buffers and the off chip SDRAM, 
whenever the data is written to write buffers, match the 
write address with the addresses of data in the read 
buffers. If the address matches, data will be written to 
read buffers at the same time it is written to write 
buffers. When reading SDRAM, match the read 
address with the read buffer address and the write 
buffer address first to see if the data can be read from 
those buffers. 
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2.4. The initialization scheme 
 

SDRAMs must be powered up and initialized in a 
predefined manner. The general initializing process 
includes maintaining a period of time before issuing 
any commands to the SDRAM after the clock is stable, 
applying a PRECHARGE ALL command afterwards, 
and then performing several times of AUTO-
REFRESH commands, at last issuing a LOAD MODE 
REGISTER command. Different SDRAMs from 
different corporations need different periods of 
maintaining time and different auto-refresh times. For 
example, a kind of SDRAM from MICRON needs 
100us [8] after powering up, while a SDRAM from 
HYNIX requires 200us [10]. After precharging all banks 
in the progress of initialization, auto-refresh command 
needs to be applied 2 times for a MICRON SDRAM 
MT48LC8M16A2 [8] and 8 times for 
HY57V561620C(L)T(P)[10].  

We apply a configurable startup register and a 
configurable auto-refreshing counting register to our 
design. The startup register is used to count for the 
maintaining time after powering up. The auto-
refreshing counting register is used to store and count 
the auto-refresh times needed during initialization. It is 
also used to record the auto-refresh requirement times 
generated by the sub-module auto-refresh control 
which takes charge of maintaining the accuracy of the 
data stored in the off chip SDRAM. 
 
3. Simulation results and analysis 
 

The SDRAM controller was implemented in 
Verilog at the RT-Level. The typical read and write 
timing diagrams are given in Figure 4 and 5 which 
were picked from the simulation results by ModelSim. 

 

 
Figure 4. Typical read timing diagram 

 
Figure 4 is the typical timing diagram for reading. 

At T1 SDRAM controller can see the read request from 
AHB bus, and the responding data can be available 
between T1 and T2 (i.e. the data phase of AHB 
specifications) because the required data is in read 
buffer, which is the highest speed at which a SDRAM 
controller can respond to a read command from AHB 
bus. At T3, controller sees the reading demand and 

judges that the requiring data is not in read buffer, so 
the signal HREADY is pulled down to make the 
master hold the bus signals. At T4, the off chip 
SDRAM sees the ACT command. Then after tRCD, 
SDRAM can see the read command at T5. After a 
delay of CAS latency, the SDRAM places the first data 
on the RR_DATA bus between T5 and T6. 

 

 
Figure 5. Typical write timing diagram 

 
Figure 5 is the timing diagram for writing a burst of 

eight words to SDRAM. Because one of the write 
buffers is empty, the controller can directly write the 
data into the write buffer successively without 
extending the data phase by using HREADY. It is also 
can be seen that, at T2, off chip SDRAM can see the 
write command and the first data from the other write 
buffer. That’s how the time responding AHB write 
transfer and the time moving data from the other buffer 
to SDRAM overlaps, which illustrates the benefits 
produced by deploying ping-pong technique. At T3, 
AHB wants to read a data from the address that has 
just been written to SDRAM. So we can see that data 
becomes available at the data phase between T3 and T4 
without any delay, because the data is directly read 
from write buffer. 

After implementation of the whole SoC for a 
Xilinx Virtex2P FPGA (refer to Fig.1), the SDRAM 
software test programs are executed to verify the 
accuracy of the SDRAM controller. We run a program 
that fully writes the off-chip SDRAM, and then reads 
all the data out from it. The column Bandwidth in 
Figure 6 shows the comparison of bandwidth which is 
defined to be all data bits divided by the total time that 
is used to transfer those data bits. We can see that our 
SDRAM controller provides a large bandwidth. After 
the verification, we compared the execution time of 
running a HDTV application program using our 
SDRAM controller to that using the traditional one 
which is functionally similar to the descriptions of 
XAPP134, an IP application note for an IP from Xilinx. 
Note that all the results in Figure 6 are normalized 
according to those from the SDRAM controller 
described in this paper.  

The frequency of the whole SoC got from ISE is 
190MHZ for the SoC used the traditional SDRAM 
controller and 182MHZ for that used the SDRAM 
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controller we described in this paper. By translating 
into time the cycles that running the application 
program used, we compared the execution time of the 
application program used those 2 different SDRAM 
controllers. Referring to Figure 6, we can see that our 
SDRAM controller has made a significant decrease of 
the total execution time of the application program. 
The speedup rate is 2.6.  

 
Figure 6. Testing results between our controller and the 

traditional controller 
 

Moreover, for the 2 SDRAM controllers, we 
compared the times of issuing READ and WRITE 
commands to off chip SDRAM while running the 
application program. It is shown in Figure 6 that, 
running the same application program, our SDRAM 
controller can extraordinarily reduce the times of 
accessing off chip SDRAM, which has a heuristic 
meaning for low power designs as well. 

 
4. Conclusion 
 

An AMBA interfaced high-performance SDRAM 
Controller has been proposed, implemented, verified 
and evaluated in two-way cable networked HDTV SoC 
implemented in FPGA. The SoC environment consists 
of all the modules that listed in Figure1. With 
reasonable and detailed evaluation, we find this 
SDRAM controller has high performance by taking 
good use of the features of SDRAM architecture and 
utilizing the well-known techniques such as data 
buffering and ping-ponging. When running a typical 
HDTV application program, the testing result shows a 

speedup up to 2.6. The IP can easily and simply 
changed to be adapted to other systems. 
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