
1534
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.7 JULY 2013

PAPER

A Unified Forward/Inverse Transform Architecture for
Multi-Standard Video Codec Design

Sha SHEN†, Weiwei SHEN†, Nonmembers, Yibo FAN†a), Member, and Xiaoyang ZENG†, Nonmember

SUMMARY This paper describes a unified VLSI architecture which
can be applied to various types of transforms used in MPEG-2/4, H.264,
VC-1, AVS and the emerging new video coding standard named HEVC
(High Efficiency Video Coding). A novel design named configurable but-
terfly array (CBA) is also proposed to support both the forward transform
and the inverse transform in this unified architecture. Hadamard trans-
form or 4/8-point DCT/IDCT are used in traditional video coding stan-
dards while 16/32-point DCT/IDCT are newly introduced in HEVC. The
proposed architecture can support all these transform types in a unified
architecture. Two levels (architecture level and block level) of hardware
sharing are adopted in this design. In the architecture level, the forward
transform can share the hardware resource with the inverse transform. In
the block level, the hardware for smaller size transform can be recursively
reused by larger size transform. The multiplications of 4 or 8-point trans-
form are implemented with Multiplierless MCM (Multiple Constant Multi-
plication). In order to reduce the hardware overhead, the multiplications of
16/32 point DCT are implemented with ICM (input-muxed constant multi-
pliers) instead of MCM or regular multipliers. The proposed design is 51%
more area efficient than previous work. To the author’s knowledge, this is
the first published work to support both forward and inverse 4/8/16/32-point
integer transform for HEVC standard in a unified architecture.
key words: HEVC, integer DCT/IDCT, Hadamard transform, input-muxed
constant multiplier, multi-standard video coding

1. Introduction

As the video coding technology advances, various types of
transforms have been adopted in miscellaneous video cod-
ing standards. Discrete Cosine Transform (DCT) is the most
popular transform for block based video coding due to its
ability to concentrate the energy of video residual data into
low frequency domain.

Floating-point 8×8 2D DCT is used in the video coding
standards like MPEG-1 [1], MPEG-2 [2] and MPEG-4 [3].
Due to the limited bit precision in any actual digital circuit
system, the floating-point DCT may cause data mismatch
problem between encoder and decoder.

In order to avoid this mismatch, integer 8 × 8 2D DCT
is used in later video standards like H.264 [4], AVS [5] and
VC-1 [6]. H.264 and VC-1 also use smaller size integer
DCT such as integer 4×4 2D DCT, which can improve cod-
ing efficiency for the video sequences with complex texture.
In addition, Hadamard transform is used in H.264 to process
the DC coefficients of intra 16 × 16 or chroma prediction
mode.

Manuscript received December 21, 2012.
Manuscript revised February 24, 2013.
†The authors are with State Key Lab of ASIC and System, Fu-

dan University, Shanghai, 200240, China.
a) E-mail: fanyibo@fudan.edu.cn (Corresponding author)

DOI: 10.1587/transfun.E96.A.1534

High Efficiency Video Coding (HEVC) standard [7] is
an emerging new video coding standard which is jointly
developed by the two video standardization organizations:
MPEG and ITU. It is considered as the successor of H.264.
Compared with H.264, [8] reported that HEVC can reduce
up to 44% bit rate with the same picture quality. In order to
achieve this bit rate reduction, HEVC adopts many new cod-
ing tools including larger size integer DCT such as 16 × 16
and 32 × 32 2D DCT.

Two different methods can be used to perform 2D DCT:
direct 2D method [9], [10] or Row Column Decomposition
Method (RCDM). In [9], a direct 2D method is proposed
for floating-point 8 × 8 2D IDCT. A direct 2D method for
4×4 H.264 integer DCT is also proposed in [10]. Direct 2D
method has the advantage of higher processing capacity. It
also avoids the usage of transpose memory. But its internal
connection and computational logic is quite complex. This
method is not suitable for larger size transform such as 16×
16 or 32 × 32 2D transform. RCDM sequentially perform
1D transform twice instead of direct 2D transform. RCDM
can greatly reduce the hardware cost in case of larger size
transform. The proposed design in this paper also adopts
RCDM.

Various VLSI architectures based on RCDM have been
proposed for multiple-standard 1D transforms [11]–[17]. A
low-cost hardware-sharing architecture of 1D inverse trans-
form is proposed for H.264 and AVS in [11]. An offset ma-
trix is exploited to reduce computational complexity. [12]
extends this idea to support more standards such as VC-1
and MPEG-2/4. The offset matrix will become too com-
plex if more standards are to be supported. In [13] and [14],
a flexible architecture is proposed for multi-standard trans-
form. But most previous works [11]–[14] can only support
4/8-point 1D transform. In [15], the regular multiplier based
architecture is proposed to support 4/816/32-point IDCT.
The regular multiplier is used and it is much larger than
the constant multiplier in terms of silicon area. A VLSI ar-
chitecture for HEVC 16/32-point IDCT is proposed in [16].
The proposed fast algorithm in [16] is based on the obsolete
Working Draft 2 of HEVC and can no longer be applied to
the latest HEVC standard. A multiplierless design is pro-
posed for HEVC 16-point DCT in [17]. It is optimized for
16-point DCT only and cannot support other transform size.

In order to address the above problems, we propose a
unified VLSI architecture for various types of transforms. It
can support both the existing video coding standards like
H.264, AVS, MPEG-2/4, VC-1 and the emerging HEVC

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

SHEN et al.: A UNIFIED FORWARD/INVERSE TRANSFORM ARCHITECTURE FOR MULTI-STANDARD VIDEO CODEC DESIGN
1535

standard. A novel design named configurable butterfly array
(CBA) is also proposed to support both the forward trans-
form and the inverse transform in this unified architecture.

The hardware resource sharing in this design is carried
out in two different levels: the architecture level or the block
level. In the top architecture level, the forward and inverse
transform can share the same hardware blocks such as mul-
tiplication blocks, adder tree. The CBA block can be con-
figured to support either forward transform or inverse trans-
form.

Hardware sharing is also carried out inside the mul-
tiplication/add tree blocks. The hardware for smaller size
transform can be reused for larger size transform. One hard-
ware sharing technique called “input-muxed constant mul-
tiplier” is used to implement the multiplication circuits of
16/32-point DCT. It can reduce the hardware cost signifi-
cantly in comparison with the multiplication blocks used in
[15]. This architecture is also flexible to support more future
video standards as long as the DCT-like transform matrix is
used.

The rest of this paper is organized as follows. In Sect. 2,
the idea and the fast computational algorithm of integer
IDCT/DCT is reviewed. Hadamard transform is also in-
troduced in this section. Section 3 presents the proposed
VLSI architecture of the unified 1D forward/inverse trans-
form. The result of VLSI implementation and comparisons
with previous designs are shown in Sect. 4. A conclusion is
drawn in Sect. 5.

2. Reviews of 1D DCT/IDCT Transforms

1D integer DCT/IDCT has been widely used in the latest
video coding standards like H.264/AVC, AVS, VC-1 and
HEVC. 1D integer DCT can be defined as:

Y = AN × X (1)

where X is the input signal, Y is the transform result and AN

is the N × N integer transform matrix defined by each video
standard. 1D integer IDCT can be also defined in a similar
equation as:

X = Y × AN (2)

In HEVC, the size of transform matrix can be 4 × 4,
8×8, 16×16 or 32×32. Many fast computational algorithms
have been proposed for floating-point DCT [18]–[20]. Ma-
trix factorization is the core idea of these fast algorithms.
The fast algorithm proposed by Chen [18] is a fundamental
work. The N×N transform matrix AN can be decomposed in
a recursive form, which is shown in Eq. (3). Here PN is the
permutation matrix and BN is the butterfly operation. The
transform matrix AN is divided into even part matrix (AN/2)
and odd part matrix (RN/2) while matrix AN/2 can be further
divided in the same fashion. Matrix RN/2 can also be factor-
ized and decomposed into several matrices, which is shown
in [18].

[AN] = [PN] ×
[

AN/2, 0
0, RN/2

]
× [BN] (3)

where PN (N = 4, 8, 16 or 32) is the permutation matrix
and it is used to permute the output vector Y . Matrix PN is
defined as:

PN(i, j) = 1 for i = 2 × j or i = (j − N/2) × 2 + 1

= 0 otherwise (4)

where 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ N − 1.
BN (N = 4, 8, 16 or 32) is called as the butterfly matrix

and it is used to calculate the sum and difference of each pair
of the input signals. Matrix BN is defined as:

BN(i, j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for i = j and i < N/2
1 for i = N − 1 − j
−1 for i = j and i ≥ N/2
0 otherwise

(5)

where 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ N − 1.
The integer transform matrix used in H.264, VC-1,

AVS or HEVC can reduce computational complexity. But
the integer transform matrix is no longer orthogonal due
to the integer approximation of the transform coefficients.
So the fast algorithms for floating-point DCT as mentioned
above cannot be applied without modification.

After the thorough inspection of various integer trans-
form matrices used in AVS, VC-1, H.264 and HEVC, we
can see that Eq. (3) can still be applied to integer transform
due to its symmetric/asymmetric feature. The integer trans-
form matrix can be recursively divided into smaller matri-
ces. The permutation and butterfly operation remain the
same. The only exception is that the generalized method
of decomposing the odd part matrix (RN/2) can no longer be
used for integer transform.

The 4× 4 integer transform matrix for HEVC is shown
in Eq. (6), which is shown below:

A4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c00 c00 c00 c00
c08 c24 −c24 −c08
c00 −c00 −c00 c00
c24 −c08 c08 −c24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

The transform matrix of size 8 × 8, 16 × 16 or 32 × 32 can
be expressed as Eqs. (7), (8) or (9).

[A8] = [P8] ×
[

A4, 0
0, R4

]
× [B8] (7)

[A16] = [P16] ×
[

A8, 0
0, R8

]
× [B16] (8)

[A32] = [P32] ×
[

A16, 0
0, R16

]
× [B32] (9)

R4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c28 c20 c12 c04
−c20 −c04 −c28 c12
c12 c28 −c04 c20
−c04 c12 −c20 c28

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

The odd part matrix R4, R8 and R16 are shown in
Eqs. (10), (11) and (12). c00, c01, . . . , c30, c31 are the 32
transform coefficients defined by each video coding stan-
dard. The exact values of these 32 transform coefficients are

1536
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.7 JULY 2013

Table 1 Transform coefficients of various video coding standards (even part).

Table 2 Transform coefficients of various video coding standards (odd part).

shown in Table 1 and Table 2.

R8=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c30 c26 c22 c18 c14 c10 c06 c02
−c26 −c14 −c02 −c10 −c22 c30 c18 c06
c22 c02 c18 −c26 −c06 −c14 c30 c10
−c18 −c10 c26 c02 c30 −c06 −c22 c14
c14 c22 −c06 −c30 c02 −c26 −c10 c18
−c10 c30 c14 −c06 c26 c18 −c02 c22
c06 −c18 c30 c22 −c10 c02 −c14 c26
c02 c06 −c10 c14 −c18 c22 −c26 c30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

4 × 4 Hadamard transform is used in H.264 to further
improve the coding efficiency for luma or chroma DC coeffi-
cients. It can be regarded as a special integer DCT in which
case all the transform coefficients are either 1 or −1. It is
quite straightforward to integrate the Hadamard transform
with DCT. The transform coefficients of 4 × 4 Hadamard
transform are also shown in Table 1.

3. VLSI Architecture for Unified 1D Forward/Inverse
Transform

In this section, the unified VLSI architecture for 1D inte-
ger forward/inverse transform is described with more de-
tails. This architecture can support all types of transforms
like 8-point floating-point DCT/IDCT, 4/8/16/32-point inte-
ger DCT/IDCT and 4-point Hadamard.

3.1 Top Architecture and Pipeline Design

The top level architecture and pipeline design of the for-
ward/inverse transform are shown in Fig. 1. This architec-
ture can support 32-point DCT/IDCT. Smaller size trans-
forms such as 4/8/16-point DCT/IDCT or 4-point Hadamard
transform can also be supported by the same hardware.

The input port X in Fig. 1 represents the 32 input sig-
nals that are to be transformed. The output port Y repre-
sents the 32 transformed results. If the transform size is

Fig. 1 Top architecture of the unified forward/inverse transform.

set as N and N is less than 32, only first N-th input signals
are used and only the first N-th output signals are valid out-
puts. Forward/inverse transforms with different transform
size (4/8/16/32-point) can be supported by setting the input
ports (BP32, BP16, BP8 and type) to a proper value. The
exact setting is described with more details in Sect. 3.2.

The hardware modules used in Fig. 1 can be cate-
gorized into three types: (a) configurable butterfly array
(CBA). This block is used to perform the butterfly operation
which is defined in Eq. (5). It can be configured to support
different transform type or transform size. This block will
be described in Sect. 3.2 with more details. (b) The multi-
plication blocks. Four multiplication blocks named Multi0,
Multi1, Multi2 and Multi3 are used in this proposed de-
sign. (c) Adder tree blocks. Four adder tree blocks are used
to sum up the outputs of the corresponding multiplication
blocks.

When this design is configured to support 4-point trans-
form, only Multi0 and adder tree 0 are used and other
pipeline stages are bypassed. Multi0/1 and adder tree 0/1
are used to calculate 8-point transform. Multi0/1/2 and
adder tree 0/1/2 are used to calculate 16-point transform.
As shown in Fig. 1, the multiplication blocks and add tree

SHEN et al.: A UNIFIED FORWARD/INVERSE TRANSFORM ARCHITECTURE FOR MULTI-STANDARD VIDEO CODEC DESIGN
1537

R16 =

⎡⎢⎢⎢⎣

c31 c29 c27 c25 c23 c21 c19 c17 c15 c13 c11 c09 c07 c05 c03 c01
−c29 −c23 −c17 −c11 −c05 −c01 −c07 −c13 −c19 −c25 −c31 c27 c21 c15 c09 c03
c27 c17 c07 c03 c13 c23 −c31 −c21 −c11 −c01 −c09 −c19 −c29 c25 c15 c05
−c25 −c11 −c03 −c17 −c31 c19 c05 c09 c23 −c27 −c13 −c01 −c15 −c29 c21 c07
c23 c05 c13 c31 −c15 −c03 −c21 c25 c07 c11 c29 −c17 −c01 −c19 c27 c09
−c21 −c01 −c23 c19 c03 c25 −c17 −c05 −c27 c15 c07 c29 −c13 −c09 −c31 c11
c19 c07 −c31 −c05 −c21 c17 c09 −c29 −c03 −c23 c15 c11 −c27 −c01 −c25 c13
−c17 −c13 c21 c09 −c25 −c05 c29 c01 c31 −c03 −c27 c07 c23 −c11 −c19 c15
c15 c19 −c11 −c23 c07 c27 −c03 −c31 c01 −c29 −c05 c25 c09 −c21 −c13 c17
−c13 −c25 c01 −c27 −c11 c15 c23 −c03 c29 c09 −c17 −c21 c05 −c31 −c07 c19
c11 c31 −c09 c13 c29 −c07 c15 c27 −c05 c17 c25 −c03 c19 c23 −c01 c21
−c09 c27 c19 −c01 c17 c29 −c11 c07 −c25 −c21 c03 −c15 −c31 c13 −c05 c23
c07 −c21 −c29 c15 −c01 c13 −c27 −c23 c09 −c05 c19 c31 −c17 c03 −c11 c25
−c05 c15 −c25 −c29 c19 −c09 c01 −c11 c21 −c31 −c23 c13 −c03 c07 −c17 c27
c03 −c09 c15 −c21 c27 c31 −c25 c19 −c13 c07 −c01 c05 −c11 c17 −c23 c29
−c01 c03 −c05 c07 −c09 c11 −c13 c15 −c17 c19 −c21 c23 −c25 c27 −c29 c31

⎤⎥⎥⎥⎦

(12)

blocks used for 4/8/16/32-point transform are marked with
dot line, dot-dash line, dash line and solid line. The CBA
block can also be used for 4/8/16/32-point transform. So
the hardware sharing among different transform sizes can
be well achieved.

In order to achieve higher working frequency, the pro-
posed design is divided into 6 pipeline stages. Three but-
terfly operations (defined by the butterfly matrix B8, B16 and
B32) are performed in configurable butterfly array. Each but-
terfly operation is arranged as one pipeline stage. Totally
three pipeline stages are used for configurable butterfly ar-
ray. The multiplication blocks (Multi0, Multi1, Multi2 and
Multi3) are arranged as the 4th pipeline stage. Adder Tree0
and Adder Tree1 are arranged in the 5th pipeline stage. The
computational complexity of Add Tree3 or Add Tree4 is
much bigger than Adder Tree0 or Adder Tree1. So Add
Tree3 and Add Tree4 are divided into two separate pipeline
stages: the 5th and 6th stage. The inside details of Add
Tree3 and Add Tree4 will be introduced in Sect. 3.3.

3.2 VLSI Implementation of Configurable Butterfly Array

The butterfly operation is required by either the forward or
the inverse transform. Three types of butterfly matrixes are
used for a 32-point transform: B8, B16 and B32. These three
matrixes are defined by Eq. (5). In case of 32-point for-
ward transform, the 32-point butterfly operation (B32) is per-
formed first and followed by the 16-point butterfly operation
(B16). The 8-point butterfly operation (B8) is performed at
last. In case of 32-point inverse transform, the 8-point but-
terfly operation (B8) is performed first and followed by the
16-point butterfly operation (B16). The 32-point butterfly
operation (B32) is performed at last.

A flexible architecture named configurable butterfly ar-
ray is proposed to support the butterfly operation required
by both the forward transform and the inverse transform.
The detailed diagram of CBA is depicted in Fig. 2. CBA is

Fig. 2 Configurable butterfly array.

divided into 3 pipeline stages by the vertical dash-lines in
Fig. 2. Ten identical butterfly blocks BF0-BF9 are used in
CBA.

The input ports (BP32, BP16 and BP8) are used to con-

1538
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.7 JULY 2013

Fig. 3 Butterfly block (BF) with bypass function.

figure the supported transform size. If the transform size is
set as 4, BP32, BP16 and BP8 are all set as 1. If the trans-
form size is set as 8, BP32 and BP16 are set as 1 while BP8
is set as 0. If the transform size is set as 16, BP32 is set as 1
while BP8 and BP16 are set as 0. If the transform size is set
as 32, BP32, BP16 and BP8 are all set as 0.

The input port “type” is used to configure the supported
transform type. When “type” is set as 0, the system in Fig. 1
is configured to support forward transform and the outputs
of adder tree blocks (bus signal F in Fig. 1) are selected as
the final transform results. BF0-BF3 are configured to per-
form 32-point butterfly operation and BF6 is used to perform
8-point butterfly operation.

When “type” is set as 1, the system in Fig. 1 is config-
ured to support inverse transform. The outputs of config-
urable butterfly array (bus signal D in Fig. 1) are selected as
the final transform results. BF0 is configured to perform 8-
point and BF6-BF9 are configured to perform 32-point but-
terfly operation. BF4 and BF5 are used to perform 16-point
butterfly operation.

The internal architecture of BF block is shown in Fig. 3.
There are six data input ports (0-5) and two output ports
(6-7) in BF block. Input port “type” is used to configure
the transform type (forward or inverse transform. Input port
“BP” is used to support the bypass fuction. Each BF block
can perform an 8-point butterfly operation. When the input
“BP” is set as 1, the 8-point butterfly block is bypassed and
the input ports 0/1 are set as output signals. Otherwise the 8-
point butterfly operation is performed for either the forward
transform or the inverse transform according the input signal
“type.

Signal A, B and C in Fig. 2 represent the intermediate
bus signals. In order to simplify the diagram in Fig. 2, all
these bus signals are divided into 8 groups. Each group is
named as A0-A7, B0-B7 or C0-C7. For example, the input
bus signal X in Fig. 2 actually consists of 32 separate input
signals (x0, x1, . . . , x31). If each input signal is assumed to
be 16-bit and the design is configured to support forward
transform, A0 consists of four input signals (x0, x1, x2, x3).
A0 will be a 64-bit bus signal. The bus width of A1-A7 is
the same as that of A0. Bus signals B/C are also divided into
8 groups in a similar way.

3.3 VLSI Implementation for Multiplication and Add Tree
Blocks

Previous work [13] has shown that the multiplication and
adder tree circuit account for more than 80% of the whole
hardware area. In most previous works [11]–[14], [21] on
integer transform, multiplication is performed by multipli-
erless Multiple Constant Multiplication (MCM). MCM re-
quires less hardware resource than regular multipliers when
the transform size is small. The experimental results in Ta-
ble 4 will show that MCM is more area efficient for 4or
8 × 8 transform block. Therefore the multiplications block
Multi0 and Multi1 in this proposed design are implemented
by MCM approach. The coefficients used in Multi0 and
Multi1 are defined by Eqs. (6) and (10). The internal de-
sign of Adder Tree block 0/1 is the same as the one used in
[15].

But the number of constant multipliers in a MCM block
will increase exponentially as the transform size increases.
A direct VLSI implementation of such MCM block will be-
come unaffordable in case of large size transform.

The MCM based multiplication block Multi2 is shown
in Fig. 4(a) as an example. There are 8 input data (E2, E3)
of Multi2. Each input data will be multiplied with 8 dif-
ferent transform coefficients (c02, c06, c10, c14, c18, c22,
c26, c30). So the number of multiplications in MCM block
Multi2 is 64.

When the 1D transform is done in multiple clock cy-
cles, a hardware sharing technique can be used to reduce the
number of constant multipliers. The more clock cycles are
used, the fewer multipliers and adder trees are needed. Such
approach is adopted in [15] to reduce the hardware cost. The
multiplication block Multi2 and Multi3 in [15] are imple-
mented with regular multipliers as shown in Fig. 4(b). The
multiplicator of each multiplier is the corresponding trans-
form coefficient and the multiplicand is the input signal. The
transform coefficients are stored in SRAM. The transform
coefficients will be read out from SRAM when the transform
is in progress. Compared with MCM approach in Fig. 4(a),
the number of multipliers use in Fig. 4(b) is reduced from 64
to 16.

A novel architecture named input-muxed constant mul-
tiplier (ICM) is proposed in this paper to further reduce the
hardware cost of multiplication block. The diagram of this
architecture is shown in Fig. 4(c). The number of multipli-
ers used in ICM approach is still 16. But each multiplier is
a constant multiplier instead of a regular multiplier. At each
clock cycle, one input signal among the eight input signals
(d8-d15) is selected and then multiplied by the correspond-
ing transform coefficients. The transform coefficients used
in ICM can be either positive or negative, which is decided
by the control logic of the multiplication block.

Here we denote the 8 constant multipliers (C02, C06,
C10, C14, C18, C22, C26, C30) as one set of constant mul-
tipliers, which is marked with dot line in Fig. 4(c). If the
multiplication in Multi2 is done in one cycle, 8 sets of con-

SHEN et al.: A UNIFIED FORWARD/INVERSE TRANSFORM ARCHITECTURE FOR MULTI-STANDARD VIDEO CODEC DESIGN
1539

Fig. 4 Three different approach to implement the multiplication block Multi2 and adder tree block.
(a) MCM based approach (b) Regular multiplier based approach (c) Proposed ICM based approach.

stant multipliers are needed. If the multiplication is done in
8 cycles, only one set of constant multipliers is needed. The
more cycle used for multiplication, the less multipliers are
required.

The minimum throughput of this design is set as 4-pixel
per cycle. So the 16-point DCT needs to be done in 4 cycles.
Two sets of constant multipliers are used in the Multi2 block
which is shown in Fig. 4(c). Two outputs of adder tree 2 can
be generated at each cycle. All 8 outputs of adder tree 2 can
be generated in 4 cycles. The number of adders in adder tree
2 of Fig. 4(a) is 48. The number of adders is reduced from
48 to 14 for the adder tree 2 block in Fig. 4(b) or Fig. 4(c).

The same hardware sharing technique can also be ap-
plied to Multi3. As shown in Fig. 5, two sets of constant
multipliers are used in Multi3 and each set consists of 16
constant multipliers (C01, C03,. . . , C29, C31). All 16 out-
puts of add tree 3 can be generated in 8 cycles. Four add
tree blocks are used in adder tree 3 and the internal detail of
each add tree is the same as what is marked with dash line
in Fig. 4(c).

4. Experimental Results

Verilog HDL is used to implement the proposed design.
Synthesized with SMIC 0.13 µm standard cell library, this
design can work at 191 MHz and the gate count at this work-
ing frequency is 54.1 K. The hardware cost of each trans-
form is also shown in Table 3.

Fig. 5 ICM based multiplication block Multi3 and adder tree 3.

Table 3 Hardware area for each transform block.

The numbers of pipeline stages used for 4/8/16/32-
point 1D transform are 2/3/5/6. The unused pipeline stages
are bypassed. The latency between row and column trans-

1540
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.7 JULY 2013

form of 4-point 1D transform is 6 (4+2) cycles. The la-
tency of 8/16/32-point transform is 11 (8+3) /69 (64+5) /262
(256+6) cycles respectively.

Three different approaches mentioned in Fig. 4 are
used to implement the multiplication blocks named Multi0,
Multi1, Mulit2 and Multi3. The gate count of each block is
shown in Table 4. ICM is not applied to Multi0 and Multi1
due to the design requirement. So the gate count of Multi0
or multi1 with ICM approach is not available in Table 4. It
can be seen from Table 4 that the ICM based multiplication
block is much more area efficient than MCM or the regular
multiplier based approach. Compared with the regular mul-
tiplier based design in [15], more than 50% silicon area is
reduced in this proposed architecture for Multi2 or Multi3.

The precision of each input signals can be described as
N-bit. Each 8-point butterfly operation will increase the pre-
cision by one bit. So the CBA block in Fig. 1 will increase
the precision by 3 bits. According to Table 1 and Table 2,
the maximum transform coefficients used in Multi0/Multi1/
Multi2/ Multi3 are 473, 502, 90 and 90. The bit precisions
increased by these four multiplication blocks are 9/9/7/7.
The bit precisions increased by adder tree block0/1/2/3 are
2/2/3/4. The width of the bus signal F0 in Fig. 1 can be up to
N + 14 (14 = 3+ 9+2) bit. The width of F1/F2-F3/F4-F7 is
(N + 14)/(N + 13)/(N + 14) respectively. So the maximum
bit depth of output bus signal Y can be up to N + 14.

In this proposed design, the width of input signal is set
as 16-bit. The transform results of this design can be up to
30-bit (30=16+14). Some video coding standards such as
AVS, VC-1, H.264 and HEVC use integer transforms. The
bit precision of the 1D integer transform result is limited to
be no more than 16-bit. Before the column transform starts,
the results of row transform should be clipped to 16-bit. The
clipping module is quite simple and straightforward. So it is
not shown in Fig. 1. IEEE standard 1180-1990 also defines
the required bit precision for floating point 8 × 8 transform.
16-bit input signals and 10-bit transform coefficients in this
proposed design can meet the constraint of IEEE standard

Table 4 Gate count of multiplication block.

Table 5 Comparison with previous works.

1180-1990.
The throughput of 8-point DCT is 8 pixels/cycle and 4

pixels/cycle for all other types of transforms. 4/8-point 1D
transform can be done in one cycle. 16/32-point 1D DCT
can be done in 4/8 cycles respectively. A 32 × 32 block can
be processed in 128 (32× 32/8) cycles for 8-point DCT and
256 (32 × 32/4) cycles for all other types of transforms.

If two proposed 1D transform architectures are used to
perform row and column transform in a pipelined fashion,
the working frequency needed to support a specific video
sequence can be calculated by Eq. (13):

Freq =
W × H × Format × fps

32 × 32
× (L + 256) (13)

where W × H is the resolution of video sequence. For-
mat is set as 1.5 for 4:2:0 video and 3 for 4:4:4 video. fps
is the video frame rate. L is the latency between the row
transform and column transform. (L+256) is the number of
cycles needed to process a 32 × 32 block. The maximum
latency is 262 cycles in this design. Our proposed work
can easily support the high video resolution of 4 K × 2 K
(4096×2048) @30 fps with 4:2:0 format at the working fre-
quency of 191 MHz.

The comparison between previous work and this work
is summarized in Table 5. The designs proposed in [13],
[14], [21], [22] can only support 4 or 8-point transform. The
work in [17] can only support 16-point HEVC DCT and
the work in [15] can support only support 4/8/16/32-point
IDCT. This proposed design can support both the forward
and inverse 4/8/16/32-point transforms in a unified architec-
ture. Compared with the work in [15], this work is still 51%
more efficient than [15] in terms of silicon area. Additional
on-chip SRAM is used in [15] while this proposed design
does not require any on-chip SRAM. The hardware cost is
further reduced.

5. Conclusion

To the best of the authors’ knowledge, this is the first pub-
lished work to support both forward and inverse 4/8/16/32-
point integer transform for HEVC standard in a unified ar-
chitecture. It can support multiple video standards such
as MPEG-2/4, VC-1, H.264, AVS and HEVC. A novel
design named configurable butterfly array (CBA) can be
configured to support either forward or inverse transform.
The CBA block can also be configured to support differ-
ent transform size. The hardware for smaller size integer

SHEN et al.: A UNIFIED FORWARD/INVERSE TRANSFORM ARCHITECTURE FOR MULTI-STANDARD VIDEO CODEC DESIGN
1541

transform can be recursively reused for larger size integer
transform. Hadamard transform can also share the hard-
ware resource with DCT/IDCT. In order to reduce the hard-
ware cost, the multiplication of 16/32-point transform is
implemented by ICM. This 6-stage pipelined architecture
can support 4 K × 2 K @30 fps video (4:2:0 YUV format)
at 191 MHz working frequency. The gate count under this
working frequency is 54.1 K. Our design is 51% more effi-
cient than previous work in [15].

Acknowledgments

This paper is supported by National High Technology Re-
search and Development Program (863, 2012AA012001),
State Key Lab of ASIC & System Project (11MS004), Spe-
cialized Research Fund for the Doctoral Program of Higher
Education (SRFDP, 20120071120021).

References

[1] ISO/IEC 11172-2 (MPEG-1), “Video coding standard information
technology — Coding of moving pictures and associated audio for
digital storage media at up to about 1.5 Mbit/s — Part 2: Video,”
1993.

[2] ISO/IEC 13818-2 (MPEG-2), “Video coding standard, information
technology — Generic coding of moving pictures and associated au-
dio information: Video,” 1995.

[3] ISO/IEC 14496-2 (MPEG-4), “Video coding standard, information
technology — Coding of audio- visual objects — Part 2: Visual,”
2004.

[4] ITU-T rec.H.264/ISO/IEC 14496-10, “Advanced video coding for
generic audiovisual services,” 2005.

[5] Chinese National Standard Committee, “Information technology —
Advanced coding of audio and video — Part 2:Video, GB/T
200090.2-2006,” 2006.

[6] SMPTE Standard: SMPTE 421M, “VC-1 Compressed Video Bit-
stream Format and Decoding Process,” 2006.

[7] B. Bross, W.-J. Han, G.J. Sullivan, J.-R. Ohm, and T. Wiegand,
“High Efficiency Video Coding (HEVC) text specification draft 7,”
JCT-VC-I1103.doc, May 2012.

[8] G. Wallendael, S. Leuven, J. Cock, F. Bruls, and R. Walle, “3D video
compression based on high efficiency video coding,” IEEE Trans.
Consum. Electron., vol.58, no.1, pp.137–145, Feb. 2012.

[9] T. Tziortzios and S. Dokouzyannis, “A novel architecture for fast
2D IDCT decoders with reduced number of multiplications,” IEEE
Trans. Consum. Electron., vol.58, no.1, pp.1384–1389, Aug. 2011.

[10] C.P. Fan, “Fast 2-dimensional 4 × 4 forward integer transform im-
plementation for H.264/AVC,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol.53, no.3, pp.174–177, March 2006.

[11] G.A. Su and C.P. Fan, “Low-cost hardware-sharing architecture of
fast 1-D inverse transforms for H.264/AVC and AVS applications,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.55, no.12, pp.1249–
1253, Dec. 2008.

[12] C.P. Fan, C.H. Fang, and C.W. Chang, “Fast multiple inverse trans-
forms with low-cost hardware sharing design for multistandard
video decoding,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.58,
no.812, pp.517–521, Aug. 2011.

[13] K. Wang, J. Chen, W. Cao, Y. Wang, L. Wang, and J. Tong, “A
reconfigurable multi-transform VLSI architecture supporting video
codec design,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.58,
no.7, pp.432–436, July 2011.

[14] H. Qi, Q. Huang, and W. Gao, “A low-cost very large scale integra-
tion architecture for multistandard inverse transform,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol.57, no.7, pp.551–555, July 2010.

[15] S. Shen, W. Shen, Y. Fan, and X. Zeng, “A unified 4/8/16/32-point
integer IDCT architecture for multiple video coding standards,”
Proc. IEEE International Conf. on Multimedia and Expo, pp.788–
793, July 2012.

[16] J.S Park, W.J Nam, S.M Han, and S.S Lee, “2-D large inverse trans-
form (16 × 16, 32 × 32) for HEVC,” J. Semiconductor Tech. & Sci-
ence, vol.12, no.2, pp.203–211, June 2012.

[17] R. Jeske, J.C. Wrege, R. Conceicao, M. Grellert, J. Mattos, and L.
Agostini, “Low cost and high throughput multiplierless design of a
16 point 1-D DCT of the New HEVC video coding standard,” VIII
Southern Conf. on Programmable Logic (SPL), pp.1–6, 2012.

[18] W.H. Chen, C.H. Smith, and S.C. Fralick, “A fast computational
algorithm for the discrete cosine transform,” IEEE Trans. Commun.,
vol.COM-25, no.9, pp.1004–1009, Sept. 1977.

[19] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for
Images,” IEICE Trans., vol.71, no.11, pp.1095–1097, Nov. 1988.

[20] C. Loeffler, A. Ligtenberg, and G.S. Moschytz, “Practical fast 1-
D DCT algorithms with 11 multiplications,” Int. Conf. Acoustic,
Speech and Signal Processing, pp.988–991, 1989.

[21] C.P. Fan and G.A. Su, “Fast algorithm and low-cost hardware-
sharing design of multiple integer transforms for VC-1,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol.56, no.10, pp.788–792, Oct.
2009.

[22] K. Kim and J.S. Koh, “An area efficient DCT architecture for
MPEG-2 video encoder,” IEEE Trans. Consum. Electron., vol.45,
no.1, pp.62–67, Feb. 1999.

Sha Shen obtained the B.E. degree in elec-
tronics and engineering from Fudan University,
Shanghai, China in 2001, M.S. degree in Mi-
croelectronics from Fudan University, Shang-
hai, China in 2004. From 2004 to 2010, he
worked as a senior engineer on digital circuit de-
sign in Trident Multimedia Technology (Shang-
hai) Co. Ltd. Currently he is working at the State
Key Lab of ASIC and System in Fudan Univer-
sity and pursuing his Ph.D. degree. His research
interests include high performance multimedia

systems, video coding and image processing algorithm and the related
VLSI design.

Weiwei Shen received the B.S. degrees in
Microelectronics Department from Fudan Uni-
versity in 2010. He now is working at the State
Key Lab. of ASIC and System in Fudan Univer-
sity, Shanghai, China. His research interests in-
clude video and image processing, digital signal
processing, and VLSI design.

1542
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.7 JULY 2013

Yibo Fan received the B.E. degree in elec-
tronics and engineering from Zhejiang Univer-
sity, China in 2003, M.S. degree in Micro elec-
tronics from Fudan University, China in 2006,
and Ph.D. degree in engineering from Waseda
University, Japan in 2009. From 2009 to 2010,
he worked as an Assistant Professor in Shang-
hai Jiaotong University, And currently, he is the
Assistant Professor in Department of Microelec-
tronics of Fudan University. His research inter-
esting includes information security, video cod-

ing and associated VLSI architecture.

Xiaoyang Zeng received the B.S. degree
from Xiangtan University, China in 1992, and
the Ph.D. degree from Changchun Institute of
Optics and Fine Mechanics, Chinese Academy
of Sciences in 2001. From 2001 to 2003, he
worked as a post-doctor researcher at the State
Key Lab of ASIC & System, Fudan University,
P.R. China. Then he joined the faculty of De-
partment of Micro-electronics at Fudan Univer-
sity as an professor. His research interests in
signal processing, and communication systems.

Prof. Zeng is the Chair of Design-Contest of ASP-DAC 2004 and 2005,
also the TPC member of several international conferences such as ASCON
2005 and A-SSCC 2006, etc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

