Copyright © 2012 American Scientific Publishers
All rights reserved
Printed in the United States of America

AMERICAN
SCIENTIFIC
PUBLISHERS

RESEARCH ARTICLE

Advanced Science Letters
Vol. 5, 1-5, 2012

Secret Recovery from Electromagnetic Emissions

Hongying Liu"*, Yibo Fan?, and Satoshi Goto'

"Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, 8080135, Japan
2State-Key Lab of ASIC and System, Fudan University, Shanghai, 201203, China

Electromagnetic emissions leak confidential data of cryptographic devices. The electromagnetic emission has
been reported as an important side channel for cryptanalysis. Electromagnetic Analysis (EMA) exploits the
external radiation of cryptographic devices during encryption to reveal secret keys. The performance of EMA
depends on the acquired signals to a large extent. To protect the devices from attacks, noises are introduced
in the side channel either by unintentional interference from surroundings or elaborate design from engineers.
Thus the secret recovery becomes difficult and even unavailable. In this paper, we propose two signal processing
techniques to counteract both of these noises. The bandpass filtering and independent component analysis
are widely used in other areas. We demonstrate their applications to EMA against the encryption algorithms
on application-specific integrated circuit. With these techniques, the secret keys are extracted successfully and

rapidly.
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1. INTRODUCTION

The issue of establishing secure systems has always been con-
cerned. Due to the complexity of the computational systems, the
attacks and protections vary. For example, the intrusion detec-
tion and defense are important for computer systems, while the
non-invasive attacks have threatened the security of cryptographic
devices.

A non-invasive attack involves close observation or manipu-
lation of the device’s operation. Unlike invasive attack involves
depackaging cryptographic devices to directly access the internal
components, this attack only exploits externally available infor-
mation which is often unintentionally leaked, such as supply
voltage and clock signal of the processor. Side channel analysis
(SCA) belongs to this category. It exploits the information leaked
from cryptographic devices during encryption or decryption to
infer secrets.

Though a number of works have been done on electromagnetic
emissions, such as the interference reduction by desynchroniza-
tion methodology,' electromagnetic emissions have been reported
as a powerful side channel of cryptographic devices, besides side
channel information from timing, cache, power consumption etc.
For example, according to news on Science (November 2008),
two university students built a 40-EUR gadget and successfully
obtained the data on RFID MIFARE Classic card.’

Electromagnetic analysis (EMA) is performed with low-cost
sensors to extract secret information from these devices even at

*Author to whom correspondence should be addressed.

Adv. Sci. Lett. Vol. 5, No. xx, 2012

1936-6612/2012/5/001/005

a distance. Thus the EM side channel leaks information which
might not be available from power consumption. EMA has been
actively investigated and studied as one of side channel cryptanal-
ysis by researchers. The simple EMA (SEMA) and differential
EMA (DEMA) were demonstrated.’ Planar near-field cartogra-
phy was used to enhance the correlation-based EMA by detect-
ing the hot spot on the device.* The revealing of secrete keys
largely depends on the acquired EM signals. In general, there are
two types of noise that prevent a fast key exposure. One is the
non-algorithm noise, which originates from external, intrinsic,
sampling and quantization noise unintentionally, and the other is
algorithm noise,> which results from the countermeasures added
intentionally. For example, the signal may be displaced due to
the random delays inserted into the encryption algorithm, or mul-
tiple encryption algorithms may run simultaneously, referred as
simultaneous algorithm noise. Then the data dependent signals
are hidden from detection. Several approaches have been inves-
tigated to reduce these noises. Le. et al.® adopt the fourth-order
cumulant to decrease the non-algorithm noise. Homma et al.’
apply the method of phase-based waveform matching to over-
come the signal displacement. Because of the complexity and
variations of the algorithm noise, there is few works deal with
simultaneous algorithm noise.

Unlike the previous work, in this paper, we explore two signal
processing techniques, which have been widely applied to other
areas. They are studied and applied to EMA. Bandpass filtering
is effective for non-algorithm noise reduction of EM signals. ICA
can enhance the efficiency of EMA at the presence of simultane-
ous algorithm noise.
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The remainder of this paper is organized as follows. Section 2
describes some related preliminaries. Section 3 shows the mea-
surement setup for the experiment. Section 4 presents the appli-
cation of bandpass filtering in detail. The simultaneous algorithm
noise and ICA are discussed in Section 5. Section 6 draws con-
clusions and suggests future work.

2. PRELIMINARIES

Advanced Encryption Standard (AES) was published by the
National Institute of Standards and Technology (NIST) of United
States in 2001. It has become one of the most popular sym-
metrical encryption algorithms. Camellia is a symmetrical key
block cipher developed jointly by Mitsubishi Electric Corporation
and Nippon Telegraph and Telephone Public Corporation (NTT
in short) in 2000. The cipher has security levels and processing
abilities comparable to AES.

The procedures for EMA which is similar to a typical SCA,
includes: First, select the target for analysis. The target is cer-
tain point of the encryption of the algorithm. Second, measure
the real leakage during the execution of encryption. Then make
predictions about the leakage based on leakage model, such as
Hamming weight, Hamming Distance etc. and analyze statisti-
cally with metrics such as correlation coefficient, difference of
means etc. Finally reveal the keys.

Specifically, the algorithm for correlation-based EMA is cal-
culating Hamming Distance® H, , between ciphertext C; and
the reference state R according to Eq. (1), where HW denotes
Hamming weight, i is the number of sampling.

H;x =HW(R®C;) (1)

o N P(CH,x— X P(C) X Hy
NS PP —(SPC)P N Y Y~ (S H, )

For a correct key, the operation is data dependent. Thereby,
leakage P(C;) from EM signal has a linear relationship with
Hamming Distance H; ;, and the correct key is the one that max-
imizes correlation coefficient p, given by Eq. (2).

Generally, the performance of EMA is assessed by success
rate, which expresses the number of correct key guess among all
the key bytes. In our work, we test the proposed two techniques
by EMA against AES and Camellia implementations on Side-
channel Attack Standard Evaluation Board-R (SASEBO-R).

@

3. MEASUREMENT SETUP

Experiment environment is shown in Figure 1. A cryptographic
LSI and a control FPGA are mounted on PCB of dimension
230 mm x 180 mm x 1.6 mm. The cryptographic cores use
0.13 um TSMC standard library of CMOS process technology.
From AESI1 to AES4, the s-boxes are based on Look-up table,
(Positive Polarity Reed Muler 1-stage) PPRM1, PPRM3 and the
multiplicative inverse circuit with a composite field respectively.
AESO is similar to AES4 but with support of decryption. RS-
232 and LAN interfaces are provided to communicate with the
host PC. A sustentation, with scales in three dimensions, which
is settled perpendicularly onto the baseplate, is used to control
the height and the location of the sensor above the PCB. Addi-
tionally, a preamplifier with gain 50 dB is connected to EM sen-
sor through coaxial cable to magnify weak EM signals before
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Fig. 1. Experimental environment.

they are sent to oscilloscope. The oscilloscope is Agilent MSO
54832D. The EM sensor is a loop probe, with diameter 10 mm.
Computer randomly generates 128-bit plaintext in groups,
which are transmitted to FPGA through RS-232 serial ports, and
then upon receipt of the plaintext, the FPGA controls LSI to
implement AES encryption. The output of the encryption func-
tion “add round key” in the final round of AES is chosen as a
target to analyze. The encryption proceeds with 10000 random
plaintexts and a fixed but random 16-byte key (the final round):
28 AFCE9F5AFFC8F1E054B352BOCE430E. Each measurement
is repeated 30 times to calculate average and reduce acciden-
tal error. Then after signal processing, which is presented in the
following section, the correlation-based EMA is performed.

4. EMA WITH BANDPASS FILTERING

This is a technique that passes frequencies within a certain range
and rejects frequencies outside that range. It is always fulfilled by
certain filter, which may be realized by hardware that appended
to devices, such as a preamplifier, etc. The power spectral density
(PSD) of one sampling signal from 0 Hz to 250 MHz is plotted
in Figure 2. It shows that the power of EM signal distributes at a
wide frequency though the working frequency is 24 MHz. There-
fore, bandpass filtering based on software algorithm is necessary.
The bandpass filtering is described by Eq. (3).

N

i) =2 bx[t—i] ®)

i=0

where x[t] is input signal, y[¢] is output signal, b, is the coeffi-
cients of a filter, N is the order of filter.

Because it can maintain the frequency interval efficiently, we
use the Hanning window function to design a filter in our work.
The pass band of the filter is from 0 Hz to 40 MHz. Signals
become smoother because that unrelated frequency component
is attenuated. Thus it leads to an enhanced success rate. All the
sub-keys are revealed in 2905 signals with filtering, while 3614
signals are needed without filtering.
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Fig. 2. PSD of sampling signal.

5. EMA WITH ICA

5.1. Simultaneous Algorithm Noise

In general, only one encryption module runs and the corre-
sponding EM signals are measured and collected during an
EMA. However, in order to hide the data-dependent information
from attackers, multiple encryption modules may run simultane-
ously. This is known as simultaneous algorithm noise, which is
an effective countermeasure that slower the key detection. For
instance, multiple AES modules (AESO, AESI,..., AESn) and
Camellia may run at the same time. On the ASIC, we activate
module AES0-AES4 and Camellia simultaneously, record the
mixed signals, and perform EMA. The 16 byte-keys are detected
within 8291 signals, the evolution of the second byte key “AF”
is shown in Figure 3. By contrast, only 3614 signals are needed
when only AESO runs.

5.2. Solutions

Aiming at probing into the possible solutions to reduce the
number of signals at the presence of simultaneous algorithm
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Fig. 3. Evolution of the second key byte: “AF”.
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noise, we studied the problem of blind source separation
(BSS).

Consider that there are a number of signals emitted by some
physical objects or sources, such as the electric signals emit-
ted by different areas of brain, the radio signals emanated by
mobile phones or the speech signals etc. Then the sensors receive
and record these signals in the form of a mixture of the origi-
nal source signals. We are interested to find the original source
signals from the mixture with little or no knowledge about the
source signals.

ICA has been proved as an effective way to solve this problem.
Because FastICA'® has good performance for source separation
and convergence, it has been one of the most popular algorithms.
The model of ICA: Assume that we observe m linear mixed
signals X of m independent components, shown by Eq. (4):

X =AS+N (4)

where X = (X;, X,,..., X,,)7, is m mixed signals which are
observed, S = (S, S,,..., S,)7, is the n source signals, N = (N,
N,,..., N,,)T, denotes the m noise vector, superscript T denotes
transpose of matrix. All of these signals have sampling length L.
Then, after estimating a matrix W, the independent component
can be obtained by: § = WX.

FastICA is based on a fixed-point iteration scheme to find
a direction, i.e., a unit vector W such that the projection
WTX maximizes nongaussianity. The algorithm is given by

Egs. (5)-(7).

Z=0X 5)
Wt «— Zg(Z"W)—Wg (W'Z)0,,, (6)
W w/|we )

where X is centered and whitened to simplify the computation.
Q is unitary matrix, E(ZZT) =1 is satisfied, where E is the
mathematical expectation, g is the non-linear contrast function
(namely objective function), Vector O, has all values of one.
And in Eq. (7), the normalization has been added to improve the
stability. g’ denotes the mathematical derivative.

The problem of simultaneous algorithm noise fits well with the
above model. EMA is conducted when the details of encryption
module is unknown to the attacker. One can only measure the
leaked mixed signals. In the following experiments, FastICA is
applied to the mixed signal to separate the most uncorrelated
source of encryption.

5.3. Experiments

Experiment 1 A Mixture with 2 Encryption sources. We set the
bits in the interface circuits through computer. AESO and Camel-
lia on the LSI execute simultaneously. Two mixed signals which
are shown in Figures 4(a and b), with different plaintext and the
same key are input to the FastICA algorithm. This leads to two
separated signals: one is AESO signal, and the other is Camellia
signal. They are shown by Figures 4(d and f) respectively. Then
AESO and Camellia executes individually. These are supposed to
be the source signals, which are plotted in Figures 4(c and e)
respectively. With the same key and plaintexts as in Section 3,
10000 EM signals each with sampling length 2000, are recorded
with oscilloscope during the execution of AESO and Camellia.
Then every two signals are input to FastICA algorithm, it yields
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Fig. 4. The signals of two encryption source: AESO and Camellia.

10000 x 2 separated signals in total, which has the same num-
ber of AES signals and Camellia signals. The 10000 resulted
AESO signals are used for EMA. All the key bytes are revealed
within 5126 signals. This is faster than the mixed signals, which
is with 8133 signals.

Experiment 2 A Mixture with 3 Encryption Sources. The situa-
tion becomes complex when 3 encryption sources are mixed. The
encryption signals are recorded when AESO, AES1 and Camel-
lia run simultaneously. Similar to the previous process, we use
3 mixed signals and attempt to obtain the 3 separated signals.
However, the resulted signals are not clearly separated. Only
one of the resulted signals has a greater correlation with the
source Camellia. This indicates that Camellia has been separated
successfully.

The explanations for these results are: because any one of the
AES executions (AESi, i = 0-5) on LSI has a linear relation
with Hamming Distance, the relation between different AES is
not independent. The independence assumption of ICA is not
satisfied. Thus the separation of different AES fails.

We substrate the resulted Camellia from the mixed signals,
namely leave the mixture of AESO and AES1. Then EMA is
conducted with this mixture. The success rates are compared with
the case of 3 mixed signals and shown in Figure 5. 8524 signals
are needed to reveal all the key bytes for the original 3 mixed
signals. Only 5207 signals are needed for the separated signals.
The success rate is enhanced, though only Camellia is separated.
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Fig. 5. Success rate (SR) of the mixed signal (three sources) and the sep-
arated signal.
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Tablel. The number of needed signals and correlations for each mixed
encryption.

Original signal Separated signal

Mixed type No. Corr. No. Corr. Reduction rate (%)
AES1,2, C  Fails 0.0422 5,371 0.0996 46.3
AES1,3,C 7,012 0.0627 4,126 0.1098 411
AES14,C 6,411 0.0703 3,679 0.1327 42.6
AES2,3, C  Fails 0.0419 5,301 0.0921 47.0
AES2,4,C 9,835 0.0580 5,527 0.0908 43.8
AES34,C 7,164 0.0695 4,175 0.1162 41.7
AES1-4,C 8291 0.0613 4,327 0.1204 47.8

Notes : No.: denotes the number of needed signals; Corr.: maximal correlation coefficients
for key revealing; AES1,2, C: denotes the mixed type of “AES1, AES2 and Camellia”;
Fails: keys can not be revealed within 10000 signals; Reduction rate: the number of
needed signals for separated signal compared with original signal.

It also suggests that the mixed execution of AESO and AES1 do
not have much influence for the result of EMA.

Further experiments confirm this. The number of signals to
reveal all the key bytes and the maximal correlation coefficient
are listed in Table I. After the application of FastICA, the number
of signals has been reduced by 41% at least with the separation
of Camellia in all the above cases.

Experiment 3 A Mixture with More Than 3 Encryption
Sources. From the hint of Experiment 2, we only need to sep-
arate Camellia from the mixed signals of multiple modules of
AES executions and Camellia. Five signals, namely AESO-AES4
and Camellia are processed by FastICA, and then the separated
Camellia is subtracted. We perform EMA with the resulted mixed
signal. The number of signals used to reveal all the key bytes has
been reduced 47.8%, which is listed in the last line of Table I.

All the above three groups of experiments indicate the suc-
cessful application of the proposed ICA to EMA.

6. CONCLUSIONS

The main contribution of this work is that we propose two sig-
nal processing techniques and successfully apply them to EMA:
bandpass filtering and ICA. When they are used properly, the
secret recovery becomes easily. This is confirmed by the exper-
iments of EMA against AES and Camellia implementation on
ASIC. Several conclusions are elicited. Bandpass filtering is a
general processing technique, which can attenuate the inference
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from multiple frequency components. ICA is particularly effec-
tive to separate uncorrelated signals, which is fit for the mixed
encryption implementations. With ICA, the countermeasure of
simultaneous algorithm noise is greatly weakened. The mixed
execution of different encryption can be bypassed with signal
processing techniques. These results may also provide enlight-
ment for the design of countermeasures. The implementations of
mixed AES or AES with Camellia, without other countermea-
sures, are both vulnerable to side channel attacks, such as EMA.
In the future, more advanced signal processing techniques will
be investigated and studied. They will be applied to the evalua-
tion of other countermeasures in order to improve the security of
cryptographic devices.
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