
MUX-MCM Based Quantization VLSI Architecture 

for H.264/AVC High Profile Encoder 

 

Jiang Ying, Xinhua Chen 

College of Information Science and Engineering 

Shandong University of Science and Technology 

Qingdao, China 

 

Yibo Fan, Xiaoyang Zeng 

State Key Lab of ASIC and System 

Fudan University 

Shanghai, China 

{fanyibo, xyzeng}@fudan.edu.cn 

 

 
Abstract—This paper presents a hardware-efficient and high- 

throughput quantization implementation for H.264/AVC high 

profiles encoder. The constant multiplication in quantization is 

accomplished by time-multiplexed multiple-constant multipliers 

(MUX-MCM). By rational pipeline decision, the proposed design 

manages to achieve a high throughput at a low area cost. 

Synthesized with SMIC0.18μm technology, the proposed design 

reaches a maximum operating frequency of 250Mhz with a 

throughput of 1Gpixels/sec at the hardware cost of 28.56 Kgates. 

Keywords-quantization;multipl constant multiplier;MUX-MXM; 

 H.264/AVC encoder 

I.  INTRODUCTION  

The H.264/AVC standard published in May, 2003, was 
primarily focused on “entertainment-quality” video, based on 
8-bits/sample, and 4:2:0 chroma sampling [1]. In order to meet 
the requirement of high definition (HD) application, the 
Fidelity Range Extensions was added to this standard in July, 
2004. The FRExt amendment puts forward High Profiles 
including a set of four new profiles: The High profile (HP), 
The High 10 profile (Hi10P), The High 4:2:2profile (H422P) 
and The High 4:4:4 profile (H444P) ,which support all tools of 
the prior Main profile. One of the improvements is introducing 
the perceptual quantization scaling matrices [1] which is also 
called weighted quantization. 

A uniform quantize step is used in the default H.264/AVC 
quantization process to all the coefficients in a sub-block [2]. 
However, it has shown that the sensitivity of the human visual 
system (HVS) to the distortions due to quantization varies with 
coefficient frequency. Frequency-dependent quantization can 
change the quantize step for every coefficient within a block by 
a customized scaling factor. This is only available in the High 
profiles of H264/AVC. JVT has proposed a default set of 
quantization scaling matrices in the reference software JM to 
initialize the quantization step which are compatible with the 
prior quantization and scale process. 

Quantization is the step that causes signal loss in lossy 
compression. The residual coefficients after integer DCT are 
quantized by multiplying by a set of constants which are called 
Multiplication Factors in H.264/AVC. A periodic quantization 
step table is used so as to define a large range of Quantization 
Parameters (QP) without increasing the memory requirements. 
For 9-bit prediction residuals, all the operations can be 
complemented by 16-bit arithmetic except the multiply 

operation. However, multiplication is a high cost operation in 
digital signal process system. 

To reduce the area and power consumption in quantization 
process, [4][5] proposed a low-complexity quantization scheme 
by modifying the quantization parameter into smaller bit-width 
adders , which leads to mismatch error between encoder and 
decoder inevitably. Reference [6] proposed a 4-stage pipeline 
multiplier to increase the speed for quantization of 8x8blocks. 
A compression-guided quantization with a thresholds compare 
module was proposed in [7].The compare module predicts the 
coefficients that can be set as 0 directly in a 4x4 block to cut 
down the multiply operations. In [8], the area optimized 
architecture processes coefficients one by one with only one 
quantization unit, while the speed optimized architecture 
processes all the 16 coefficients in a 4x4block in parallel. 
4x4block and 8x8block quantization are accomplished in [9] 
with a high parallelism and additional registers. Reference [10] 
explores the tradeoff between area cost and performance in 
terms of different degree of parallelism. Except [4][5], in all 
the other schemes mentioned above, the multiplications are 
complemented by general multipliers and lookup table. 

The multiply operation in quantization is a type of multiple 
constants multiplication (MCM) problem [11].However, time-
multiplexed multiple-constant multiplication (MUX-MCM) 
[12][13] is more suitable. This paper presents a high efficient 
quantization architecture based on MUX-MCMs for 4x4 
coefficients blocks after integer DCT in H.264/AVC high 
profiles encoder. 

The rest parts of this paper are organized as follow. The 
main aspects of quantization and scale in High Profiles of 
H.264/AVC Standard are presented in section II. Section III 
describes the details of the proposed design. The synthesis   
result and comparison with the previous works are presented in 
section IV and Section V concludes the paper. 

II. 4X4QUANTIZATION AND SCALING IN 

H.264/AVC HIGH PROFILE 

H.264 assumes a scalar quantization [14]. The basic 
forward quantization formula is: 

 
( / )ij ijZ round Y Qstep

 (1). 

978-1-4577-0170-2/11/$26.00 ©2011 IEEE

2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip

 72



Where Yij is a coefficient after integer DCT, Qstep is a 
quantize step and Zij is a quantized coefficient. 52 values of 
Qstep indexed by QP are supported by the standard.  

TABLE I.  QUANTIZATION STEP SIZES IN H.254/AVC CODEC
[2] 

QP 0 1 2 3 4 5 

QStep 0.625 0.6875 0.8125 0.875 1 1.125 

QP 6 7 8 9 10 11 

QStep 1.25 1.375 1.625 1.75 2 2.25 

QP … … … … … … 

QStep … … … … … … 

QP 48 49 50 51   

QStep 160 181.333 202.666 224   

 

Table I shows the QP and the corresponding Qstep. Qstep 
doubles for every increment of 6 in QP. 

In order to keep the orthogonality of the integer DCT, a 
post-scale matrix PF is incorporated to the quantization step. 
Eq. (1) is written as: 

 
( * )ij ij ijZ round W PF Qstep

 (2). 

To avoid division operations, (2) can be equivalently 
written as : 

,( * 2 ),

0 2 0 2

2 1 2 1
, %6, , 0...3

0 2 0 2

2 1 2 1

ij

qbits

ij ij m S

ij

Z round W MF

S m QP i j



 
 
   
 
 
 

 (3). 

Quantization factors depend on the coefficients position (i,j) 
in a 4x4block. Matrix MF is shown in (4): 

13107 5243 8066

11916 4660 7490

10082 4194 6554

9362 3647 5825

8192 3355 5243

7282 2893 4559

MF

 
 
 
 

  
 
 
  
 

 (4). 

For weighted quantization, a customized matrix called 
Weight_Scale is introduced to weight the quantization steps so 
that coefficients at different frequency may have different 
quantize step. The final quantization and scale factor matrix 
LevelScale  is defined as: 

ij,i, j , ijLevelScale MF *16 / Weight _Scalem m S
 (5). 

Eq.(3)  is further modified as: 

, ,( * 2 )qbits

ij ij m i jZ round W LevelScale
 (6). 

When Weight_Scalei,j = 16 (i=0…3,j=0…3), it is the 
original quantization mode which is called Flat Mode. 

In integer arithmetic,  (6) can be implemented as follows: 

 

 
   

ij ij m,i,j

ij ij

Z W  *LevelScale f qbits

   Sign Z   Sign W

  


    (7). 

f is used to compensate the visual effect of the video and is 
chosen by encoders. The values of f and qbits are different with 
the coefficients state [17]: 

1) 4x4 Intra luma and chroma :  

qbits = 15 + qp/6,f = 1<<(14+qp/6). 

2)4x4 Inter: 

     qbits = 15 + qp/6,f = 1<<(13+qp/6). 

3) 4x4 luma DC and chroma DC: 

qbits = 16 + qp/6,f = 1<<(15+qp/6). 

Specially, for DC coefficients including that of luma and 
chroma components, only LevelScalem,0,0 is applied. 

III. PROPOSED QUANTIZATION USING MUX-MCMS 

A. Directed Acyclic Graph(DAG) 

Reference [15][16]has proposed the minimized adder  
graph(MAG) to formulate constant integer multiplication. In 
MAGs, the shift and reuse of the results of intermediate 
additions is allowed. Fewer adders are required than the 
frequently-used Canonic Signed Digit (CSD) multipliers. For  
19-bit constants, an improvement of 25% is available[16].  

The multiplier implementation using MAG can be visually 
illustrated by directed acyclic graph (DAG). For demonstration, 
DAGs of the 6 constants of MFm,1 are shown in Fig.1. The 
label on an edge is a positive 2-power integer, which represents 
the scaling (shifting toward left) applied to the operand on the 
edge. The label on a node represents the intermediate results of 
the addition or subtraction. Taking MF0,1 as an example: 

 
5243 (1024( 4 ) ( 4 )) 128x x x x x x    

 (8). 

B. Multiplier Algorithm 

Common subexpression elimination (CSE) is commonly 
applied to a set of constant multipliers that multiply a common 
variable [11]. It is more suitable for parallel multiplication.  

But in the quantization and scaling process of H.264/AVC, 
coefficients after integer DCT only need to be multiplied by 
one of the six LevelScale controlled by QP%6 at one (i,j) 
position. And only one product is obtained at one time. The 
operation just like only one multiplier is presented. Three 
different methods of completing a multiple-constant multiplier 
are summarized in [13].The block diagrams of the three 
methods are depicted in Fig2. 

In Fig. 2(1), a lookup table for constants and a general 
multiplier are used. QP%6 (the control signal) selects the 
constant to be fed into the input of the multiplier. In Fig. 2(2), 
CSE is used for the parallel multiplication and a multiplexer is 
used to select one of the parallel products according to the 
control signal.  In Fig. 2(3), multiplexers are inserted to share 
the same adders at different time to reduced area requirements. 

 73



 

input

     4

+

1024    

-

      128

+
   

(2)MF1,1 = 4660 (3)MF2,1 = 4194

5

5115

5243

(1)MF0,1 = 5243 (4)MF3,1 = 3647 (5)MF4,1 = 3355 (6)MF5,1 = 2893

input

     8

+

  512   4  

+

    16

+
   

9

4644

4660

input

     2

+

    32

+

        4096

+
   

3

   98

4194

  

2

input

      8

-

      8

+

-
    64

7

57

3647

input

-

+

+

5

1307

3355

      

     

     32

     

     2048

        4

+
 256

1275

input

+

-

-

3

2893

     128

        2

+
        16

511024

3021

   

 

Figure 1 DAGs of MFm,1     

coeff

QP%6

productM
U

Xcoeff

QP%6

product

M
U

X

general

multipier

lookup table

coeff
product

(1) (2) (3)

QP%6

M
U

X

M
U

X

M
U

X

Figure 2.Three Implements of  Multiple-Constant Multiplier[13] 

input

Mux

2048

  

  

128     4 

Mux

   

       4
   2  

+
  16   64

Mux

   8

Mux

+/-

Mux    8
     128

 

  

  16

     1024

Mux

  

   32

+/-

     64   

Mux

+/-

Mux

          2     4

 
 

Figure 3  Merged DAGs of MFm,1 

 
Reference [13] has also proposed an algorithm to merge 

several separately DAGs into one to realize the time-
multiplexed multiple-constant multiplication in Fig.2 (3). The 
number of adders required is as large as that of the largest 

initial DAG being merged. The merged DAG for the 6 separate 
DAGs of MFm,1 is shown in Fig.3. 

 Three MUX-MCMs mapping to the three merged DAGs 
for MFm,0, MFm,1 and MFm,2 are accomplished in this work. 

 74



C. Proposed Quantization and Scale Architecture 

The proposed quantization and scale architecture processes 
the results of 2D 4x4 integers DCT column by column and the 
quantized level are obtained according to (7). Four MUX-
MCM instances are selected by the column index of a 4x4block 
simultaneously and four coefficients can be processed in 
parallel.  

In this design, all of the elements in Weight_Scale are set as 
16, so (7) can be reduction to (3).The diagram of the proposed 
quantization and scale module is shown in Fig.4.  A four-stage 
pipeline including the control stage, multiplication stage and 
the post-process stage is adopted.   

The control circuit produces the signals that are needed in 
the subsequent quantization arithmetic:  the absolute values of 
the input coefficients, qbits, QP%6 and f defined in (7), as well 
as the column number indicator: column_r. The sign bit of 
coeffi (i=0,1,2,3) and column number are delayed two clock 
cycles to keep the synchronous with that in the multipliers. The 
MUX-MCM ARRAY module completes the main multiply 
operation in the quantization process according to the column 
number and the coefficients state.  

To balance the critical path, the combinational logic of the 
multiplier deriving from the merged DAGs is divided into 2-
stage pipeline. A correction factor f is added to the result of the 
multiplication depending on the coefficients state. Finally, the 
results are right shifted by qbits and restored the sign bit.  

The bit width of the absolute value of input coefficients is 
15. The largest multiply factor in MF is 13107 which is a 14-
bit positive integer. The width of the products from 
MUXMCM ARRAY is 29 bits. When qbits is 15, the 
quantized levels have the biggest bitwidth 15. The results of 
quantization are 16 bits signed numbers. 

TABLE II.  SLECTION OF MUX-MCM  

Input 

Coefficients 

DC Others 

Column0,..,3 Column0,2 Column1,3 

Coeff0 Mult0_0 Mult0_0 Mult2_0 

Coeff2 Mult0_2 Mult0_2 Mult2_1 

Coeff1 Mult0_1 Mult2_0 Mult1_0 

Coeff3 Mult0_3 Mult2_1 Mult1_1 

 

With the proposed design, every 4x1block is processed at 
the same time and has a latency of 4 cycles, and every 
4x4block is processed in 7 cycles due to the 4-stage pipeline. 

The details of the multiplier array in Fig.4 are illustrated in 
Fig5. Mult0_i, Mult1_i and Mult2_i are MUX-MCM instances 
for MFm,0, MFm,1, MFm,2 respectively. Label i is the instance 
identifier of the multipliers. The multiplex controllers (MC) 
select the multipliers for the 4 input coefficients according to 
the column index and the coefficient state. 

When the current coefficients are the 4x4DC coefficients 
block of a intra16x16 macro block, all of the coefficients are 
multiplied by MFm,0 ,so four instances of MFm,0 are need. In the 
case of all the other 4x4 coefficients block, two different 
multiply factors are used. When the column number is 0 or 2, 
two instances of both MFm,0 and two MFm,2  are needed. When 
the column number is 1 or 3, two instances of both MFm,2 and 
two MFm,1  are needed. Though   MFm,2 is required in each  
column with different coefficient position (i,j), two instances 
are enough. MC selects the proper MUC-MCM for every input 
coefficient .The selection result is shown in Table II. 

 

Control

QP

state

column

|X|

|X|

|X|

|X|

coeff0

coeff1

coeff2

coeff3

MUXMCM

ARRAY

qbits

column_r

QP%6

   
 16

f

+

+

+

+

>>qbits

>>qbits

>>qbits

>>qbits

   
 15
   

 15

   
 15

   
 15

 30

   
 30

   
 30

   
 30

   
 15

   
 15

   
 15

   
 15

Sign0

   
 15

Sign0,Sign1,Sign2,Sign3
2cycle

delay

Sign1

Sign2

Sign3

   
 16

   
 16

   
 16

   
 16

level0

level1

level2

level3

column_o

Stage 1 Stage 2,3 Stage 4

   
 16

   
 16
   

 16

   
 24

Figure 4.  Details of MUX-MCM ARRAY 

 75



Mult

0_0

Mult

0_2

Mult

0_1

Mult

0_3

Mult

1_0

Mult

1_1

Mult

2_0

Mult

2_1

|coeff0|

|coeff2|

|coeff1|

|coeff3|

0

0

0

0

0

0

product0

product2

product1

product3

   

15

  

 15

  

 15

  

 15

0

0

QP%6
 

 3

 

 28

 

 29

 

 28

 

 29

 

 28

 

 29

 

 28

 

 29

MC

 

 29

 

 29

 29

 29

MC

MC

MC

MC

MC

MC

MC

MC

Figure 5.  Diagram of the quantization and scale module

IV. IMPLEMENTATION AND RESULTS 

The proposed architecture is implemented in Verilog HDL, 
simulated in ModeSim-Altera-6.5e and synthesized by 

Synopsys  Design Complier and SMIC0.18μ m  technology. 

Table III shows the performance of MUX-MCM compared 
with the multiple constants multipliers implemented by 
constants lookup table and general multiplier used in 
quantization procedure. All of these multipliers are 
accomplished with combinational logic. The MUX-MCM is 
about 50% smaller than general proposal with a slightly longer 

critical path. But the speed can be improved by pipeline 
technology with a few additional registers. 

The comparisons with the published designs are shown in 
table IV. The proposed scheme can reaches a frequency of 
250Mhz while all the prior designs completed in ASIC 
technology works at less than 100Mhz.The throughput of  the 
speed optimized architecture in [8] is similar to the proposed 
design, but it works at only 68Mhz and the area is about 25% 
larger. Though the design proposed in [9] can achieve a higher 
throughput, the cost of area is 3 to 5 times higher with 32 
coefficients processed at the same time. 

TABLE III.  COMPARISON ON DIFFERENT MULTIPILERS 

Constant 

Group 

General Multiplier+LUT MUX-MCM 

Area(um2) Latency(ns) Area(um2) Latency(ns) 

MFm,0 34624.56 4 11259.50 7.32 

MFm,1 29834.53 3.78 16439.49 6.95 

MFm,2 29990.86 3.98 16765.00 7.53 

TABLE IV.  COMPARISON WITH PRIOR WORKS 

Solution Technology 
Area 

(Kgates) 
Frequency 

(Mhz) 
Multiplier  

number 

Throughput 

(Mpixels/sec) 
Throughput 

/Gates 

[8](area) Tsmc0.35 1.749 85.47 1 20 11.44 

[8](speed) Tsmc0.35 39.89 68 16 1058 26.5 

[9] 
Tower0.18 104.05 76 32 2432 23.37 

Ams0.35 77.668 79 32 2528 35.6 

[10]  
Xilinx 

FPGA 

965 

LUTs 
107 

4 
430 - 

Proposed Smic0.18 28.561 250 8 4*250 35 

 76



V. CONCLUSIONS 

This paper presents a cost effective and high throughput 
quantization implementation for H.264/AVC high profiles 
encoder. By time-multiplexed multiple constants multipliers, 
this design achieve a high area advantage. By rational pipeline 
decision, the design manages to achieve a throughput of 
1Gpixels/s  at a frequency of 250Mhz. 

REFERENCES 

[1] G. Sullivan, P. Topiwala, A. Luthra, “The H.264/AVC advanced video 
coding standard: overview and introduction to the fidelity range 
extensions”, in: SPIE Conference on Applications of Digital Image 
Processing XXVII, 2004.  

[2] Iain Richardson,The H.264 Advanced Video Compression Standard(the 
second editon),John Wiley & Sons, 2010. 

[3] H. S. Malvar, A. Hallapuro, M. Karaczewicz, and L. Kerofsky, “Low-
Complexity Transform and Quantization in H.264/AVC”, IEEE 
Transactions on Circuits and Systems for video technology, vol. 13, no. 
7, July 2003.  

[4] Yun Zhang, Gangyi Jiang and Mei Yu, “Low-complexity quantization 
for H.264/AVC”, J Real-Time Image Proc (2009) 4:3–12. 

[5] M.N. Michael, K.W. Hsu, “A Low-power Design of Quantization for 
H.264 Video Coding Standard”, in: Proceedings of the IEEE Interna- 
tional SOC Conference, pp. 201–204, September 2008.  

[6] Juan A. Michell,Jose M. Solana, Gustavo A. Ruiz, “A High-Throughput 
ASIC Processor for 8x8 Transformcoding in H.264/AVC”, Signal 
Processing: Image Communication Vol.26, Issue 2, pp. 93-104, 
February 2011.   

[7] [7] J.D. Bruguera, R.R. Osorio, “A Unified Architecture for H.264 
Multiple Block-size DCT with Fast and LowCost Quantization”, in: 

Proceedings of the 9th EUROMICRO Conference on Digital System 
Design, pp. 407–414,2006. 

[8] [8] R.C. Kordasiewicz and S. Shirani, "ASIC and FPGA 
Implementations of H.264 DCT and Quantization Blocks",IEEE 
International Conference on Image Processing, 2005, pp. III - 1020-3, 
vol. 3, Genova, Italy, 11-14 September 2005.  

[9] [9] G. Pastuszak, “Transforms and Quantization in the High-
throughput H.264/AVC Encoder based on Advanced Mode Selection", 
in: Pro- ceedings of the IEEE Computer Society Annual Symposium on 
VLSI, pp. 203–208 ,April 2008. 

[10] [10] Husemann R., Majolo M, et al., “Hardware Integrated 
Quantization Solution for Improvement of Computational H.264 
Encoder Module”,in Pro- ceedings of the IEEE VLSI-SoC , ,pp. 316 – 
321,27-29 September 2010. 

[11] [11] K. Parhi, VLSI Digital Signal Processing Systems,Wiley, 1999. 

[12] [12] P. Tummeltshammer, J. Hoe, and M. Püschel, “Multiple Constant 
Multiplication by Time-multiplexed Mapping of Addition Chains,” in 
Proc. Des. Autom. Conf., vol. 41, pp. 826–829,June 2004.    

[13] [13] P. Tummeltshammer , J. Hoe and M. Pschel   "Time-multiplexed 
Multiple-constant Multiplication",  IEEE Trans. Comput.-Aided Design 
Integr. Circuits Syst.,  vol. 26,  no.9. pp. 1551-1563, 2007.  

[14] [14] Iain Richardson,H.264 & MPEG-4 Video Compression, 
Wiley,2003.  

[15] [15] A. G. Dempster and M. D. Macleod, “Constant integer 
Multiplication Using Minimum Adders,” IEE Proc. Circuits Devices 
Syst., vol. 141 no. 6, pp. 407–413, October 1994.  

[16] [16]  Gustafsson, A. Dempster, and L. Wanhammar, “Extended Results 
for Minimum-adder Constant Integer Multipliers,” in Proc. IEEE Int. 
Symp Circuits Syst., vol. 1, pp. I-73–I-76, May 2002. 

[17] [17] A. Hallapuro, M. Karczewicz and H. S. Malvar, “Low Complexity 
Transform and Quantization – Part I: Basic Implementation,” Doc. JVT-
B038, Geneva, CH, 29 January - 1 February 2002. 

 

 77




