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Abstract—Many computer vision tasks can be formulated as labeling problems.
The desired solution is often a spatially smooth labeling where label transitions are
aligned with color edges of the input image. We show that such solutions can be
efficiently achieved by smoothing the label costs with a very fast edge-preserving
filter. In this paper, we propose a generic and simple framework comprising three
steps: 1) constructing a cost volume, 2) fast cost volume filtering, and 3) Winner-
Takes-All label selection. Our main contribution is to show that with such a simple
framework state-of-the-art results can be achieved for several computer vision
applications. In particular, we achieve 1) disparity maps in real time whose quality
exceeds those of all other fast (local) approaches on the Middlebury stereo
benchmark, and 2) optical flow fields which contain very fine structures as well as
large displacements. To demonstrate robustness, the few parameters of our
framework are set to nearly identical values for both applications. Also,
competitive results for interactive image segmentation are presented. With this
work, we hope to inspire other researchers to leverage this framework to other
application areas.

Index Terms—Stereo matching, optical flow, interactive image segmentation
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1 INTRODUCTION

DISCRETE label-based approaches have been successfully applied
to many computer vision problems such as stereo, optical flow,
interactive image segmentation, or object recognition. In a typical
labeling approach, the input data are used to construct a 3D cost
volume which store the costs for choosing a label [ (e.g., disparities
in stereo) at image coordinates x and y. For stereo, these costs are
given by pixelwise matching (e.g., absolute differences of the
intensities) between corresponding pixels.

Then, the goal is to find a solution which 1) obeys the label costs,
2) is spatially smooth, and 3) where label changes are aligned with
edges in the image. To this end, a popular approach is to utilize a
Conditional (Markov) Random Field model (CRF). This means that
an energy function is formulated where the label costs are encoded
in a data term and the spatially smooth edge-aligned solution is
enforced by, e.g., a pairwise smoothness term. This cost function can
then be minimized using global energy minimization approaches
such as graph cut or belief propagation. A drawback is that such
global methods are often relatively slow and do not scale well to
high-resolution images or large label spaces. Fast approximations
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(e.g., [1]) usually come at the price of loss in quality due to less-
global optimization schema.

Continuous counterparts to discrete labeling methods are based
on convex energy functions which can be efficiently optimized on
the GPU, e.g., [2], [3], [4]. A drawback is that many of these
approaches have a restricted form of the data and smoothness
term. For instance, the brightness constancy assumption in optical
flow is usually linearized and thus only valid for small displace-
ments. To overcome this problem, a coarse-to-fine framework is
commonly used which, however, cannot handle objects whose
scale is much smaller than their motion. Another problem is posed
by the convexity of the smoothness term, which might oversmooth
the solution. This may be the reason why convex models have not
reported state-of-the-art stereo results yet.

An interesting alternative to an energy-based approach is to
apply local filtering techniques. The filtering operation achieves a
form of spatially local smoothing of the label space, in contrast to a
potential spatially global smoothing of a CRF. Despite this
conceptual drawback, an observation of our work and previous
work [6] is that “local smoothing” is able to achieve high-quality
results. We believe that one of the reasons may be the dominance
of the (pixelwise) data term with respect to the smoothness term."
An important observation is that the data term will play an even
more dominant role in the future since both video and still-picture
cameras are consistently growing in terms of frame resolution and
also dynamic range. A detailed comparison between energy and
filtering-based methods is beyond the scope of this paper, and we
will only briefly discuss them in Section 6.

In general, relatively little work has been done in the domain of
filter-based methods for discrete labeling problems [6], [7], [8]. Most
importantly, there is no filter-based approach for general multi-
labeling problems which is both fast (real time) and achieves high-
quality results. The key contribution of this paper is to present such a
framework. This is possible due to the recently proposed guided
filter [5], which has an edge-preserving property and a runtime
independent of the filter size. Thus, state-of-the-art results can be
achieved without the need to trade off accuracy against efficiency.

Let us now detail our method from a stereo perspective. We
first construct a cost volume with axes (z,y,[), which is known as
disparity space image (DSI) in stereo [9]. Fig. 1 (left-b) shows an
(x,1) slice through this volume for the scanline in Fig. 1 (left-a). We
can obtain a solution to the labeling problem by choosing the label
of the lowest cost at each pixel (i.e., argmin over the columns of
Fig. 1 (left-b)). The pixels with the lowest costs are marked red in
Fig. 1 (left-b). The resulting disparity map (Fig. 1 (right-b)) is very
noisy because the solution is not regularized. However, this
method is very fast.

To regularize the solution, we can aggregate (smooth) the costs
within a support window before applying the Winner-Takes-All
label selection. This is known as window-based matching in the
stereo literature. It is known that this aggregation step is
equivalent to filtering the (z,y) dimensions of the cost volume
with a box filter [9]. The result of filtering the cost volume in
Fig. 1 (left-b) using a box filter is shown in Fig. 1 (left-c). The
disparity solution of minimum costs (marked red in Fig. 1 (left-c))
is smooth but not aligned with image edges. This is because the
box filter overlaps depth discontinuities that are illustrated with
green dashed lines in Fig. 1. This leads to the well-known “edge-
fattening effect” in stereo (see the disparity map in Fig. 1 (right-c)).
While the quality of the disparity map is poor, the advantage is

1. It may be possible to show that for some applications the smoothness
term of a learned energy propagates information only in a small
neighborhood. For some applications, global constraints exist such as the
occlusion constraint in stereo matching and optical flow that we model with
a fast additional operation.
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Fig. 1. Our approach applied on the stereo matching problem. Left: (a) Zoom of the green line in the input image. (b) Slice of the cost volume (white/black/red: high/
low/lowest costs) for the line in (a). (c)-(e) Cost slice smoothed along the z and y-axes (y is not shown here) using (c) the box filter, (d) the joint bilateral filter, and (e) the
guided filter [5], respectively. (f) Ground-truth labeling. Right: Crops of the “Tsukuba” disparity maps computed from the filtered costs on the left side. In contrast to other
methods, our approach in (e) produces high-quality disparity maps and is computationally efficient (real time).

that the filtering process is very fast because it can be speeded up
via a sliding window technique.

To overcome the “edge-fattening problem,” we can smooth the
cost volume with a weighted box filter where weights are chosen
such that the filter preserves edges of the input color image. For
instance, one can apply a joint bilateral filter. Here, weights are
computed from the color image and weighted averaging is
performed on the cost values. In this case, the approach becomes
very similar to the one proposed in the original adaptive support
weight paper [6].2 Fig. 1d shows that applying the joint bilateral
filter on the cost volume leads to a spatially smooth disparity
solution that is also aligned with image edges. While this method
leads to high-quality results, its computational speed represents a
problem. The runtime of an exact implementation of the joint
bilateral filter depends on the size of the support window (i.e., is
slow for applications like stereo matching that require a large
support window) and fast approximations degrade the quality
considerably (see Section 2).

In our work, we propose an algorithm that produces high-
quality results at real-time frame rates and hence combines the
advantages of all filtering approaches outlined above. We use the
recently proposed guided filter [5] to smooth the cost volume in a
way that color edges are preserved (see Fig. 1e). In our experiments,
this filtering technique can even outperform the joint bilateral filter
in terms of quality of results. Even more importantly, it can be
implemented as a sequence of box filters so that runtime is
independent of the filter window size. Moving away from the
stereo perspective, we show that the concept of filtering the cost
volume leads to a generic and fast framework that is widely
applicable to other computer vision problems. In particular, we
instantiate our framework for three applications:

e  areal-time stereo approach that outperforms all other local
methods on the Middlebury benchmark both in terms of
speed and accuracy,

e a discrete optical flow approach that handles both fine
(small-scale) motion structure and large displacements. We
tackle the huge label space by fast cost filtering,

e a fast and high-quality interactive image segmentation
method.

2 RELATED WORK
There have only been a few attempts to simulate the edge-

preserving smoothness properties of a CRF by filtering the label

2. The approach in [6] is motivated from a different perspective and does
not show its relations to filtering explicitly.

costs. We review those now in the context of three application
areas related to this work (i.e., stereo, optical flow, and image
segmentation).

Stereo. Yoon and Kweon [6] showed that an edge-preserving
bilateral filter on the cost volume can achieve high-accuracy
results. Note that the authors of [6] did not use the term “filtering”
to describe their method, but called it weighted support window
aggregation scheme. This means that they use a naive implemen-
tation of the bilateral filter, which is slow and diminishes the
runtime advantage of local over global methods. Richardt et al. [7]
realized this shortcoming and suggested an approximate but fast
(real-time) implementation of the filter. Due to this approximation,
it cannot be easily applied to color images due to high memory
requirements. As a consequence, this approach is limited to
grayscale input images, giving poor results at disparity bound-
aries. This is reflected in the Middlebury stereo benchmark [10],
where the method of Richardt et al. [7] is on the 90th rank out of
over 110 methods. In contrast, our real-time implementation ranks
16th. To increase the quality, Richardt et al. [7] proposed an
alternative that uses two color channels. However, this method is
13 times slower than their monochromatic approach (no real-time
performance) and still inferior to their reimplementation of [6]. It is
also important to note that the approach of Richardt et al. [7] is
tailored to stereo matching and hence does not convey the
important insight that this filtering technique can be leveraged to
general labeling tasks, outside stereo matching.

After publication of the conference version of this paper [11],
De-Maeztu et al. [12] proposed a stereo approach that is based
on a cost aggregation strategy very similar to ours. They
presented a symmetric stereo approach that aggregates costs
according to both input images simultaneously. It is worth
noting that we have also presented a symmetric formulation in
[11] that is, in fact, identical to the symmetric stereo method in
[12]. However, in general our approach aggregates costs based
on a single image. This enables a generalization of our strategy to
other vision problems such as interactive image segmentation
where only a single input image is available, whereas [12] only
works for stereo matching.

Optical flow. Many optical flow methods rely on continuous
optimization strategies. In the continuous domain, Tschumperle
and Deriche [13] showed that a diffusion tensor-based smoothness
regularizer can be transformed into local convolutions with
oriented Gaussians. In the optical flow approach of Xiao et al.
[14], the Gaussian kernels were replaced by the bilateral filter. In
this line of research, Werlberger et al. [15] and Sun et al. [16]
incorporated the adaptive support weights of [6] into a variational
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approach. In contrast, the goal of our work is to apply local
filtering in a discrete framework.

All of the aforementioned approaches are based on the popular
variational coarse-to-fine framework that cannot handle large
displacements of small objects, as shown in [17], [18]. To overcome
this problem, a discretized data term can be integrated into a
variational framework as a soft constraint (see [17], [18], [19]).

Purely discrete label-based approaches do not suffer from this
problem, but a major challenge is the huge label space (each flow
vector is a label and subpixel accuracy further increases the label
space). Due to these difficulties, discrete approaches [20] could not
report state-of-the-art performance for a long time and usually
have to trade off search space (quality) against speed. In contrast,
our filter-based method efficiently deals with the search space and
handles both large displacements and fine small-scale structures.

Interactive image segmentation. Interactive image segmenta-
tion is a binary labeling problem. It aims to separate the image into
foreground and background regions given some hints by the user.
Criminisi et al. [8], [21] showed an approach which is applicable to
problems with two labels, like binary image segmentation and
panoramic stitching of two overlapping images. The idea is to filter
a likelihood ratio mask with a fast geodesic morphological
operator. It remains unclear whether this approach can be
extended to multilabel problems such as stereo. Also, the relation-
ship between their morphological operator and, e.g., the bilateral
filter is not discussed in detail.

Related to interactive segmentation, He et al. [5] adopted the
guided filter to compute a soft-segmentation, i.e., a so-called alpha
matte [22]. This is done by filtering a binary segmentation mask, as
opposed to the cost volume, as in our approach. We close the loop
by estimating the binary segmentation via filtering the cost volume
constructed from coarse user input. This results in a purely filter-
based segmentation and matting pipeline.

3 CosT-VOLUME FILTERING

We now describe our labeling framework. Let us consider a
general labeling problem where the goal is to assign each pixel 4
with coordinates (z,y) in the image I a label ! from the set
L ={1,...,L}. The label assigned to pixel i is denoted by f; and f
is the collection of all label assignments. Our approach consists of
three steps: 1) constructing the cost volume, 2) filtering the cost
volume, and 3) label selection. The cost volume C' is a 3D array
which stores the costs for choosing label  at pixel i = (z,y).

The L slices of the cost volume are now filtered. To be more
precise, the output of the filtering at pixel index ¢ with label [ is a
weighted average of neighboring pixels in the same slice:

Ci,= Z Wii(1)Cjy. 1)

Here, ' is the filtered cost volume and i and j are pixel indices. The
filter weights W; ; depend on the guidance image I, which is, in the
case of, e.g., stereo, the reference image.

Once the cost volume is filtered, the label at pixel i is simply
chosen in a Winner-Takes-All manner as

fi = arg I,Iélﬁn Ciy (2)

The filter weights W;; in (1) should be chosen such that
intensity changes in the guidance image are maintained in the filter
output. In this work, we use the weights of the guided filter [5], but
other weights are also possible.

Given a color guidance image I, the weights W ; of the guided
filter are given by

Wij=—3
| ke (

S+ —m) Cet+ )N - ), (3)

i,§) Ewi
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where i, and X are the mean vector and covariance of [ in a
squared window wj, with dimensions 2r + 1 x 2r + 1, centered at
pixel k. U denotes the identity matrix. We denote the number of
pixels in this window with |w| and € is a smoothness parameter. We
refer the reader to He et al. [5] for further details.

It has been shown [5] that a weighted average with weights as
defined in (3) can be implemented efficiently on the CPU as a
sequence of box filters using the integral imaging technique [23].
We apply the same technique to obtain an even more efficient GPU
implementation.

4  APPLICATIONS

We now show three applications for our cost filtering framework.
The method for stereo and optical flow is almost identical and only
one parameter is set differently (see the explanation in Section 5).

4.1 Stereo Matching and Optical Flow
For stereo matching and optical flow, the labels [ correspond to
vectors (u,v) which define the displacement in = and y directions.
(For stereo, the displacement in the x direction corresponds to the
disparity d (u = d) and there is no shift in the y direction (v = 0).)
Cost computation. The cost volume expresses how well a pixel
in image I matches the same pixel in the second image I’ shifted
by vector [. We choose our pixel-based matching costs to be a
truncated absolute difference of the color and the gradient at the
matching points. Such a model has been shown to be robust to
illumination changes and is commonly used in optical flow
estimation [17], [24]:

C'L,l = (1 — OL) . mln[HL - [£7l||.,T1:|
+oa- min[HVg;Ii - V.TI;,*IH + ||Vz/1i - V?/[L{—l‘lvTZ}'

Here, V, and V, are the grayscale gradients in z and y
direction, respectively.® o balances the color and gradient terms
and 71, 7» are truncation values.

We then filter the cost volume according to (1) with weights in
(3) using I as guidance image. Finally, we compute the disparity/
flow map f for image I as per (2).

Occlusion detection. To detect pixels with unreliable dispa-
rities/flow vectors which are mainly caused by occlusions, we
apply a left-right cross checking procedure. To this end, we
additionally compute the disparity/flow map f for the right
image I’ in the same way as described above. We mark a pixel in
the left disparity/flow map f as invalid if the value of its matching
pixel differs, i.e., if f; # f/_,. This process detects occluded as well
as mismatched pixels.

Postprocessing for stereo. First, invalid pixels are assigned to a
new disparity. To this end, we simply assign an invalid pixel to the
lowest disparity value of the spatially closest nonoccluded pixel
located on the same scanline. This simple strategy for filling
invalidated pixels generates streak-like artifacts in the disparity
map. To remove these artifacts while preserving the object
boundaries, we apply a weighted median filter for the filled-in
pixels. Note that the weighted median is applied only to invalid
pixels, ie., pixels which fail the left-right cross checking. As
weights, we use those of the bilateral filter:

1 i — I L — I
wh = — - A 5
WK exp( R p (5)

where o, and o, adjust the spatial and color similarity and K; is a
normalization factor. We truncate the weights at a radius of 7 pixels.
We discuss the influence of the postprocessing in Section 5.1.

3. For stereo matching, we use the gradient in the z-direction only.
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Fig. 2. Results on the Middlebury evaluation images. Disparity maps from our algorithm using constant parameter settings are shown. In the left upper corners, we
show comparisons with the respective ground truth (errors larger than one pixel in nonoccluded regions are black, while gray denotes errors in occluded areas).

Postprocessing for optical flow. As for stereo, we start by
assigning invalid pixels to a new flow vector. For optical flow,
we cannot assign the flow vector with the lowest magnitude of
the spatially closest pixels because objects with smaller flow
magnitude can occlude objects with higher flow magnitude.
Therefore, we use a weighted median filter to fill the occluded
regions based on their color similarity to the visible flow regions.
In detail, we apply a weighted median filtering with weights as
in (5) to the occluded pixels. The windows of the median filter
overlap the valid regions. Hence, we can propagate the flow
vectors into the invalid image parts. If the invalidated region is
larger than the size of the filter window, some pixels will not be
assigned to any flow vector. In such situations, we iterate the
median filtering procedure to incrementally fill invalid pixels.

To find subpixel accurate flow vectors, we upscale the cost
volume in label dimension and derive the image colors at
subpixel positions via bicubic interpolation. In practice, we found
that smoothing the final flow vectors with the guided filter can
compensate for a lower upscaling factor We empirically found
that an upscaling factor of 4 gives visually pleasing results.
However, in this paper we apply an upscaling factor of 8 to
demonstrate the best possible performance.

Alternative—symmetric cost aggregation. The cost aggrega-
tion in our stereo/flow approach can also be formulated
symmetrically for both input images. This means that we filter
the cost volume while preserving the edges in both input images
simultaneously. In particular, we compute the filter weights for
pixel i in (3) based on the color of the pixel in the left image I; and
its matching pixel in the right image I/_; that can be computed
using disparity/flow hypothesis I. To this end, we replace the
3 x 1 vector I; in (3) with a 6 x 1 vector whose entries are given by
the RGB color channels of both I; and I;_;. The dimensions of I},
Yk, U, and py, change accordingly.

We found that for stereo the symmetric approach gives visible
improvements near occlusion boundaries. For the symmetric
optical flow approach, we found a slight overall performance
improvement over the asymmetric flow approach. We compare
asymmetric with symmetric approaches in Sections 5.1 and 5.2.

4.2 Interactive Image Segmentation

In interactive image segmentation, the labels encode whether a
pixel belongs to the foreground F or background B; thus,
L = {F, B}. For initialization, the user assigns parts of the image
to fore- and background.

Cost computation. From the user assignments, we build fore
and background color histograms denoted as ¢ and 67, which
sum up to 1. Each histogram has K bins and we denote the bin into
which pixel i falls with b(i). We can also use a bounding box as
input, where the pixels outside the box build 6% and all pixels
inside the box build 6 as in [25]. Then, the cost volume is given by
Ciyy=1- ‘95)(7:) ; L € L. For binary labeling problems, we can reduce
the cost volume C;; to a 2D cost surface C; which denotes the costs
of a pixel to belong to foreground C; =105, /(6;, +0;,)- If a
pixel ¢ has been assigned to the fore or background by the user, C;
is set to 0 or 1, respectively. After filtering the cost surface, a pixel ¢

is assigned to the foreground if C; < 0.5 and assigned to the
background otherwise. When using bounding boxes, we iteratively
update the color models as in [26]. In practice, we achieved good
results using five iterations.

To account for semitransparent pixels along the object bound-
ary in an efficient manner, we filter the computed binary mask
with the guided filter. This has been shown [5] to approximate a
matting method.

5 EXPERIMENTAL RESULTS

We now demonstrate that our method is capable to generate state-
of-the-art results for stereo matching, optical flow and interactive
image segmentation. We use the following, the same constant
parameter settings for stereo and optical flow to generate all of our
results: {r, ¢, o, 05,0, 7} = {9,0.01%,0.9,9,0.1,0.028}. This demon-
strates the robustness of our method. The only exception is the
truncation value 7 of the matching costs in (4). This value depends
on the signal-to-noise ratio of an image [9] as well as on the size of
the occluded regions. Thus, we use 7 = 0.008 for stereo and =
0.016 for optical flow.

Interactive image segmentation is a very different problem;
hence, we found different, constant parameter settings (i.e., more
smoothing) work well: {r, e} = {11,0.22}. Note that for interactive
segmentation the only further parameter we use is K = 32, which
defines the number of bins of the color histogram.

We implemented our method on the GPU using CUDA. All
experiments were conducted on an Intel Core 2 Quad, 2.4 GHZ
processor and a GeForce GTX480 graphics card. Our approach
takes about 2.85 ms to filter a 1 Mpix image. Thus, we can
process about 351 labels per second in a 1 Mpix image. Problem-
specific timings are reported below. A (slower) Matlab imple-
mentation of our stereo method is available at www.ims.tuwien.
ac.at/research/costFilter.

5.1 Stereo Matching

We now discuss results on the Middlebury stereo benchmark [10]
which provides 35 image pairs with known ground truth. A subset
of these images (four images) is used to compare over 110 stereo
matching methods in the Middlebury online evaluation table. The
disparity maps generated by our approach on these four test

TABLE 1
Rankings for Selected Local Stereo Methods
(We Are the Best Performing Method)

[ Algorithm || Rank ][ Avg. Error (%) |
CostFilter (sym.) 12 5.35
CostFilter 16 5.55
GeoSup [27] 21 5.80
CostFilter (w/o post-processing) 23 5.77
CostFilter (Y & K Weights [6]) 24 5.86
AdaptWeight [6] 48 6.67
DCBGrid [7] 90 10.9
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Fig. 3. Effect of postprocessing. Postprocessing was applied only in invalidated
regions. From left to right: Disparity map with invalidated pixels in red; disparity
after scanline-based filling; disparity after applying weighted median filtering for
invalid pixels.

TABLE 2
Evaluation for Selected Stereo Methods
on All 35 Middlebury Stereo Pairs
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| Algorithm || Rank || Avg. Error (%) |
CostFilter (sym.) 1 8.16
CostFilter 2 8.36
CostFilter (w/o post-processing) 3 8.51
GeoSup [27] (our GPU impl.) 4 9.21
CostFilter (Y & K Weights [6]) 5 9.28
AdaptWeight [6] (our GPU impl.) 6 15.69
DCBGrid [7] 7 16.73

Second column: Rank of each method according to its average error.
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Fig. 4. Efficiency comparison. A larger MDE/s score is better. Arrows indicate
optimal window sizes. Our algorithm is independent of the window size.

Up-scale

Fig. 6. Effect of subsampling factor on the error rates. We show the error on
the Middlebury training images.

images are shown in Fig. 2. We can see that our method generates
high-quality disparity maps and preserves the boundaries of thin
objects. We report quantitative results that we have taken from the
Middlebury online evaluation system for the four test images in
Table 1. The table plots Middlebury ranks and average percentages
of bad pixels (rightmost column of the Middlebury table) using the
Middlebury default error threshold of 1. Our approach (CostFilter)
ranks 16th out of more than 110 methods.

We also tested our alternative symmetric stereo approach
described in Section 4.1 (see entry “CostFilter (sym.)” in Table 1).
We found that the average error for the four test images is reduced
from 5.55 to 5.35 percent leading to an improved rank at position 12.
The entry “CostFilter(w/o postprocessing)” in Table 1 shows the
error rate of our method without postprocessing (i.e., without
filtering the invalid regions by a weighted median filter). We see
that the average error slightly increases, which results in a slightly
worse overall rank 23. Fig. 3 shows the effect of our postprocessing
on the teddy image pair.

An important observation from the Middlebury online table is
that, to our knowledge, our stereo algorithm is the top performer
among all Jocal stereo methods which are listed in the ranking. In
particular, as can be seen in Table 1, it can outperform the
geodesic approach (GeoSup), the original adaptive support weight
algorithm of [6] (AdaptWeight), and a fast approximation of the
latter technique (DCBGrid). To understand why our method
performs better than [6], we plugged their support weights into
our algorithm. Hence, we use the same matching costs, occlusion
handling, and postprocessing methods as in our algorithm. We
tuned the parameters of the resulting algorithm to optimize the
Middlebury ranking. This approach (CostFilter (Y & K Weights
[6])) ranks behind our guided filter-based algorithm, i.e., on rank

.

Fig. 5. Outdoor results. We show the left view of two stereo pairs captured with a consumer stereo camera and our disparity maps without occlusion filling and

postprocessing (invalidated pixels are black).

TABLE 3
Optical Flow Evaluation on Middlebury
Method Angular Error Endpoint Error Time
Rank [ Schefflera [ Grove [ Teddy Rank [ Schefflera [ Grove [ Teddy (sec)
Tayers++ 2 TL12) TLD 2,16 2 1,L8) 1,12 L7 18206
Classic+NL [16] 5 (9,7,16) (5,3,4) 4,4,11) 5 | (101013) | (335) (3,.2,12) 972
MDP-Flow [19] 8 (5,5,22) 9,815 | (27,29,30) 7 (4,517) 99,15) | 29,3228 || 188
CostFilter 10 (2,2,4) (2,2,3) (1,2,1) 13 (2,2,8) (2,2,1) (1,4,3) 55.31
CostFilter (sym.) 11 (4,3,2) (2,3,1) (1,4,1) 12 (4,4,4) (3,3,1) (1,4,1) 110.65
OFH 12 | @3255) | (11,1121) | (12,17,8) 8 0254) | (1817.21) | (1217,12) || 620
NL-TV-NCC [15] || 13 | (1616,2) | 2631,11) | (11,1310) || 10 | (16162) | (14159) | (10,11,2) 20
DPOF [29] 17 (4413) | (131520) | (9,65 16 4,4,17) (5,5,3) 74,1) 287
ACK-Prior [30] 18 (6,9,3) (19,13,27) | (19,12,14) 20 (6,6,2) (15,14,18) | (27,18,23) 5872

Overall our method ranks 10th and 13th with respect to the angular and endpoint error, respectively. It works particularly well for the challenging “Schefflera,” “Grove,”
and “Teddy” sequences that are difficult for many competitors. We report ranks for these sequences in brackets (all, disc, untext). Runtime is given for the “Urban”

sequence, which has the largest label space.
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Dimetrodon (0.20 / 3.90) Grove2 (0.16 / 2.32)
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A

Grove3 (0.51 /5.43) Hydrangea (0.17 / 2.15)

Urban3 (0.59 / 4.51) Venus (0.17/1.48)

Fig. 7. Optical flow results. Results for the training sequences of the Middlebury benchmark data set. The respective AEE and AAE are given in parentheses (AEE/

AAE). Color coding as in [10].
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Classic+NL [16] NL-TV -NCC[15] DPOF[29] MDP-Flow[19]

Fig. 8. Detailed flow results. Comparison of two sequences with thin structure, where many competitors fail to preserve flow discontinuities. (We boosted the colors in

the second row from the top for better visualization.)

24 in contrast to rank 16. This suggests that the guided filter and
the joint bilateral filter are both well suited for stereo matching.
However, our guided filter-based approach seems to perform
slightly better in terms of quality and considerably better in terms
of computational efficiency, as we discuss later.

In Table 2, we compare the performance of local stereo matching
methods on all 35 Middlebury ground-truth images. This test is
important not only because it is a richer test set, but also because the
four Middlebury evaluation images are close to being “solved,”
which means that a minor error in the disparity map leads to a large
difference in the ranking. Since only four of the 35 test scenes are
used for the online evaluation, no results are available for
competitors to our algorithm. To obtain results of competing
techniques, we reimplemented [6] (AdaptWeight [6](our GPU
impl.)) as well as [27] (GeoSup [27] (our GPU impl.)) on the GPU
and used the authors” GPU implementation of DCBGrid [7]. As a
performance measure, we use the percentage of pixels that have a
disparity error larger than one pixel in nonoccluded regions and
build the average of this measure over all 35 test images. We plot the
corresponding values in Table 2. It can be seen that the ranking of the
selected methods in Table 1 is almost the same as in Table 2, i.e., our
symmetrical method is the winner and slightly outperforms our
asymmetrical technique. In this test, the parameters for each method
were tuned to give the best results for the four images which are
used in the online Middlebury evaluation. These settings were then
used for all 35 test pairs, shown in Table 2, where the four evaluation
images are a subset.

Let us now focus on computational efficiency of the methods
in Table 2 that we have implemented on the GPU. For a fair
comparison, we have run them on the same computer, with

specifications given at the beginning of this section. We measure
computational performance in terms of Million Disparity Estima-
tions per second (MDE/s), as done previously in, e.g., [28]. The
MDE/s measure of an algorithm for a stereo test pair is computed
as: MDE/s = (W x H x D x FPS)/10°. Here, W and H are image
width and height, D is the number of allowed disparities, and FPS
is the number of frames per second. Hence, a larger MDE number
means a better performing system.

In Fig. 4, we plot the MDE/s of various methods with respect to
different sizes of the support window. As can be seen, our method
is the only one with a runtime independent of the support window
size.* The runtime of all other algorithms, except for DCBGrid (see
discussion below), increases with larger window sizes, which is a
disadvantage since large windows are necessary for good results.
We have marked optimal window sizes reported in the corre-
sponding papers for each method using arrows in Fig. 4. For a
window size of 35 x 35, our algorithm “CostFilter” is more than
eight times faster than our GPU implementation of the asymmetric
joint bilateral filter “CostFilter (Y & K Weights).”

For DCBGrid [7], there is no explicit window size. We plot the
average MDE/s for varying o,.> DCBGrid is the algorithm that is

4. Our algorithm runs at 33.3 fps (excluding the computational overhead
for rendering and rectification) for 640 x 480 pixel images with allowed
disparities ranging from 0 to 40.

5. o, in DCBGrid [7] is the spatial sampling rate. It can be considered as
equivalent to the window size in naive aggregation methods because it
controls the amount of smoothing. The number of grid cells is inversely
proportional to the sampling rate: A larger o, yields a smaller number of
grid cells and requires less memory. Thus, the average MDE/s for this
method increases with larger o.
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(a) Input ima‘ges (b) Steinbriicker et al. (c) LDOF [17]
[18]
©
(d) ACK-Prior [30] (e) Ours (f) Our flow

(g) Input  (h) LDOF [17] (i) MDP-Flow  (j) Ours (k) GT
images [19]
(1) LDOF [17] (m) Steinbr. (n) MDP-Flow ) Ours (p) Our flow
et al. [18] [19]

Fig. 9. Large displacement flow. (b)-(e) and (I)-(0) Motion magnitude for different
methods. (f), (p) Our flow vectors with the color coding as in [10]. (h)-(k) Backward
warping results using flow of different methods—the tip of the foot is correctly
recovered by our method. Occluded regions cannot be handled by any method.

closest to ours in terms of runtime. However, it is considerably
inferior in terms of matching quality (see Tables 1 and 2) and
results get worse with larger o,, in which case the algorithm
would be attractive in terms of runtime.

We also show results of our algorithm for two complex outdoor
scenes captured with a consumer stereo camera (Fujifilm FinePix
Real3D W1). Input images and corresponding disparity maps
generated by our method are shown in Fig. 5. Our method seems
to work very well, although the input images contain many
challenges, including untextured regions (e.g., walls), thin struc-
tures (e.g., bicycles), or different illumination conditions.

5.2 Optical Flow

We evaluate our approach on the Middlebury flow benchmark [10].
The benchmark comprises an evaluation data set of eight images
with hidden ground-truth flow as well as eight training scenes with
publically available ground-truth flow. Table 3 compares our
method on the evaluation data set with selected approaches from
the Middlebury table that compete with our algorithm in terms of
method and quality. To be more precise, we show the rank of our
method computed over all eight evaluation data sets, as well as
detailed results for three challenging data sets “Schefflera,”
“Grove,” and “Teddy.” Overall, our approach is on the 10th and
13th rank, with respect to the Average Angular Error (AAE) and
Average Endpoint Error (AEE), out of almost 60 methods. This
performance is comparable to the method of Werlberger et al.
(NL-TV-NCC) [15] that uses adaptive support weights in a
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(b} Our cutout

(a) Input image with
user interaction

(c) Cutout using Graph Cuts

Fig. 10. Segmentation results. (b) Binary segmentation from (a). (c) Result of
GrabCut [26]. The “Bunny” segmentations (last row) were postprocessed with the
guided filter to obtain an alpha matte.

variational framework. Our method has several advantages over
its competitors, including [15]. First, our approach outperforms
most other methods on scenes with thin structures and strong
motion discontinuities, such as in “Schefflera,” “Grove,” and
“Teddy,” where we achieve an average rank of 2.2 (not shown in
the table) and rank 1 on the “Teddy” scene (see details in Table 3 and
Fig. 8). Second, our approach, which uses fixed parameter settings,
can handle scenes with large displacements, which is difficult for
approaches such as [15] that are restricted by their coarse-to-fine
framework. Finally, our method is simpler than many other
approaches that often require a large number of parameters to be
tuned, e.g., pyramid levels and interpolation strategy.

Our approach performs less well on the “Wooden” and
“Yosemite” sequence. This is because in the “Wooden” sequence
our algorithm assigns wrong flow values to a shadowed region.
The artificial “Yosemite” sequence contains many untextured
regions where the data term is unreliable. Variational methods
smoothly interpolate over these regions while our method
misinterprets them as motion discontinuities. We observed that
this is less of a problem in natural high-resolution images where
the data term gives useful information even in regions that appear
homogeneous at a first glance.

The total runtime of our method for the “Urban” scene, which
has the largest label space (640 x 480 pixels with 30,000 labels at a
subsampling factor of 8) is approximately 55.31 seconds. In Fig. 6,
we study the effect of using different subsampling factors. As can
be seen from this plot, smaller subsampling factors give results of
comparable quality at considerably lower runtimes. For example,
an upscale factor of four has a runtime of 13.52 seconds.

For completeness, we show the performance of our optical
flow algorithm for the Middlebury training images in Fig. 7.
The reader is referred to the supplementary material, which can
be found in the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2012.156, for the com-
plete result.

Large displacement flow results. An important advantage of
our method is that it can also handle large displacements without
the need of changing any parameters (see Fig. 9 for a comparison
to other methods). Our approach generates results that are
visually comparable to, or better than, methods which are
specifically tailored on large displacement flow and are not top
performing for small displacements.
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Symmetric approach. We also tested a symmetric optical flow
formulation of our approach, see Table 3. The symmetric optical
flow approach does not seem to have a big effect on the results. For
the AAE measure, it degrades performance by one rank, while on
the AEE error it improved by one rank. We also tested the symmetric
optical flow approach on the training sequences from Middlebury.
We found that the overall improvement is negligible. The AEE is
reduced from 0.28 to 0.27 and the AAE is reduced from 3.2 to 3.1.

5.3 Interactive Image Segmentation

To show that our approach also performs well for image
segmentation, we visually compare our results to those of GrabCut
[26], Fig. 10. As user input, we either use coarse scribbles/trimaps
or a single bounding box. The results are visually comparable at
lower runtimes (2.85 ms versus approximately 300 ms using the
graph cut implementation of [21] and 425 ms using the graph cut
implementation of [31] on a 1 Mpixel image). Furthermore, our
method gives comparable results to GrabCut [26] on a ground-
truth database of 50 images [26]. Here, error is measured as the
percentage of misclassified pixels in the area not marked by the
user. Given the trimap input of [26], the error is 5.3 percent for
GrabCut and 6.2 percent for our method. This shows the potential
of our approach to be successfully applied to other vision
applications. A video of our real-time segmentation tool is shown
in the supplementary material, available online.

6 DiscussiON AND FUTURE WORK

This paper presented a simple, yet powerful filtering approach for
solving discrete labeling problems. As mentioned in the introduc-
tion, the relationships between filtering-based operations and
energy-based optimization schema, for both continuous and
discrete label spaces, are to the best of our knowledge not fully
understood. One relationship, given in [5], is that the guided filter
is one step of a conjugate gradient solver of a particular linear
system. We believe that a better understanding of this relationship
can lead to fast and even better (iterative) filtering approaches.

Finally, we note that all the aforementioned stereo algorithms,
as well as ours, assume that pixels within a support window have
a constant disparity value. This assumption is violated for slanted
surfaces, where the support window is comprised of pixels that lie
on different disparities. Recently, Bleyer et al. [32] proposed to
overcome this problem by estimating a 3D plane at each pixel onto
which the support region is projected. An interesting future
research direction is to accelerate this technique by levering the
insights of our proposed approach.
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