
Cognitive Computing Building Block: A Versatile and Efficient
Digital Neuron Model for Neurosynaptic Cores

Andrew S. Cassidy, Paul Merolla, John V. Arthur, Steve K. Esser, Bryan Jackson, Rodrigo Alvarez-Icaza,
Pallab Datta, Jun Sawada†, Theodore M. Wong, Vitaly Feldman, Arnon Amir, Daniel Ben-Dayan Rubin§,

Filipp Akopyan, Emmett McQuinn, William P. Risk, and Dharmendra S. Modha
IBM Research - Almaden, San Jose, CA 95120 †IBM Research - Austin, Austin, TX 78758

Abstract—Marching along the DARPA SyNAPSE roadmap,
IBM unveils a trilogy of innovations towards the TrueNorth
cognitive computing system inspired by the brain’s function and
efficiency. Judiciously balancing the dual objectives of functional
capability and implementation/operational cost, we develop a
simple, digital, reconfigurable, versatile spiking neuron model
that supports one-to-one equivalence between hardware and
simulation and is implementable using only 1272 ASIC gates.
Starting with the classic leaky integrate-and-fire neuron, we add:
(a) configurable and reproducible stochasticity to the input, the
state, and the output; (b) four leak modes that bias the internal
state dynamics; (c) deterministic and stochastic thresholds; and
(d) six reset modes for rich finite-state behavior. The model sup-
ports a wide variety of computational functions and neural codes.
We capture 50+ neuron behaviors in a library for hierarchical
composition of complex computations and behaviors. Although
designed with cognitive algorithms and applications in mind,
serendipitously, the neuron model can qualitatively replicate the
20 biologically-relevant behaviors of a dynamical neuron model.

I. INTRODUCTION

A. Context

To usher in a new era of cognitive computing [1], we are
developing TrueNorth (Fig. 1), a non-von Neumann, modu-
lar, parallel, distributed, event-driven, scalable architecture—
inspired by the function, low power, and compact vol-
ume of the organic brain. TrueNorth is a versatile sub-
strate for integrating spatio-temporal, real-time cognitive algo-
rithms for multi-modal, sub-symbolic, sensor-actuator systems.
TrueNorth comprises of a scalable network of configurable
neurosynaptic cores. Each core brings memory (“synapses”),
processors (“neurons”), and communication (“axons”) in close
proximity, wherein inter-core communication is carried by all-
or-none spike events, sent over a message-passing network.

Recently, we have achieved a number of milestones: first, a
demonstration of 256-neuron, 64k/256k-synapse neurosynaptic
cores in 45nm silicon [2], [4] that were featured on the
cover of Scientific American in December 2011; second, a
demonstration of multiple real-time applications [5]; third,
Compass, a simulator of the TrueNorth architecture, which
simulated over 2 billion neurosynaptic cores exceeding 1014

synapses [3], [6]; and, fourth, a visualization of the long-
distance connectivity of the Macaque brain [7]—mapped to
TrueNorth architecture—that was featured on the covers of
Science [8] and Communications of the ACM [1].

§Work done while at IBM Research - Almaden.

We unveil a series of interlocking innovations in a set of
three papers. In this paper, we present a versatile and efficient
digital, spiking neuron model that is a building block of the
TrueNorth architecture. In two companion papers, we intro-
duce a programming paradigm for hierarchically composing
and configuring cognitive systems, that is effective for the
programmer and efficient for the TrueNorth architecture [9]
as well as present a set of algorithms and applications that
demonstrate the potential of the TrueNorth architecture and
value of the programming paradigm [10].

B. Motivation

Biological cells found in the brain, coined “neurons” by
Heinrich von Waldeyer-Hartz in the late 19th century, have
been modeled at different levels of abstraction over the last
hundred years (see Table I for an abbreviated chronology).
These models range from phenomenological, where the goal
is to capture the input-output behavior of a neuron using sim-
ple mathematical abstractions (e.g., McCulloch-Pitts [11]), to
biophysical, where the goal is to model the electrophysiology
of neuronal membranes (e.g., Hodgkin-Huxley [12]). In the
context of the TrueNorth system architecture, we seek a neuron
model that balances the dual objectives of capability (from
a computational perspective) and cost (from an implementa-
tion perspective), which are both functions of the underlying
complexity of the neuron model. Neuron capability should be
sufficient to support useful and interesting cognitive algorithms
[10], while the cost should be no more than necessary in terms
of power, area, and speed.

C. Contribution

As our main contribution, judiciously balancing capability
and cost, we follow a digital, mathematical, and phenomeno-
logical perspective to develop a simple, reconfigurable, ver-
satile neuron model. This model has defined input-output be-
havior for a wide range of applications, has heterogeneity and
variability in input-output behavior across population and time,
consumes few transistors, is amenable to implementation in a
dense CMOS process, and can be reproducibly and predictably
simulated for one-to-one equivalence between hardware and
simulation. We summarize the construction, the capability, the
composability, and the costs of the proposed neuron model.

Construction: In Section II, starting with the classic leaky
integrate-and-fire neuron, we add configurable and repro-
ducible stochasticity to the input, the state, and the output of
the model. Specifically, we introduce stochastic synaptic input,
leak, and threshold, enabling rich dynamics across population

DARPA: Approved for public release; distribution is unlimited

Network

neurons

axons

dendrites synaptic
crossbar

neurosynaptic core

Buffer

Buffer

Buffer

PRNG

Buffer

Fig. 1. TrueNorth is a brain-inspired chip architecture built from an
interconnected network of lightweight neurosynaptic cores [2], [3]. TrueNorth
implements “gray matter” short-range connections with an intra-core crossbar
memory and “white matter” long-range connections through an inter-core
spike-based message-passing network. TrueNorth is fully programmable in
terms of both the “physiology” and “anatomy” of the chip, that is, neuron
parameters, synaptic crossbar, and inter-core neuron-axon connectivity allow
for a wide range of structures, dynamics, and behaviors. Inset: The TrueNorth
neurosynaptic core has 256 axons, a 256×256 synapse crossbar, and 256
neurons. Information flows from axons to neurons gated by binary synapses,
where each axon fans out, in parallel, to all neurons thus achieving a 256-fold
reduction in communication volume compared to a point-to-point approach.
A conceptual description of the core’s operation follows. To support multi-
valued synapses, axons are assigned types which index a synaptic weight for
each neuron. Network operation is governed by a discrete time step. In a time
step, if the synapse value for a particular axon-neuron pair is non-zero and
the axon is active, then the neuron updates its state by the synaptic weight
corresponding to the axon type. Next, each neuron applies a leak, and any
neuron whose state exceeds its threshold fires a spike. Within a core, PRNG
(pseudorandom number generator) can add noise to the spike thresholds and
stochastically gate synaptic and leak updates for probabilistic computation;
Buffer holds incoming spikes for delayed delivery; and Network sends spikes
from neurons to axons.

and time. We then introduce four leak modes that bias the
internal state dynamics so that neurons can have radically
different responses to identical inputs. Specifically, we allow
for leaks that subtract from or add to the membrane potential
as well as allow the membrane potential to diverge away
from or converge towards a resting potential. Furthermore,
we introduce two threshold modes that allow a deterministic
or a stochastic threshold, so that neurons can fire differently
even with the same accumulated membrane potential. Finally,
we introduce six reset modes that determine the value of the
membrane potential after firing, enabling a rich finite-state
transition behavior.

Capability and Composition: In Section III, by exploiting
the parametric approach of our neuron model, we demonstrate
a wide variety of computational functions; for example, arith-

TABLE I. A REPRESENTATIVE COMPENDIUM OF NEURON MODELS.

Year Model Name Reference
1907 Integrate and fire [13]
1943 McCulloch and Pitts [11]
1952 Hodgkin-Huxley [12]
1958 Perceptron [14]
1961 Fitzhugh-Nagumo [15]
1965 Leaky integrate-and-fire [16]
1981 Morris-Lecar [17]
1986 Quadratic integrate-and-fire [18]
1989 Hindmarsh-Rose [19]
1998 Time-varying integrate-and-fire model [20]
1999 Wilson Polynomial [21]
2000 Integrate-and-fire or burst [22]
2001 Resonate-and-fire [23]
2003 Izhikevich [24]
2003 Exponential integrate-and-fire [25]
2004 Generalized integrate-and-fire [26]
2005 Adaptive exponential integrate-and-fire [27]
2009 Mihalas-Neibur [28]
2013 This work —

metic, control, data generation, logic, memory, classic neuron
behaviors, signal processing, and probabilistic computation.
The model can support a variety of neural codes including
rate, population, binary, and time-to-spike, thus permitting a
rich language for inter-neuron communication. To make it easy
to use the neurons, we have created a parametrized and charac-
terized neuron function library, with 50+ elements, containing
fundamental building blocks. Drawing inspiration from RISC
philosophy, by composing multiple neurons together we can
synthesize an extremely rich and diverse array of complex
computations and behaviors from simpler library elements.
While fidelity with neuroscientifically observed neuron behav-
iors was not our express design goal, we show in Section IV,
quite surprisingly, that we were able to qualitatively replicate
the 20 behaviors of the Izhikevich dynamical neuron model
[24] using a small number of elementary neurons.

Cost: By design, our neuron model uses only simple
addition and multiplexing arithmetic/logic units, avoiding com-
plex function units such as multiplication, division, and ex-
ponentiation. It can be implemented using only fixed-point
arithmetic, avoiding complex floating-point circuitry. As a
result, when mapped to an ASIC standard cell library for
fabrication in a state-of-the-art silicon process, the neuron
model is implementable using only 1272 gates (924 gates
for the model computation and 348 gates for the random
number generator). From an operational perspective, addition
and multiplexing circuits are intrinsically lower power than
more complex arithmetic function circuits. It is noteworthy
that the relatively slow firing frequency of neurons operating
in real-time, as compared to the speed of modern silicon,
allows us the possibility to reduce cost in three ways. First, we
can reuse physical arithmetic circuits, reducing the aggregate
implementation area drastically. Second, we can power-gate,
turning off power to these circuits while they are quiescent,
reducing the total power consumption. Third, the neuron can
be implemented in an event-driven fashion so that its active
power consumption is based on the number of spike events it
has to process (for an example, see [29]).

SYNAPTIC INTEGRATION

Vj(t) = Vj(t− 1) +

N−1∑
i=0

xi(t) si (1)

LEAK INTEGRATION
Vj(t) = Vj(t)− λj (2)

THRESHOLD, FIRE, RESET
if Vj(t) ≥ αj (3)

Spike (4)
Vj(t) = Rj (5)

endif (6)

Fig. 2. Leaky Integrate and Fire Neuron Equations.

II. NEURON SPECIFICATION

Our neuron model is based on the leaky integrate-and-
fire neural model with a constant leak, which we augmented
in several ways. We begin by briefly reviewing the classic
leaky integrate-and-fire neural model, followed by an in-depth
description of our neuron model.

A. The Leaky Integrate and Fire (LIF) Neuron

The operation of the leaky integrate-and-fire (LIF) neuron
model with a constant leak is described by five basic opera-
tions: 1. synaptic integration, 2. leak integration, 3. threshold,
4. spike firing, and 5. reset. The LIF neuron model is sum-
marized in the general case in Eqns. (1)-(6) in Fig. 2. For
the jth neuron in the tth timestep, the membrane potential
Vj(t) is the sum of the membrane potential in the previous
timestep Vj(t− 1) and the synaptic input. For each of the N
synapses, the synaptic input is the sum of the spike input to the
synapse xi(t) at the current timestep, multiplied by the signed
synaptic weight si. Following integration, the LIF neuron
model subtracts the leak value λj from the membrane potential.
With a linear leak, this constant is subtracted every timestep,
regardless of membrane potential or synaptic activity. This
operation serves as a constant bias on the neural dynamics.
Then, the LIF neuron model compares the membrane potential
at the current timestep Vj(t) with the neuron threshold αj . If
the membrane potential is greater than or equal to the threshold
voltage, the neuron fires a spike and resets its membrane
potential. In the typical case, the reset voltage Rj is zero.
This basic model of neural computation, graphically depicted
in Fig. 3, can be used to generate a wide variety of functions
and behaviors.

B. The Full Neuron Model

The complete specification of our neuron model1 is given
in Eqns. (10)-(19) in Fig. 4. The symbols are summarized in

1 For simplicity, we have omitted hardware-centric implementation details
relevant to the neuron equation, including 1. fixed-point arithmetic, 2. floor
and ceiling checks to prevent arithmetic overflow, and 3. a check in convergent
leak mode that prevents ringing about zero for Vj(t). We also use an additional
ceiling check in non-reset (γj = 2) mode, to prevent Vj(t) from going out
of range of the stochastic threshold.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

10

20

30

40

time (seconds)

V
j(t

)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

s0

s1

s2

Out

time (seconds)

Fig. 3. Integrate and fire neuron. Top: membrane potential Vj(t) and firing
threshold αj = 32. Bottom: spike raster plot (excitatory spike input s0, s2,
inhibitory spike input s1, spike output), where each dot represents a spike
event in time.

Table II. The symbols in the bottom half of the table are user-
configurable parameters, while the symbols in the upper half
of the table are system variables. The specification uses the
subfunctions signum:

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0

(7)

the binary comparison operation for conditional stochastic
evaluation (see Section II-D):

F (s, ρ) =

{
1 if |s| ≥ ρ
0 else

(8)

the binary bitwise AND operation: &, and the Kronecker delta
function:

δ(x) =

{
1 if x = 0,

0 else
(9)

The details of the neuron operation are covered in the
following subsections.

C. Synaptic Integration: Crossbar

The neurosynaptic core includes a synaptic crossbar, con-
necting axons and neurons (Fig. 1). Incoming spikes arrive,
targeting an axon, and then hit all of the active synapses on
the axon. The synaptic integration Eqn. (1) becomes Eqn. (10),
where Ai(t) is activity on the ith axon at time t and wi,j is
the synaptic crossbar matrix. The axon activity Ai(t) is 1 if
there is a spike present at the current (tth) timestep, and 0
otherwise. The entries in the synaptic crossbar matrix wi,j are
1 if there is a synaptic connection between the ith axon and
the jth neuron and 0 otherwise.

To enable multi-value synapses while using a binary synap-
tic crossbar, we assign a type Gi to each axon. Then each
neuron has an individual signed integer weight for that axon
type. In the current instantiation, there are four possible axon
types {Gi ∈ 0, 1, 2, 3}, and each neuron has four signed

SYNAPTIC INTEGRATION

Vj(t) = Vj(t− 1) +

255∑
i=0

Ai(t) wi,j
[
(1− bGi

j)sGi
j +

bGi
j F (sGi

j , ρi,j)sgn(sGi
j)

]
(10)

LEAK INTEGRATION
Ω = (1− εj) + εj sgn(Vj(t)) (11)

Vj(t) = Vj(t) + Ω [(1− cλj)λj +

cλj F (λj , ρ
λ
j) sgn(λj)] (12)

THRESHOLD, FIRE, RESET
ηj = ρTj & Mj (13)

if Vj(t) ≥ αj + ηj (14)
Spike (15)
Vj(t) = δ(γj)Rj +

δ(γj − 1)(Vj(t)− (αj + ηj)) +

δ(γj − 2)Vj(t) (16)
elseif Vj(t) < − [βjκj + (βj + ηj) (1− κj)] (17)

Vj(t) = −βjκj + [−δ(γj)Rj+
δ(γj − 1)(Vj(t) + (βj + ηj))+

δ(γj − 2)Vj(t)] (1− κj) (18)
endif (19)

Fig. 4. Neuron Specification Equations.

weights sGi
j associated with the four axon types Gi. When

a spike arrives on any axon of the Gthi type, a neuron with
a synapse on that axon will integrate its signed weight of the
Gthi type sGi

j , resulting in the synaptic integration summation:∑255
i=0Ai(t) wi,j s

Gi
j . (This equation assumes that the synapse

configuration bit for the axon type is set to deterministic mode,
bGi
j = 0.)

D. Stochastic Synaptic and Leak Integration

For each neuron, each synaptic weight and leak has a
configuration bit, bGi

j and cλj respectively, where setting the bit
to 0 selects deterministic mode, and 1 selects stochastic mode.
For stochastic synaptic and leak integration, operation is as
follows. Every time a valid synaptic or leak event occurs, the
neuron draws a uniformly distributed random number ρj . If the
synaptic weight sGi

j or leak weight λj is greater than or equal
to the drawn random number ρj , then the neuron integrates
{−1,+1} otherwise, it does not integrate. This behavior is
described mathematically as follows. The value integrated
{−1,+1}, is determined by the sign of the respective synapse:
sgn(sGi

j) or leak: sgn(λj). Stochastic operation is represented
using the binary comparison operator F (s, ρ), where s is a
scalar value, and ρ is a random number. If the scalar value is
greater than or equal to the random number, F (s, ρ) returns
1, otherwise it returns 0, according to Eqn. (8). Combining
deterministic mode and stochastic mode, the full equation for
synaptic integration is given in Eqn. (10) and leak integration
in Eqn. 12).

TABLE II. SUMMARY OF SYMBOLS. SYSTEM VARIABLES IN UPPER
SECTION. USER CONFIGURABLE PARAMETERS IN LOWER SECTION.

PSEUDO-RANDOM NUMBER IS ABBREVIATED PRN.

Variables and Parameters Symbol Format

membrane potential Vj(t) signed int
local timestep t unsigned int
input spikes on ith axon Ai(t) {0, 1}
synaptic PRN ρi,j unsigned int
leak PRN ρλj unsigned int
threshold PRN (drawn) ρTj unsigned int
threshold PRN (masked) ηj unsigned int
leak direction variable Ω {−1, 0,+1}
synapse (ith axon, jth neuron) wi,j {0, 1}
type of ith axon Gi {0, 1, 2, 3}
synaptic weight/probability sGi

j signed int
synaptic weight/probability select bGi

j {0, 1}
leak-reversal flag εj {0, 1}
leak weight/probability λj signed int
leak weight/probability select cλj {0, 1}
positive Vj(t) threshold αj unsigned int
negative Vj(t) threshold/floor βj unsigned int
threshold PRN mask Mj unsigned int
reset voltage Rj signed int
negative thresh: reset or saturate κj {0, 1}
Vj(t) reset mode γj {0, 1, 2}
PRNG initial seed value ρseedj unsigned int

Vj(t)

leak

λ > 0, ϵj = 0

Vj(t)

leak

Vj(t)

leak

-λ

+λ

Vj(t)

leak

+λ

-λ

time

Vj(t)

time

Vj(t)

time

Vj(t)

time

Vj(t)

monotonic up monotonic down divergent convergent

0 0 0 0

0 0 0 0

λ < 0, ϵj = 0 λ > 0, ϵj = 1 λ < 0, ϵj = 1

Fig. 5. Four leak modes. The upper plots show the leak, depending on the
membrane potential. The lower plots show the time course of the membrane
potential given the leak. The divergent and convergent leaks require synaptic
input (dashed lines) to move the membrane potential away from zero.

E. Leak Modes

We augment the linear leak so that it can be positive
or negative, and we introduce a “leak-reversal” mode. With
standard leak operation, the signed leak is always directly
integrated, regardless of the value of the membrane potential.
The leak is always positive or negative, leading to a bias that
monotonically increases or decreases the membrane potential.
In leak-reversal mode, the signed leak is directly integrated
when the membrane potential is above zero, and the sign is
reversed when the membrane potential is below zero. (At zero,
the membrane potential does not leak, remaining zero.) This

in
p

u
t

s
p
ik

e

ra
s
te

r
p
lo

t

time

time

+α
m

e
m

b
ra

n
e

 p
o

te
n

ti
a
l

V
j(
t)

s0

s1

-β

Fig. 6. ON-OFF neuron pairs. The membrane potential for the two neurons
are shown in red and blue respectively. The reset voltage Rj is zero for both
neurons and κj = 1. Incident spikes on s0 are excitatory for the blue neuron,
but inhibitory for its symmetric pair (in red). Similarly, incident spikes on s1
are inhibitory for the blue neuron, but excitatory for its symmetric pair.

mechanism creates two leak-reversal modes: a convergent leak,
where the neuron membrane potential leaks toward zero, from
both above (Vj > 0) and below (Vj < 0), as well as a
divergent leak, where the neuron membrane potential leaks
away from zero, toward the positive threshold above zero
(+αj) and toward the negative threshold below zero (−βj).
These leak modes are summarized in Fig. 5. We select between
the modes using the leak-reversal parameter, εj . The leak also
supports a stochastic mode as described in the previous section
II-D. Stochastic mode may be combined with any one of the
four leak modes. Deterministic or stochastic mode is selected
using the parameter cλj , resulting in the full equations for leak
integration (11) and (12).

F. Thresholds

In addition to the positive threshold we described for a
leaky integrate-and-fire neuron (3), we introduce a negative
threshold −βj , for when the neuron membrane potential in-
tegrates below zero. This negative threshold has two different
behaviors when crossed. In the first case, the negative threshold
is a floor, so that when the membrane potential Vj crosses −βj ,
Vj stays at −βj . In the second case, we define a “bounce”
when the membrane potential Vj crosses −βj . In this case,
Vj is reset to the negative reset value −Rj . No output spike
is generated when we cross below −βj . This feature allows
for a pair of neurons to be kept in lock-step with inverted
parameters (Fig. 6). For example, we can define an ON-OFF
neuron pair, where one neuron fires when an ON stimulus
is received and the OFF neuron fires when the stimulus is
absent. The negative threshold with “bounce” ensures that the
membrane potential of both neurons will be exactly inverted
copies of each other. We select the floor behavior by setting
κj = 1 and the “bounce” behavior by setting κj = 0, as
defined by (17).

G. Stochastic Thresholds

The neuron model supports a random threshold ηj , which
is added to the deterministic thresholds αj and βj . The random
threshold value ηj is formed by the bitwise AND of Mj

and the random number generator value ρTj , as given in Eqn.

(13). The mask Mj is a ones mask of configurable width,
starting at the least significant bit. This mask scales the range
of the random number ηj that is added to the threshold. For
example, a hexadecimal mask value of 0x000F generates a
uniform random number from 0 to 15, while a value of 0x01FF
generates a uniform random number from 0 to 511. With a
mask of zero, the random value is always zero, effectively
disabling the random portion of the threshold value. The
positive threshold check with random threshold is Eqn. (14),
while the negative threshold check (17) includes the random
threshold only in “bounce” mode (κj = 0).

H. Reset Modes

Next we introduce three modes that govern the reset
behavior of the neuron: normal mode (γj = 0), linear mode
(γj = 1), and non-reset mode (γj = 2). In normal mode
(γj = 0), the behavior follows the standard integrate-and-
fire model, where the membrane potential Vj is set to the
reset voltage Rj after crossing the positive threshold and firing
a spike (14). Any residual potential above the threshold is
discarded. For example, if αj = 100 and Vj integrates to 110
in a single timestep, the neuron fires, resets to Rj , and the
amount above the threshold, 10, is ignored. Rj can be assigned
positive, negative, or zero values. In linear mode (γj = 1), the
residual potential above the threshold is not discarded. For
example, if αj = 100 and Vj integrates to 110 in a single
timestep, the neuron fires, and resets to the amount above
the threshold: Vj = 10. Rj is not used in this mode. Non-
reset mode (γj = 2), a special case intended to be used with
the stochastic threshold (described in section II-G), creates a
stochastic neuron type. When crossing the stochastic threshold
(αj + ηj), the neuron does not reset its membrane potential.
In this mode, synaptic or leak integration must be used to pull
the membrane potential below the threshold. Using Kronecker
delta function notation (9), the positive reset equation is (16)
and the negative reset equation is (18).

The configuration modes are summarized in Table III.

III. NEURON COMPUTATIONAL FUNCTION LIBRARY

The primary objective of our neural specification is for
building synthetic cognitive applications, motivating a neuron
specification that is rich in computational expressiveness. It
must not only have complex spiking output patterns to diverse
inputs, but we must also be able to harness those complex
behaviors to perform useful computation.

In this section, we present a library of functions that
are computable using our neuron specification. Most can be
computed with a single neuron, while other more complex
functions require a few neurons. Without space to present
every function in detail, we summarize the function library
in Table IV and present a more detailed description of only
a few example functions. The function library spans a wide
range of different classes of operations, and accommodates a
variety of spike codes including rate code, population code,
binary code, time-to-spike, and rank code.

A. Rate Store Neuron

As a first example, we present the operation of the stochas-
tic spiking rate store neuron as shown in Fig. 7. This neuron

TABLE III. CONFIGURATION MODE SUMMARY.

b
Gi
j Synapse Modes Integration Value

0 deterministic weight s
Gi
j

1 stochastic integration F (s
Gi
j , ρi,j)sgn(sGi

j)

cλj Leak Modes Integration Value

0 deterministic leak λj

1 stochastic leak integration F (λj , ρ
λ
j)sgn(λj)

εj sgn(λj) Leak Direction Modes

0 +1 monotonic up
0 -1 monotonic down
1 +1 divergent, leak to +/− thresholds
1 -1 convergent, leak to zero
Mj κj Threshold Modes Positive Threshold Negative Threshold

= 0 - deterministic threshold αj −βj
6= 0 0 stochastic threshold (ηj = ρTj & Mj) αj + ηj − (βj + ηj)

6= 0 1 stochastic threshold (ηj = ρTj & Mj) αj + ηj −βj
γj κj Vj(t) Reset Mode Positive Reset Negative Reset

0 0 normal Rj −Rj
0 1 normal - negative saturation Rj −βj
1 0 linear Vj − (αj + ηj) Vj + (βj + ηj)

1 1 linear - negative saturation Vj − (αj + ηj) −βj
2 0 non-reset Vj Vj

2 1 non-reset - negative saturation Vj −βj

TABLE IV. NEURON FUNCTION LIBRARY SUMMARY TABLE.

Type Name (# of neurons)

Arithmetic absolute value (3), addition (1), division (2),
fixed-gain div./mult. (1), log (1), min (2), max
(2), modulation (1), multiplication (1), rate clip
(2), rate match (3), sigmoid (1), square root (3),
square (2), subtraction (1)

Control bistable (1), tristable (1), delay (1), one shot (1),
pass gate (1)

Data Gen-
eration

spontaneous (1), ramp up/down (3), triangle
wave (5), random distributions (1)

Logic AND (1), NAND (1), NOR (1), NOT (1), OR
(1), XNOR (3), XOR (3)

Memory binary (1), rate store (1)
“Neural” integrate-and-fire (1), bursting (2), coincidence

(1), McCulloch-Pitts (1), Boltzmann (1), motion
history (1), on/off pair (2) , onset/offset pair (2)

Signal Pro-
cessing

decorrelation (1), rate attractor (1), convolution
(1), low-pass filter (1), high-pass filter (1), band-
pass filter (1), spatiotemporal filter (1), Bloom
filter (1)

Probabilistic noisy-OR: prob. union (1), noisy-AND: prob.
intersection (1)

Time-to-
Spike

L1 distance (2), max (N), min (N), median
(N+1), coincidence (1), anti-coincidence (1),
matched filter (1)

can act as a multi-valued memory, storing a spike rate. It
will stochastically fire spikes at a given rate until its mem-
brane potential is modified. This neuron type uses a non-zero
stochastic threshold and non-reset mode (γj = 2). In Fig. 7,

n
o

rm
a

liz
e
d

m
e

m
b

ra
n

e
 p

o
te

n
ti
a
l

V
j(
t)

o
u

tp
u

t
s
p
ik

e

ra
s
te

r
p
lo

t

time

1

3/4

1/2

0

time

25% spike rate 50% spike rate

ceiling

1/4

Fig. 7. Rate store neuron fires stochastically in proportion to the value of
the membrane potential, Vj(t).

synaptic input increases and decreases the membrane potential.
While the membrane potential is non-zero, the neuron will
spike stochastically, with probability proportional to the value
of the membrane potential, within the range between 0 and
the ceiling (set by the random threshold mask). For example,
when the membrane potential is 1/4 of the range between 0
and the ceiling, the neuron fires 25% of the time, on average.
Similarly, when the membrane potential is 1/2 of the range
between 0 and the ceiling, the neuron fires 50% of the time,
on average. (In non-reset mode (γj = 2), the ceiling is defined
as the sum of the deterministic threshold and the full-range
random number value αj +Mj .)

This neuron type efficiently emulates the state holding
behavior of populations of recurrent neurons. As such, it is
a behavioral abstraction of biological function. Populations of
recurrent neurons have been shown to be useful in models of

0 500 1000
0

500

1000
Absolute Value

o
u
tp

u
t
ra

te
 (

H
z
)

0 500 1000
0

500

1000
Adder

0 500 1000
0

500

1000
Division

0 200 400
0

20

40

Logarithm

0 500 1000
0

500

1000
Max.

o
u
tp

u
t
ra

te
 (

H
z
)

0 500 1000
0

500

1000
Min.

0 500 1000
0

500

1000
Multiplier

0 500 1000
0

500

1000
Rate Clip

input rate (Hz)

o
u
tp

u
t
ra

te
 (

H
z
)

0 500 1000
0

500

1000
Rate Match

input rate (Hz)

0 500 1000
0

500

1000
Sigmoid

input rate (Hz)

0 500 1000
0

200

400

600

Square Root

input rate (Hz)

0 500 1000
0

500

1000

Square

Fig. 8. Arithmetic functions (left to right, top to bottom): absolute value = abs(green-black), adder = (green+black), division, logarithm, maximum =
max(green,black), minimum = min(green,black), multiplication, square, rate clip = min(black,250), rate match = 500-abs(green-black)/2, sigmoid, and square
root. Actual output response is shown in blue, expected response in red. Green and black points are inputs.

working memory [30], finite state machines [31], and graphical
models [32].

B. Arithmetic Functions

Fig. 8 shows the transfer functions of 12 different arith-
metic functions. The horizontal axis corresponds to the input
rate of one of the function inputs. The vertical axis is the
corresponding output rate. One trial generates one data point
by presenting a stochastic stimulus with a constant average
rate and integrating the output response over 1000 timesteps (1
second). By sweeping one or both inputs over the range (from
0 to 1000 Hz), we generate the curves from many successive
trials. In the multiplication and division plots, one input was
held constant while sweeping the other input multiple times,
to generate each curve in the figure.

IV. BIOLOGICALLY RELEVANT NEURON BEHAVIORS

In [24] Izhikevich reviewed 20 of the most prominent
features of biological spiking neurons. While our primary
motivation is to create synthetic computations, we implement
these 20 behaviors to demonstrate that our neural model is
sufficiently rich to replicate biologically plausible behavior.
In recreating these behaviors, we stick to our minimalist ap-
proach, creating complex behaviors from more simple building
blocks. We replicate eleven behaviors using single neurons,
seven more using a pair of neurons, and the final two complex
behaviors using only three neurons.

Just as Izhikevich makes qualitative comparisons between
biology and his dynamical model, we have qualitatively repli-
cated these 20 behaviors, as shown in Fig. 9. We do not use the

same dynamical systems mechanism as Izhikevich to generate
the spiking patterns, so the time course of the membrane
potentials Vj(t) does not identically match those of [24].
However, using a similar input stimulus, the spiking patterns
match, and most importantly, we replicate the qualitative spirit
of the behaviors. Similar to the step taken by dynamical
system models to abstract from the electro-physiology of ion
channels to model the functional neuron dynamics, we abstract
from dynamical system models to replicate functional neuron
behavior (i.e. spike patterns). Similar success in duplicating
neuron spike behavior using simple (modified integrate-and-
fire) neuron models has been achieved elsewhere [33]. Table
V lists the neuron parameters that generate the behaviors in
Fig. 9. The column “j” is the neuron index, and the other
columns correspond to the neuron specification parameters
given in Table II and Eqns. (10)-(19). Finally, we note that
our approach is not limited to the 20 Izhikevich behaviors in
the realm of biologically relevant behaviors. For example, we
have generated short-term synaptic facilitation and depression
dynamics using the γj = 2 neuron type as a slow adaptive
variable to modulate the synaptic efficacy.

V. DISCUSSION

We have presented a dual deterministic/stochastic neural
model and have demonstrated that it can reproduce a rich set
of synthetic and biologically relevant behaviors. We emphasize
the stochastic nature of the neural model, which is used in three
places within the neuron: 1. stochastic synaptic integration, 2.
stochastic leak, and 3. stochastic thresholds. Algorithmically,
stochasticity has a wide variety of uses. Some neural functions
compute using stochastic data. Examples include the stochastic

0 0.5 1

(C) tonic bursting

0 0.5 1

(D) phasic bursting

0 0.5 1

(E) mixed mode

V
m

0 0.5 1

(F) spike frequency adaptation

0 0.5 1

(H) Class 2 excitable

0 0.5 1

(A) tonic spiking
V

m

0 0.5 1

(B) phasic spiking

0 0.5 1

(R) accommodation

time (seconds)

0 0.5 1

(M) rebound spike

V
m

0 0.5 1

(N) rebound burst

0 0.5 1

(O) threshold variability

0 0.5 1

(P) bistability

0 0.5 1

(T) inhibition−induced bursting

time (seconds)

0 0.5 1

(G) Class 1 excitable

0 0.2 0.4

(I) spike latency

V
m

0 0.5 1

(J) subthreshold oscillations

0 0.2 0.4

(K) resonator

0 0.2 0.4

(L) integrator

0 0.2 0.4

(Q) depolarizing after−potential

time (seconds)

V
m

0 0.5 1

(S) inhibition−induced spiking

time (seconds)

Fig. 9. Twenty biologically relevant behaviors (emulating [24]), generated using our neuron specification.

spiking rate store neuron and its derivatives, computing with
probabilities using the noisy-OR and noisy-AND gates [34], as
well as sampling algorithms such as Monte-Carlo simulations
and Gibbs Sampling. Other algorithms incorporate stochastic
values into the computation, such as: Boltzmann machines,
noisy gradient descent, simulated annealing, and stochastic
resonance. Stochastic values can be used to soften or round-
out the non-linear transfer function for some neuron types.
Stochastic values also enable fractional leak and synaptic
weights values (on average), extending the range of values
below a single bit. In stochastic mode, the synaptic weight is
the probability, ranging from 2−N to 1 in increments of 2−N ,
of integrating +1 (or −1) on the synapse. Using a random
number generator with a uniform distribution, for a large num-

ber of samples, the expected value of the stochastic synaptic
input is a fraction equal to the probability programmed into
the synapse.

We have presented a neural model with a wide range of
dynamics, and how combining neurons further increases the
computational capability. Although the TrueNorth architecture
performs a very specific set of computations defined by the
neuron model, it is a general purpose architecture in the sense
that it can be programmed to perform an arbitrary and wide
range of functions. Indeed, it is straightforward to create a
universal Turing machine using our neuron model. Using the
Boolean logic, memory, and control functions presented in
Table IV, we can create the finite automaton and memory
required for such a system. However, our goal is not simply

TABLE V.

Name j s
Gi
j εj λj cj αj βj Mj Rj κj γj

(A) tonic spiking 0 [3,0,0,0] 0 0 0 32 0 0 +0 1 0

(B) phasic spiking 0 [4,20,0,0] 1 +2 0 2 10 0 -15 1 0

(C) tonic bursting 0 [1,-100,0,0] 1 +1 0 18 0 0 +1 1 0

1 [1,0,0,0] 1 0 0 6 0 0 +0 1 0

(D) phasic bursting 0 [1,-20,0,0] 1 +1 0 18 20 0 +1 1 0

1 [1,0,0,0] 1 0 0 6 0 0 +0 1 0

(E) mixed mode 0 [3,0,0,0] 1 0 0 32 0 0 +0 1 0

1 [1,-20,0,0] 1 +1 0 16 20 0 +1 1 0

2 [1,0,0,0] 1 0 0 6 0 0 +0 1 0

(F) spike frequency adaptation 0 [9,-1,0,0] 1 0 0 32 0 0 +0 1 1

1 [11,0,0,0] 1 -160 1 1 0 9 +0 1 2

(G) Class 1 excitable 0 [2,0,0,0] 1 0 0 28 0 0 +0 1 0

(H) Class 2 excitable 0 [24,0,0,0] 1 -23 0 3 0 0 +0 1 0

1 [1,0,0,0] 1 +16 0 256 0 0 +0 1 0

(I) spike latency 0 [10,0,0,0] 1 +1 0 52 0 0 +0 1 0

(J) subthreshold oscillations 0 [22,0,0,0] 0 -1 0 16 30 0 +1 0 0

(K) resonator 0 [2,0,0,0] 0 -1 0 2 0 0 +0 1 0

(L) integrator 0 [24,0,0,0] 0 -1 0 32 0 0 +0 1 0

(M) rebound spike 0 [-1,-16,0,0] 0 +1 0 32 0 0 +0 1 0

1 [-6,-2,55,0] 0 +64 1 1 100 8 +0 1 2

(N) rebound burst 0 [-1,-16,0,0] 0 +1 0 32 0 0 +15 1 0

1 [-16,-2,12,0] 0 +128 1 1 100 8 +0 1 2

(O) threshold variability 0 [8,-1,-1,0] 1 -1 0 32 0 0 +0 1 1

1 [16,-16,-2,0] 0 +64 1 1 100 8 +0 1 2

(P) bistability 0 [1,-100,0,0] 1 +1 0 64 0 0 +1 1 0

(Q) depolarizing after-potential 0 [50,0,0,0] 1 -150 1 35 0 0 +31 1 0

(R) accommodation 0 [22,-2,0,0] 1 -7 0 32 0 0 +0 1 1

1 [11,0,0,0] 1 -1 0 1 0 9 +0 1 2

(S) inhibition-induced spiking 0 [-13,0,0,0] 1 -1 0 25 50 0 -31 0 0

(T) inhibition-induced bursting 0 [1,-100,0,0] 1 +1 0 28 0 0 +15 1 0

1 [1,0,0,0] 1 0 0 4 0 0 +0 1 0

2 [-13,0,0,0] 1 -1 0 12 50 0 -15 0 0

0 G
0
=0

0

X

others

2 G
2
=0

1 G
1
=1

0 G
0
=0

0 1

X

(C),(D)

2 G
2
=0

1 G
1
=1

0 G
0
=0

0 1 2

X

(E)

1 G
1
=1

0 G
0
=0

0 1

X

(F),(R)

1 G
1
=0

0 G
0
=0

0 1

X

(H)

1 G
1
=0

0 G
0
=0

0

∆ X

X

(K)

2 G
2
=2

1 G
1
=1

0 G
0
=0

0 1

X

(M),(N)

2 G
2
=2

1 G
1
=1

0 G
0
=0

0 1

Y
X

(O)

1 G
1
=1

0 G
0
=0

0

Y

X

(P)

3 G
3
=0

2 G
2
=1

1 G
1
=0

0 G
0
=0

0 1 2

X

(T)

Fig. 10. Parameters for behaviors in Fig. 9: j is the neuron index, and the other parameters are defined in Table II. The diagrams on the right depict the
crossbar connectivity, including neurons (triangles), synapses wi,j , and axon types Gi. The labels correspond to the alphabetical index of the behavior in the
“Name” field in Table V.

simulating a theoretical system, but efficient computation of
cognitive algorithms. To that end, applications that exploit the
dynamics of the neuron equation, and that utilize the dense
connectivity of the synaptic crossbar, run most efficiently on
the TrueNorth architecture, as demonstrated in [10].

VI. CONCLUSION

In this paper, we have presented a digital, reconfigurable,
versatile spiking neuron model that supports one-to-one equiv-
alence between hardware and simulation and is implementable
using only 1272 ASIC gates (924 gates for the model com-
putation and 348 gates for the random number generator). We
demonstrated that the parametric neuron model supports a wide
variety of computational functions and neural codes. Further,

by combining elementary neuron blocks, we demonstrated that
it is possible to synthesize a rich diversity of computations
and behaviors. By hierarchically composing neurons or blocks
of neurons into larger networks [9], we can begin to con-
struct a large class of cognitive algorithms and applications
[10]. Looking to the future, by further composing cognitive
algorithms and applications, we plan to build versatile, robust,
general-purpose cognitive systems that can interact with multi-
modal, sub-symbolic, sensors–actuators in real time while be-
ing portable and scalable. In an instrumented planet inundated
with real-time sensor data, our aspiration is to build cognitive
systems that are based on learning instead of programming, are
in everything and everywhere, are essential to the world, and
that create enduring value for science, technology, government,

business, and society. Advancing towards this vision, we have
built chip prototypes, architectural simulators, neuron models
and libraries, and a programming paradigm. To realize the
TrueNorth architecture in state-of-the-art silicon is the next
step.

ACKNOWLEDGMENTS

This research was sponsored by DARPA under contract
No. HR0011-09-C-0002. The views and conclusions contained
herein are those of the authors and should not be interpreted as
representing the official policies, either expressly or implied,
of DARPA or the U.S. Government. We would like to thank
David Peyton for his expert assistance revising this manuscript.

REFERENCES

[1] D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango, A. J.
Sherbondy, and R. Singh, “Cognitive computing,” Communications of
the ACM, vol. 54, no. 8, pp. 62–71, 2011.

[2] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using embedded crossbar memory
with 45pJ per spike in 45nm,” in IEEE Custom Integrated Circuits
Conference (CICC), Sept. 2011, pp. 1–4.

[3] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser,
W. P. Risk, H. D. Simon, and D. S. Modha, “Compass: A scalable
simulator for an architecture for cognitive computing,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC 2012), Nov. 2012, p. 54.

[4] J. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye,
B. Rajendran, J. A. Tierno, L. Chang, D. S. Modha, and D. J. Friedman,
“A 45nm CMOS neuromorphic chip with a scalable architecture for
learning in networks of spiking neurons,” in IEEE Custom Integrated
Circuits Conference (CICC), Sept. 2011, pp. 1–4.

[5] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. S. Cassidy,
S. Chandra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin, R. Manohar,
and D. S. Modha, “Building block of a programmable neuromorphic
substrate: A digital neurosynaptic core,” in The International Joint
Conference on Neural Networks (IJCNN). IEEE, 2012, pp. 1–8.

[6] T. M. Wong, R. Preissl, P. Datta, M. Flickner, R. Singh, S. K. Esser,
E. McQuinn, R. Appuswamy, W. P. Risk, H. D. Simon, and D. S.
Modha, “1014,” IBM Research Divsion, Research Report RJ10502,
2012.

[7] D. S. Modha and R. Singh, “Network architecture of the long distance
pathways in the macaque brain,” Proceedings of the National Academy
of the Sciences USA, vol. 107, no. 30, pp. 13 485–13 490, 2010.

[8] E. McQuinn, P. Datta, M. D. Flickner, W. P. Risk, D. S. Modha, T. M.
Wong, R. Singh, S. K. Esser, and R. Appuswamy, “2012 international
science & engineering visualization challenge,” Science, vol. 339, no.
6119, pp. 512–513, February 2013.

[9] A. Amir, P. Datta, A. S. Cassidy, J. A. Kusnitz, S. K. Esser, A. An-
dreopoulos, T. M. Wong, W. Risk, M. Flickner, R. Alvarez-Icaza,
E. McQuinn, B. Shaw, N. Pass, and D. S. Modha, “Cognitve computing
programming paradigm: A corelet language for composing networks
of neuro-synaptic cores,” in International Joint Conference on Neural
Networks (IJCNN). IEEE, 2013.

[10] S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch,
A. Amir, J. Arthur, A. S. Cassidy, P. Merolla, S. Chandra, N. Basilico,
S. Carpin, T. Zimmerman, F. Zee, M. Flickner, R. Alvarez-Icaza,
J. A. Kusnitz, T. M. Wong, W. P. Risk, E. McQuinn, and D. S.
Modha, “Cognitive computing systems: Algorithms and applications
for networks of neurosynaptic cores,” in International Joint Conference
on Neural Networks (IJCNN). IEEE, 2013.

[11] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” Bulletin of Mathematical Biology, vol. 5, no. 4, pp.
115–133, 1943.

[12] A. Hodgkin and A. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve,” The
Journal of Physiology, vol. 117, no. 4, pp. 500–544, 1952.

[13] L. Abbott et al., “Lapicques introduction of the integrate-and-fire model
neuron (1907),” Brain Research Bulletin, vol. 50, no. 5, pp. 303–304,
1999.

[14] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65,
no. 6, pp. 386–408, 1958.

[15] R. FitzHugh, “Impulses and physiological states in theoretical models
of nerve membrane,” Biophysical Journal, vol. 1, no. 6, pp. 445–466,
1961.

[16] R. Stein, “A theoretical analysis of neuronal variability,” Biophysical
Journal, vol. 5, no. 2, pp. 173–194, 1965.

[17] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant
muscle fiber,” Biophysical Journal, vol. 35, no. 1, pp. 193–213, 1981.

[18] G. Ermentrout and N. Kopell, “Parabolic bursting in an excitable
system coupled with a slow oscillation,” SIAM Journal on Applied
Mathematics, vol. 46, no. 2, pp. 233–253, 1986.

[19] R. Rose and J. Hindmarsh, “The assembly of ionic currents in a
thalamic neuron i. the three-dimensional model,” Proceedings of the
Royal Society of London. B. Biological Sciences, vol. 237, no. 1288,
pp. 267–288, 1989.

[20] C. F. Stevens and A. M. Zador, “Novel integrate-and-fire-like model
of repetitive firing in cortical neurons,” Proceedings of the 5th Joint
Symposium on Neural Computation, 1998.

[21] H. Wilson, “Simplified dynamics of human and mammalian neocortical
neurons,” Journal of Theoretical Biology, vol. 200, no. 4, pp. 375–388,
1999.

[22] G. Smith, C. Cox, S. Sherman, and J. Rinzel, “Fourier analysis
of sinusoidally driven thalamocortical relay neurons and a minimal
integrate-and-fire-or-burst model,” Journal of Neurophysiology, vol. 83,
no. 1, pp. 588–610, 2000.

[23] E. M. Izhikevich, “Resonate-and-fire neurons,” Neural Networks,
vol. 14, no. 6-7, pp. 883–894, 2001.

[24] E. Izhikevich, “Which model to use for cortical spiking neurons?” IEEE
Transactions on Neural Networks, vol. 15, no. 5, pp. 1063–1070, 2004.

[25] N. Fourcaud-Trocmé, D. Hansel, C. Van Vreeswijk, and N. Brunel,
“How spike generation mechanisms determine the neuronal response to
fluctuating inputs,” The Journal of Neuroscience, vol. 23, no. 37, pp.
11 628–11 640, 2003.

[26] R. Jolivet, T. Lewis, and W. Gerstner, “Generalized integrate-and-fire
models of neuronal activity approximate spike trains of a detailed model
to a high degree of accuracy,” Journal of Neurophysiology, vol. 92,
no. 2, pp. 959–976, 2004.

[27] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity,” Journal of
Neurophysiology, vol. 94, no. 5, pp. 3637–3642, 2005.

[28] S. Mihalas and E. Niebur, “A generalized linear integrate-and-fire
neural model produces diverse spiking behaviors,” Neural Computation,
vol. 21, no. 3, pp. 704–718, 2009.

[29] N. Imam, F. Akopyan, J. Arthur, P. Merolla, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using event-driven qdi circuits,” in
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC). IEEE, 2012, pp. 25–32.

[30] D. Durstewitz, J. Seamans, and T. Sejnowski, “Neurocomputational
models of working memory,” Nature Neuroscience, vol. 3, pp. 1184–
1191, 2000.

[31] U. Rutishauser and R. Douglas, “State-dependent computation using
coupled recurrent networks,” Neural Computation, vol. 21, no. 2, pp.
478–509, 2009.

[32] A. Steimer, W. Maass, and R. Douglas, “Belief propagation in networks
of spiking neurons,” Neural Computation, vol. 21, no. 9, pp. 2502–2523,
2009.

[33] W. Gerstner and R. Naud, “How good are neuron models?” Science,
vol. 326, no. 5951, pp. 379–380, 2009.

[34] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1988.

	Introduction
	Context
	Motivation
	Contribution

	Neuron Specification
	The Leaky Integrate and Fire (LIF) Neuron
	The Full Neuron Model
	Synaptic Integration: Crossbar
	Stochastic Synaptic and Leak Integration
	Leak Modes
	Thresholds
	Stochastic Thresholds
	Reset Modes

	Neuron Computational Function Library
	Rate Store Neuron
	Arithmetic Functions

	Biologically Relevant Neuron Behaviors
	Discussion
	Conclusion
	References

