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Single-Port SRAM-Based Transpose Memory With
Diagonal Data Mapping for Large Size 2-D DCT/IDCT
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Abstract— This brief describes a new method to implement the single-
port SRAM-based transpose memory for large size discrete cosine
transform (DCT)/indiscrete cosine transform (IDCT) which are used in
the latest video coding standard, such as high efficiency video coding.
Instead of shift-register array or multiport SRAM, only single-port
SRAM is used in the proposed design. A new diagonal data mapping
scheme is proposed to reduce the number of SRAM banks used to
implement the transpose memory. This design can be flexibly extended
to support DCT/IDCT of different transform sizes and different data
throughput rates. To support larger size DCT/IDCT, only the depth
of SRAM needs to be increased. To support different data throughput
rate, multiple SRAM banks are well organized according to the required
throughput. Row access and column access can be perfectly supported
under single port SRAM. The equivalent gate count per bit (EGC) of
proposed approach is less than two, which is much more efficient than
the previous method. It is suitable for real-time processing of the video
with the resolution up to 1080P HD or even higher.

Index Terms— Discrete cosine transform (DCT)/indiscrete cosine
transform (IDCT), high efficiency video coding (HEVC), single-port
SRAM, transpose memory.

I. INTRODUCTION

Discrete cosine transform (DCT) is considered as the suboptimal
transform due to its good ability to concentrate the signal energy. 2-D
DCT/ indiscrete cosine transform (IDCT) have been widely used in
almost every block-based image or video coding standards such as
JPEG, MPEG-1/2/4, ITU-T H.264/MPEG-4 AVC, VC-1, AVS, and
the latest video coding standard high efficiency video coding (HEVC).
Traditional image or video coding standards like JPEG, MPEG-1/2/4
use 8 × 8 floating point 2-D DCT while latter standards like H.264,
VC-1, AVS, and HEVC use 4 × 4/8 × 8 integer DCT to reduce
computational complexity and avoid the data mismatch between the
encoder and the decoder. To further improve the coding efficiency,
16 × 16 and 32 × 32 2-D integer DCT are also used in HEVC.

Various methods have been proposed to implement floating point
or integer 2-D DCT/IDCT. They can be categorized into two types:
the row–column decomposition method (RCDM) or the direct 2-D
method. In [1], a fast algorithm is proposed to implement N × N
floating-point 2-D DCT by using the direct 2-D method. In [2],
another optimized direct 2-D is used to implement 8×8 floating-point
2-D DCT. However, the fast algorithms used in [1] and [2] cannot be
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Fig. 1. New spiral data mapping scheme for 8 × 8 2-D IDCT with different write throughput (WTP). (a) RTP/WTP = 1-sample/cycle. (b) RTP/WTP =
2-sample/cycle. (c) RTP/WTP = 4-sample/cycle. (d) RTP/WTP = 8-sample/cycle.

applied to integer 2-D DCT because the transform matrix of integer
2-D DCT is no longer orthogonal and the integer transform matrix
cannot be decomposed in the same way as the floating-point one.
A new direct 2-D method for 4 × 4 integer DCT of H.264 is proposed
in [3]. However, the hardware cost of the computational logic and the
interconnection in these designs will increase for larger exponentially
size DCT, which make the VLSI implementation unaffordable in case
of 32 × 32 2-D transform. RCDM is a more cost-effective way to
implement large size 2-D transform.

The process of RCDM-based 2-D DCT/IDCT can be decomposed
into two separate steps. First, the row-direction 1-D DCT/IDCT
is performed for the input signal. Then the column-direction 1-D
DCT/IDCT is performed for the intermediate results of the row-
direction transform.

According to different VLSI implementation, RCDM can also be
categorized into two types: transpose memory-based RCDM and
transpose memory free RCDM. A systolic array without matrix
transposition is proposed to compute floating-point 2-D DCT/IDCT
in [4]. The hardware cost of this design is in proportion to N2

for N × N-point 2-D DCT/IDCT. Therefore, it is not suitable for
large size 2-D transform. Compared with [4], a more area efficient
architecture without transpose memory is proposed in [5]. However,
the designs in [5] can only support floating-point transform. The
trigonometric decomposition presented in [5] cannot be applied
to integer 2-D DCT/IDCT. Transpose memory-based RCDM can
support both floating point and integer 2-D DCT/IDCT with a relative
low-hardware cost. Many designs using transpose memory-based
RCDM have been proposed to support floating-point or integer 2-D
DCT/IDCT in [6]–[14]. The transpose memories in these designs are
implemented in different ways. A shift-register array-based transpose
memory is proposed for floating-point 8 × 8 2-D IDCT in [6]. The
same shift-register array architecture is also used in [7] to implement
the integer 2-D 4 × 4 DCT/IDCT of H.264. The register array can be
shifted in both row and column direction. The intermediate results of
row transformation are shifted into the register array in row direction.
After the row transform is completed, the results stored in register
array are shifted out in column direction.

The experimental results in Section III will show that the register
array is not area efficient for large size transpose memory if compared
with SRAM. During each access to the register array, each bit of the
register array needs to be shifted in horizontal or vertical direction.

The register array is also not power efficient. The so-called double
buffers architecture is proposed for 8 × 8 2-D IDCT in [8]. Four
triple-port register files are used in this design. In [9] and [10],
an SDRAM-based architecture is proposed for large size matrix
transposition. Due to the large and unpredictable access latency of
SDRAM, this architecture is not suitable for high performance real-
time video processing systems. A self-aligned transpose memory
is proposed for MPEG-4 shape-adaptive DCT (SA-DCT) in [11].
Single-port SRAM is used in this design. The transpose memory
is physically divided into four banks. The data throughput of this
transpose memory is only two samples per clock cycle. Higher
throughput is desired for the regular DCT/IDCT used in video coding
process. A dual-port SRAM-based transpose memory is proposed in
[12] and [13], and the transpose memory in [12] or [13] is divided
into several banks. The more banks are used in the transpose memory,
the more hardware area overhead will occur. The data mapping
in transpose memory can be optimized to reduce the number of
SRAM banks. A single-port SRAM-based transpose memory is used
in [14], but for the 32 × 32 IDCT/DCT, it’s write through is only
4-sample/cycle. In addition, the width of the SRAM in [14] is 512
bit, which is not area efficient.

To address the above problems, we proposed a single-port SRAM-
based transpose memory. The proposed architecture is flexible to
support DCT/IDCT of different transform sizes and different data
throughputs. Larger size transform can be easily supported by the
increase of SRAM depth. The transpose memory is physically divided
into several banks according to the required data throughput. Higher
data throughput can be achieved by dividing the transpose memory
into more banks and the proposed diagonal data mapping scheme.

The rest of this brief is organized as follows. In Section II, the
proposed architecture for the transpose memory is described in more
details. Experimental results and comparison are given in Section III.
Finally, the conclusion of this brief is drawn in Section IV.

II. PROPOSED ARCHITECTURE FOR SINGLE-PORT

SRAM-BASED TRANSPOSE MEMORY

Compared with the register array, it is a more cost-effective
approach to implement large size transpose memory by SRAM. The
disadvantage of SRAM is that SRAM can only be accessed in row
direction. The transpose method in [6]–[8] cannot be applied to the
SRAM-based transpose memory because the both row and column
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accesses to the memory block are required in these designs. The
intermediate results of row transform are written into the transpose
memory in row direction and are read out by column transform in
column direction.

In this section, we will propose a new diagonal data mapping
scheme. The intermediate results of the transform are written into
the transpose memory in diagonal direction instead of row direction.
When the column transform starts, the intermediate results in a
column could be fetched out from different SRAM banks in parallel.
The explicit data transposition is avoided by rearrange the read/write
order. The similar method is also used in the motion estimation search
window memory [15]. However, the propose data mapping scheme is
more universal and flexible, it can be used in the transpose memory
with different throughput and size.

As an example, the transpose memory architectures which can
support 8 × 8 2-D IDCT with four different read and write through-
puts are shown in Fig. 1. The read and write throughputs of the
architectures shown in Fig. 1(a)–(d) are 1/2/4/8-sample per cycle,
respectively. The arrows in Fig. 1 indicate the data mapping direction.

The data mapping scheme for the transpose memory whose write
throughput is 1-sample per cycle is shown in Fig. 1(a). The numbers
(1–64) in the left side of Fig. 1(a) are the cycle numbers at which the
corresponding intermediate results are generated. For a 2-D 8 × 8
IDCT, all eight 8-point 1-D row transforms are done in 64 cycles.
The depth of the SRAM used in Fig. 1(a) is 64-word. The width of
each word is 16-bit (assuming the width of an intermediate result
is 16-bit and one intermediate results is stored in one word). At
cycle 1, the first result is generated and stored in the SRAM word
with address 0. The second result is generated in cycle 2 and it is
stored in the word with address eight. After 64 clock cycles, eight
intermediate results (1, 9, 17, 25, 33, 41, 49, and 57) are stored
in consecutive SRAM words with addresses ranging from 0 to 7.
Eight intermediate results (2, 10, 18, 26, 34, 42, 50, and 58) are
stored in consecutive SRAM addresses (8–15). Other intermediate
results are also stored in the same way as shown in Fig. 1(a). In
such a writing order, the data transposition is achieved. During the
column transform process, one SRAM word can be read out at each
cycle.

The architecture for the transpose memory whose read/write
throughput is 2-sample per cycle is shown in Fig. 1(b). If the
butterfly based fast algorithm is used for 1-D IDCT, two results of
row transform are generated at each cycle. These two results are
symmetric along with the column direction, which is shown in the
left diagram of Fig. 1(b). The numbers (1–32) means the clock cycle
number at which the corresponding results are generated. The two
results need to be stored into SRAM in diagonal direction within
one cycle. However, only one SRAM word can be accessed in any
single clock cycle due to the intrinsic physical structure of SRAM. To
accommodate this requirement, the transpose memory is divided into
two banks which are shown in the right side of Fig. 1(b). The width
of each SRAM bank is 16-bit (width of one intermediate results)
while the depth is 32-word. At each clock cycle, two row transform
results are separately stored into the corresponding SRAM banks. To
distinguish the two results which are generated in the same cycle, one
number is marked by an underscore while the other is not changed. At
cycle 1, two results (1 and 1) are generated. The result 1 is stored in
the SRAM bank 0 with word address of 0 and the result 1 is stored in
the SRAM bank 1 with word address of 1. The two results are stored
in a spiral direction. After 32 cycles, all the 64 results are stored
in two separate SRAM banks and each bank contains 32 results.
When column transform is in progress, the eight results in the same
column are fetched out in four cycles. As shown in Fig. 1(b), the
eight intermediate results (1, 5, 9, 13, 17, 21, 25, and 29) in first

Fig. 2. New data mapping scheme for 8 × 8 2-D DCT with 4-sample/cycle
write throughput.

column are shown in gray blocks. Results 1, 5, 9, and 13 are stored
in SRAM bank 0 and the corresponding addresses are 0, 8, 16, and
24, respectively. Results 17, 21, 25, and 29 stored in SRAM bank1
and the corresponding addresses are 0, 8, 16, and 24, respectively.
The eight intermediate results in the same column can be fetch out
in four cycles so that the throughput is 2-sample/cycle.

The same data mapping scheme can be easily extended to any
different throughput and any large size transform. To support the
write throughput of TP-sample per clock cycle (where TP is an
integer), the transpose memory needs to be physically divided into
TP banks. The architectures to support 8 × 8 2-D IDCT with
4/8-sample/cycle read/write throughput are shown in Fig. 1(c) and (d).
Four SRAM banks are used in Fig. 1(c) and eight SRAM banks
are used in Fig. 1(d). To distinguish the multiple output results
generated in the same clock cycle, the numbers in Fig. 1(c) and (d)
are marked with underscore, double underscore, delete line, or italic
font. As shown in Fig. 1(d), the eight results in the second column
are marked as gray blocks. Each result is stored into one of the eight
different SRAM banks, so eight results can be easily fetched out in
one cycle.

The transpose memory for 2-D DCT can be implemented in the
same way. An example of the new data mapping scheme is shown
in Fig. 2 for 8 × 8 2-D DCT. The read and write throughput of this
architecture is 4-sample/cycle and four SRAM banks are used. The
width of each SRAM bank is 16-bit and the depth is 16-word. It can
be extended to support different throughputs in the same way as that
of IDCT.

Larger size transform can also be easily supported by increasing
the depth of each SRAM bank. If the transpose memory is supposed
to support 16 × 16 2-D transform and the read and write throughput
is set as 4-sample/cycle, four SRAM banks are used to implement this
transpose memory. The intermediate results stored in the transpose
memory are assumed to have a precision of W-bit. The width of
the each SRAM is W-bit and the depth is 16 × 16/4, where four is
the number of SRAM bank (or the throughout). A more generalized
architecture can be proposed in such a way. To support an N ×
N 2-D transform with a TP-sample/cycle read/write throughput, the
number of SRAM banks used to implement the transpose memory
is TP. The width of each SRAM bank is W-bit and the depth is
N2/TP.

Two typical VLSI architectures for a transpose memory-based
DCT/IDCT are shown in Fig. 3. Fig. 3(a) shows that the row
transform can share the same hardware resource with the column
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Fig. 3. Transpose memory-based 2-D DCT/IDCT. (a) Shared 1-D transform
architecture. (b) Pipelined row/column transform architecture.

TABLE I
AREA COMPARISON BETWEEN SHIFT-REGISTER ARRAY AND

SRAM-BASED TRANSPOSE MEMORY (GATE COUNT)

transform. The row transforms are performed first and the interme-
diate results are stored into the transpose memory. After all the row
transforms are completed, the same transform hardware can be used
to perform the column transform.

III. EXPERIMENTAL RESULTS AND COMPARISON

The experiment is performed to compare the hardware cost of
the different transpose memory. The shift-register array architecture
proposed in [6] and [7] is implemented in Verilog HDL and synthe-
sized with the SMIC 0.13 μm standard cell library. The single/dual-
port register file generators provided by VeriSilicon are used to
generate the required SRAM banks for SMIC 0.13 μm process. Each
intermediate result stored in the transpose memory is assumed to be
16-bit and the silicon areas for 4 × 4/8 × 8/16 × 16/32 × 32 shift-
register arrays are shown in Table I. The throughput of the shift-
register array and SRAM arrays are 4, 8, 16, and 32 samples/cycle
for the size of 4 × 4/8 × 8/16 × 16/32 × 32, respectively. If the
SRAM array is used in a ping-pong buffer-based structure, two same
SRAM arrays are needed, and the gate count is double. The unit of the
data in Table I is gate count. The silicon area of both single-port and
dual-port SRAM-based transpose memory are shown in Table I. The
word width of the SRAM used in this table is 16-bit and the SRAM
depth is set as N2/TP, where N is the transpose memory size and
the TP is the throughput. Table I shows the single-port SRAM-based
transpose memory is more efficient than shift register or dual-port-
based transpose memory in the shared 1-D transform architecture.
When pipelined row/column transform architecture is adopted, the
single-port SRAM-based transpose memory is more efficient in the
situation of large size transformation (bigger than 8 × 8).

The hardware cost comparison of the shift register or SRAM-based
32 × 32 transpose memory is shown in Fig. 4. The EGC is used to

Fig. 4. Hardware cost of 32 × 32 transpose memory with different RTP
(read throughput) and WTP (write throughput).

measure the efficiency of transpose memory

EGC = The Transpose Memory Gate Count

N ∗ N ∗ BitWidth
(1)

where the N * N is the transpose memory size, the BitWidth is
the bit width of one point. The EGC of 32 × 32 shift register
array is 9 (148.9 K/(32 × 32 × 16)). The EGC of SRAM-based
transpose memory will increase significantly with higher throughput.
The EGC of single-port SRAM is 0.69/0.69/0.78/0.99/1.37/1.99 with
throughput at 1/2/4/8/16/32-sample/cycle. The EGC of dual-port
SRAM is 1.45/1.53/1.72/2.16/2.73/3.75, respectively. The single-port
SRAM is more efficient as Fig. 4 showing. For a N × N transpose
memory, the throughput ranges from 1 to N2/D, where D is the
minimum SRAM depth. The minimum SRAM depth of VeriSilicon
memory compilers is four. Therefore, the maximum write throughput
supported by the proposed N × N transpose memory is N2/4.

The comparison with previous works is summarized in Table II.
The SDRAM-based transpose memory in [9] or [10] does not require
on-chip SRAM or register. However, its throughput is unstable due to
the unpredictable access latency of SDRAM. The EGC of 4 × 4/8 ×
8/32 × 32 shift register array is 11.2/9.8/9. In this proposed design,
the EGC of the single-port SRAM-based transpose memory is listed
in Table II. The gate count of SRAM control logic is about 0.4 K.
Ten different configurations of the proposed design are used and ten
EGC results are given in this table. The area of transpose memory in
[11]–[13] is not reported. Thus, the VeriSilicon memory genera-
tors are used to generate the required SRAM banks in [11]–[13]
accordingly. The area is estimated by using the area reports of
the memory compiler. The EGC of each bit in [11]/[12]/[13] is
5.1/8.5/5.7. The results show that this proposed design is more area
efficient. To evaluate the hardware efficiency for different TP and
memory size, the equivalent throughput (ET) is proposed

ET = TP

EGC
. (2)

The larger ET means the better hardware efficiency. As shown in
Table II, our proposed one-port SRAM transpose memory is more
hardware efficient than the previous methods.

The transpose memory is divided into eight banks with the
throughput of 4-sample/cycle in [12]. In [13], the transpose memory
is divided into four banks with the throughput of 2-sample/cycle. If
the new data mapping scheme proposed in this brief is used, the
number of SRAM banks is four for the transpose memory in [12]
and two for the transpose memory in [13]. The less SRAM banks
are used, the less hardware resource is consumed. Less SRAM
banks will also facilitate the place and routing process of backend
design and helps to achieve better timing and power performance.
In [14], the transpose memory is divided into four banks with
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TABLE II
COMPARISON WITH PREVIOUS WORKS

the throughput of 4-sample/cycle, but the width of the SRAM is
512 bit. In proposed data mapping scheme, the width of SRAM
banks are fixed in 16 bit. The small width helps to achieve better area
efficiency.

If row transform block and column transform block work in a
pipelined fashion, the required throughput of the transpose memory
can be calculated by the following equation:

TP = W ∗ H ∗ fps ∗ Format

MHz
(3)

where W × H is the resolution of the video sequence. fps is
the frame rate. Format is set as 1.5 for 4:2:0 and 3 for 4:4:4
video. MHz is the working frequency. To support a full-HD video
(1920 × 1080@30 fps) with 4:2:0 format, the throughput of the
transpose memory is 1-sample/cycle at the working frequency of
94 MHz. Each different working frequency (47/24/12 MHz) requires
a corresponding minimum throughput (2/4/8-sample/cycle). The
throughput of 4/8-sample/cycle can meet the requirement of most
video coding applications at a reasonable working frequency. For
example, the quad HD video format (4 K × 2 K@30 fps) can
be well supported if the throughput is set as 4-sample/cycle and
the pipelined architecture in Fig. 3(b) operates at 90 MHz working
frequency.

IV. CONCLUSION

In this brief, we proposed a single-port SRAM-based transpose
memory which can be applied to large size 2-D DCT/IDCT. The
hardware cost can be significantly reduced in comparison with the

shift-register array-based transpose memory. A new diagonal data
mapping scheme is also proposed to support different throughput.
The number of SRAM banks used in the transpose memory can
also be reduced by this new data mapping scheme, which can
also reduce the hardware cost. This architecture is also flexible to
support any larger size transpose memory by increasing the depth of
SRAM.
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