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Abstract In this paper, we propose a new fast de-
hazing method from single image based on filtering.
The basic idea is to compute an accurate atmosphere
veil that is not only smoother, but also respect with
depth information of the underlying image. We firstly
obtain an initial atmosphere scattering light through
median filtering, then refine it by guided joint bilat-
eral filtering to generate a new atmosphere veil which
removes the abundant texture information and recov-
ers the depth edge information. Finally, we solve the
scene radiance using the atmosphere attenuation mod-
el. Compared with exiting state of the art dehazing
methods, our method could get a better dehazing ef-
fect at distant scene and places where depth changes
abruptly. Our method is fast with linear complexity in
the number of pixels of the input image, furthermore,
as our method can be performed in parallel, thus, it
can be further accelerated using GPU, which makes our
method applicable for real-time requirement.

Keywords Image dehazing · filtering · image process-
ing · bilateral filter

1 Introduction

Haze or fog is a common natural phenomenon, which is
typically caused by fine suspended particles in the air.
In foggy weather, a series of reactions, such as scatter-
ing, refraction and absorption will occur between these
particles and light from the atmosphere, which makes
the visibility of the scene degraded. The presence of
haze will lead to substantially reduce of the visibility
of the image scene, which will become a major problem
in many computer vision applications, such as video
surveillance, remote sensing, navigation, target identi-
fication, etc.. Thus, haze removal is highly required for
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receiving high performance of the vision algorithm. Al-
though many image dehazing methods have been pro-
posed, as performing haze removal from a single image
is a under-constrained problem, many difficulties are
still left to solve.

The scene depth information of the degraded image
is an important clue to haze removal. Many method-
s extract depth information from multiple images and
extra information. For instance, binary scattering mod-
el is used to extract scene information from color images
under different weather conditions [8, 11]. Polarization
properties of different scattered light are used to re-
store the depth information through the polarized light
in different directions [15, 14, 16]. Narasimhan and Na-
yar [10] applied the boundary of discontinuous depth
to extract scene depth from two grayscale images un-
der different weather conditions. Interactive depth esti-
mation algorithm [9] or known 3D models [6] was also
applied to obtain the depth. Although these methods
may produce impressive results, they need to use mul-
tiple images of the same scene or need user interactions
and other extra information, which makes them diffi-
cult to meet with real-time requirements of images with
changing scenes.

In recent years, many researchers focus on achiev-
ing haze removal results from a single degraded image.
Through statistics, Tan [17] found that clear images
had higher contrast compared with foggy images, thus
he maximized the local contrast of the restored image
for enhancing image visibility. The disadvantage was
that the color of the restored image was often too sat-
urated. Based on the assumption that the propagation
of light and shading parts of the target surface were
locally uncorrelated, Fattal [2] first estimated the scene
radiance and then derived the transmission image. As
this method required sufficient color information, thus,
it could not process gray level images. He et al. [3] pro-
posed a single image haze removal technology based
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on Dark Channel Prior (DCP) and produced impres-
sive results, however, this method needed to refine the
transmission map through soft matting technology [7],
which could be computational intensive.

To improve the efficiency of image dehazing, several
methods have been proposed to accelerate the dehaz-
ing processing. He et al. [4] proposed a guided filter,
and found that the output of a guided filter could be
an approximate solution of the Laplacian matting opti-
mization equation [7]. This method greatly reduced the
time complexity, however, as the original foggy image
was chosen as the reference image, which may lead to
incomplete haze removal. Tarel [18] proposed a fast de-
hazing algorithm using median filter, this algorithm was
very efficient , but as the median filter is not conformal
and edge-preserving, although the received atmosphere
veil are smooth, it does not respect with the depth in-
formation of the scene. In some small edge regions, the
desirable dehazing results can not be achieved.

In this paper, we propose a new single image haze
removal algorithm based on reconstructing a more ac-
curate atmosphere veil. Since atmosphere veil mainly
depends on scene depth information, which tends to be
smooth most of time, thus the desirable atmosphere veil
should be smooth most of time except at some places
where depth jumps abruptly. Based on this assumption,
our basic idea is to apply an image containing the edge
information of the input foggy image as the cue of the
scene depth information, and use this image as the ref-
erence image to filter the initial atmosphere veil [18]. In
our method, we compute the min color component map
of original foggy image, and filer the map using bilateral
filter to receive the reference image. Then we propose
a guided joint bilateral filter to filter atmosphere veil
[18] to receive more accurate atmosphere veil. As we
remove the undesirable texture details from the atmo-
sphere veil, and add the edge information of the original
image into the atmosphere veil, which leads to better
dehazing results at places where depth changes abrupt-
ly.

For image haze removal, the time complexity is al-
so a critical problem that needs to be addressed. In
some applications, such as remote sensing image pro-
cessing, video surveillance, and intelligent vehicle, high
time complexity of dehazing may make the algorithm
impracticable. Both the bilateral filter and the guided
joint bilateral filter used in our method can be accel-
erated in constant time complexity. Furthermore, the
proposed filters can be performed in parallel, thus, they
can be computed using GPU. Compared with existing
methods [17, 2, 3, 18], our method can not only yields
better dehazing quality, but also has low time complex-
ity. For images with moderate size, our method can per-
form in real time, which makes our method applicable
to process video streaming with moderate size.

2 Background

In computer vision, the formation of haze images is usu-
ally described by the atmosphere attenuation process:

I(x) = J(x)t(x) +A(1− t(x)) (1)

where I(x) is the observed haze image, J(x) is scene
irradiance (the clear haze-free image), A is the overall
atmosphere light, and t(x) is the medium transmission,
when the atmosphere is homogenous, t(x) = e−βd(x),
here, β is the scattering coefficient of the atmosphere,
and d is the scene depth. The goal of haze removal is to
recover J(x), A and t(x) from I(x). The term J(x)t(x)
is the direct attenuation, which indicates that haze will
induce the scene radiance to attenuate exponentially
with the scene depth d in the medium. The term A(1−
t(x)) is the atmospheric veil (atmospheric scattering
light), which causes fuzzy, color shift and distortion in
the scene.

Fig. 1 Left: the input image, middle: the dehazing result of [18],
right: our result.

Tan [17] enhanced image visibility by maximizing
the contrast of the resulting image, and reformulated
the problem as maximizing atmosphere veil V (x) =
A(1− t(x)) assuming that V (x) is smooth most of the
time, except along edges with large depth jumps. As
the optimization function was computationally inten-
sive, Tarel et al [18] proposed a fast visibility restoration
algorithm by using a filtering approach to compute at-
mosphere veil V (x). They supposed that a desired V (x)
should meet the following two constraints: (1) the value
V (x) is positive (V (x) ≥ 0) at each pixel; (2) the value
of V (x) is not higher than the min components of I(x),
V (x) ≤W (x), where W (x) = minc∈{r,g,b}(I

c(x)) is the
min color components of I(x).

With these two constraints and observations, Tarel
et al [18] used median filtering to yield desirable func-
tion V (x). They first filtered the W (x) using a median
filter to receive A(x), to alleviate the affect of contrast-
ed texture for the haze removal, they also applied the
difference of the local mean A(x) and local standard
deviation of W (x). Finally they multiplied B(x) by a
scale factor p ∈ [0, 1] to control the strength of visibility
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restoration. The atmospheric scattering light V (x) was
calculated as following steps:

1) W (x) = minc∈{r,g,b}(I
c(x))

2) A(x) = medianΩ(W (x))
3) B(x) = A(x)−medianΩ(|W −A|)(x)
4) V (x) = max(min(pB(x),W (x)), 0)

(2)

where Ω is a square window of median filter.
As median filter itself is not conformal and edge-

preserving, many edge information in the resulting im-
age V (x) are lost after twice median filtering, which in-
clude the edges where the depth value changes abruptly,
while large jumping in the atmosphere veil is very im-
portant for image recovery. If the edge information is
missing, the algorithm can not detect the haze at these
locations, which will result in incomplete haze removal.
As Figure 1 shows, after applying the method [18] based
on median filtering, there are still some fogs in the gap
between the leaves.

3 Fog removal based on filtering

We observe that the variation of the atmosphere veil
V (x) = A(1 − t(x)) mainly depends on the depth d of
the scene, that is, the distance of the objects to the
viewer. Thus, the desired atmosphere veil should be s-
mooth and its intensity should gradually vary accord-
ing to the scene depth, and at the regions with same
depth, that intensity of V (x) should have similar value.
When we infer the V (x) from the W (x), there are many
texture information as well as the edge information re-
mained in the W (x). The edge information is important
as they suppose possible large depth jumps among the
objects, such as the edges between the leaves and the
wall in Figure 7, thus, it is necessary to restore edge
information.

We think one appropriate filtering method should
keep the atmosphere veil smooth, preserve the depth
jumps, and remove the redundant texture information.
To reach above goal, we try to correct the atmosphere
veil V (x). The purpose of this correction operator is
to restore the edge information in V (x), and reduce
texture details in V (x), as texture information does not
suggest depth variation, for example, the brick texture
information on the wall in the Figure 7. We take an
image containing the edge information of the source
image as the reference image, and propose a guided
joint bilateral filter to enhance the atmosphere veil V (x)
achieved using median filtering.

3.1 Guided joint bilateral filter

The bilateral filter, original introduced by [19], has been
widely used in computer graphics and computer vision
community [12]. The bilateral filter computes the filter
output at a pixel as a weighted average of neighboring

pixels and is able to preserve edges of processed images.
For each pixel in the image I, letΩ(x) be the local patch
centered at x, I(x) and I(y) be the corresponding in-
tensity value of pixel x and y, then the filtered intensity
value of x is

IB(x) =

∑
y∈Ω(x) f(x− y) · g(I(x)− I(y)) · I(y)∑

y∈Ω(x) f(x− y) · g(I(x)− I(y))
(3)

where, f and g are the spatial and range filter kernels,
respectively.

The bilateral filter is generalized to the joint bilater-
al filter in [13, 5], in which the range kernel is computed
based on another guidance image D, then the filtered
intensity value of x is

IBD(x) =

∑
y∈Ω(x) f(x− y) · g(D(x)−D(y)) · I(y)∑

y∈Ω(x) f(x− y) · g(D(x)−D(y))
(4)

Thus, the filtered image IBD will gain the edge infor-
mation of reference image D. The joint bilateral filter is
particular favored when the input image is not reliable
to provide edge information, e.g., when it is very noisy
or is an intermediate result in image processing.

Joint bilateral filter can enforce the edge informa-
tion of the filtered image to be similar to the refer-
ence image, however, since it only considers the differ-
ence between pixel x and neighboring y in reference im-
age D, its correction capacity is still limited. As shown
in Figure 3, the left is the image to be filtered, the
edge information of which is not complete and accu-
rate. The right image contains the cue of edge details.
To refine the edge feature of the left image, we take
the right image as the reference image and filter the
left one using joint bilateral filter. Suppose the win-
dow size is 3 pixels, considering the edge pixel marked
by yellow color, whose correct value should be 1, in
order to make the filter value close to 1, we need to
give large weight to pixel with value 1 and give small
weight to pixel with value 0 in its 3×3 local patch. For
pixel marked by red color with value 1, the respond-
ing range weight g(D(x) − D(y)) = g(1 − 1) = g(0),
which satisfy our needs, but for the pixel marked by
green color with value 0, the responding range weight
g(D(x) − D(y)) = g(1 − 1) = g(0), which is still very
large.

Fig. 3 Guided Joint Bilateral Filter. Left: image to be filtered,
right: reference image. ’0’ and ’1’ represent the intensity value of
the underlying pixel.



4

Fig. 2 The flow chart of the proposed method.

Based on the above observation, in order to preserve
edge and correct the imperfect edge details, we not only
need to consider the difference in the reference image,
but also require to further consider the difference be-
tween the image to be filtered and the reference image,
give larger weights to pixels with smaller deviation and
smaller weights to pixels with larger deviation. Using
this filtering operation, we could correct the image to-
wards the reference image. This filter is called guided
joint bilateral filter, and the filtered intensity value of
x is

IGD(x) =
1

k

∑
y∈Ω(x)

f(||y||)·g(||D(y)||)·h(I(y)−D(y))·I(y)(5)

where k =
∑
y∈Ω(x) f(||y||) · g(||D(y)||) ·h(I(y)−D(y))

is the normalizing factor, f(||y||) = e−(x−y)
2/2σ2

s , g(||D(y)||) =

e−(D(x)−D(y))2/2σ2
r , and h = e−x

2/2σ2
t is also a Gaussian

kernel function. With this improvement, as shown in
Figure 3, the range weight giving to pixel 0 marked
by green color is g(D(x) − D(y)) · h(I(y) − D(y)) =
g(1 − 1) · h(1 − 0) = g(0) · h(1), which is obviously re-
duced. Figure 4 gives the joint bilateral filter results
using and without using term h(I(y)−D(y)), obvious-
ly, our method produces better result to recovery edge
information.

As the atmosphere veil V (x) computed by [18] method
loses a lot of edge information, we try to adding edge
information of the original image of I(x) to V (x), mean-
while reducing texture details of V (x). As the minimum
luminance channel map W (x) contains the edge fea-
tures and texture details of the input image, we propose
to use W (x) as the cue to enhance the edge informa-
tion of V (x) around the regions with the abrupt depth
jumps. We first use a bilateral filter on W (x) to filter
out some texture details, while the edge features can be
well preserved:

R(x) =

∑
y∈Ω(x) f(x− y) · g(W (x)−W (y)) ·W (y)∑

y∈Ω(x) f(x− y) · g(W (x)−W (y))
(6)

(a) (b)

(c) (d)

Fig. 4 Guided Joint Bilateral Filter. (a) Image to be filtered,
(b) reference image, (c)and (d) joint bilateral filter results without
using and using term h(I(y) −D(y)).

Then, we take the filtered image R(x) as a reference
image to filter the atmosphere veil V (x) by using the
guided joint filter:

VR(x) =
1

k

∑
y∈Ω(x)

f(||y||)·g(||R(y)||)·h(V (y)−R(y))·V (y)(7)

where k is the normalizing factor, the range filter k-

ernel g(||R(y)||) = e−(R(x)−R(y))2/2σ2
r . Here the term

g(R(x)−R(y)) and term h(V (y)−R(y)) work together
to preserve the edge information and remove the useless
texture information of the image R(x) , which produce
a more accurate atmospheric veil VR(x).

Figure 5 shows the atmospheric veil before and af-
ter guided joint bilateral filtering. It’s easy to find that
the filtered atmospheric veil is completely smooth as
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a whole. We can see the intensity of the atmospher-
ic scattering map is gradually increasing, that is, the
intensity of the close scene is lower than those of the
distant scene, which respects with the depth informa-
tion of the scene, also conforms with the observation of
Tan [17] that the variation of atmospheric veil mainly
depends on the distance of objects to the viewer. In ad-
dition, our results also keep the necessary large jumps
to restore images with jumpy depth. As shown in the
Figure 5, depth of the leaves and the neighboring s-
pace is different, however, using the filtering of Tarel
et al[18], the regions containing the leaves are smooth,
while our method keeps the existing jumps well, and
the outline of the tiny leaves is also effectively restored.
With the received smooth atmospheric veil as well as
recovered depth jumps, the haze is removed completely.

(a) (b) (c)

(d) (e) (f)

Fig. 5 (a) Input image I, (b) minimal component W of I, (c)
atmospheric veil V computed using [18], (d) restored result us-
ing the V computed in (c), (e) the atmospheric veil VR of our
method., (f) our final dehazing result.

3.2 Atmosphere light estimation

In many single image dehazing methods, the overal-
l atmosphere light A is usually estimated from pixels
with most dense haze. For example, taking the high-
est luminance value of the image as the ambient light.
But the brightest pixel may be the white objects. He
et al.[3] proposed that the intensity of the dark chan-
nel is a rough approximation of the thickness of the
haze. Similar to [3], we use the dark channel to improve
the accuracy of the atmosphere light: firstly, choosing
the brightest pixels (0.2%) in the dark channel, which
correspond to the foggiest regions; then, choosing the
brightest pixel among the pixels at the same position in
the input foggy image as the overall atmosphere light
A.

3.3 Scene radiance recovering

Given the atmosphere veil VR(x) and the overall atmo-
sphere light A, the transmission t(x) can be obtained
by: t(x) = 1−ωVR(x)/A, where the parameter ω ∈ (0, 1]
is used to preserve little haze in the distant scene and
make the recovered image more natural. In most exper-
iments in this paper, the value of ω is 0.95. Similar to
[3], the final scene irradiance (the clear haze-free image)

can be computed as J(x) = I(x)−A
max(t(x),t0)

+A, where t0 is

the lower bound of transmission, which is used to avoid
noises in very dense haze regions.

3.4 Algorithm process flow

The main process of this algorithm is as follows:
1) Calculate the min components W (x) of I(x) and es-
timate the atmosphere light A;
2) Yielding initial atmospheric veil V (x) using median
filtering (Eq.2);
3) Filtering W (x) using bilateral filter to get the refer-
ence image R(x) ( Eq.6);
4) Filtering V (x) taking R(x) as the reference image to
receive corrected atmospheric scattering light VR(X)
(Eq.7);
5) Calculate the transmission t(x);
6) Get the recovered image J(x).

Figure 2 gives the flow chart of this method. It can
be seen that the time-consuming parts of the whole
algorithm are the median filter in step 2), bilateral fil-
tering in step 3) and the guided joint bilateral filtering
in step 4), other steps can be completed in O(1). In the
next section, we will present methods to accelerate the
steps 2), 3), and 4).

4 Dehazing acceleration

To receive real time image dehazing results, we can ac-
celerate the three filters used in this paper, the bilater-
al filter, the guided joint bilateral filter and the medi-
an filter. Yang et al.[21] proposed a fast bilateral filter
method with O(1) time complexity for arbitrary spatial
and range domain. The key of this acceleration method
is to decompose the bilateral filter into a set of spatial
domain filters. Inspirited by [21], we first accelerate the
guided joint bilateral filtering.

Let N represents the total number of grayscale val-
ues, then the intensity value of pixel x in reference im-
age D(x) ∈ {0, . . . , N −1}. Suppose D(x) = k, for each
pixel y and each intensity value k ∈ {0, . . . , N − 1}, we
define

Wk(y) = g(k −D(y)) · h(I(y)−D(y)) (8)

Jk(x) = Wk(y) · I(y) (9)



6

Then, the guided joint filter (Eq.5) can be decomposed
into N linear filters:

JGk (x) =

∑
y∈Ω(x) (f(x− y) · Jk(y))∑
y∈Ω(x) (f(x− y) ·Wk(y))

(10)

Then, the filtered image can be expressed as

IGD(x) = JGD(x)(x) (11)

We sample N ′ gray level {L0, . . . , LN ′−1} from N , as-
suming D(x) ∈ [Lk, Lk+1], then IGD(x) can be obtained
by linear difference between JGk (x) and JGk+1(x)[21].

As both the Wk(y) and Jk(x) can be pre-computed
and stored in two-dimensional array, which eliminates
the redundancy calculation. Thus, from equation (10),
we can find that the main cost is separately spatial fil-
tering on Jk(x) and Wk(y). We apply Deriche’s recuri-
sive method [1] to approximate Gaussian filter, which
can get O(1) time complexity, and the filtered result
is very close to the result using exact filtering method.
The total time complexity is O(1) for the guided joint
bilateral filtering invariant to filter kernel size.

The bilateral filter (Eq.6) can be accelerated in the
same way as described in [21] with O(1) time complexi-
ty invariant to filter kernel size. Median filter in step 2)
also can be accelerated using the method in [21] in an
approximate way with O(1) time complexity. Weiss [20]
proposed a fast and exact median filter with O(logr),
where r is the size of the window radius. Though [20]
can yield the exact median result, we find the median
filter acceleration [21] can receive desirable results in
our experiments. The whole time complexity of our de-
hazing algorithm is linear in the number of pixels of the
image. As the bilateral filter, the guided joint bilateral
filter and the median filter can be implemented paral-
lel, thus, our method can be further accelerated using
GPU (Graphics Processing Unit).

5 Fast video dehazing

Compared with single haze removing, video haze re-
moval is more challenge for following reasons. First, the
video data is usually much larger than a single image,
thus efficiency is critical for video dehazing. Secondly,
with the moving camera as well as the moving object in
the video, the atmosphere veil is also varying according
to changing scene. Finally, it is important to maintain
the temporal coherence of the dehazing results. As our
dehazing method can perform single image dehazing in
real time, thus, it is possible to employ the proposed
method for fast atmosphere veil computing to acceler-
ate video dehazing.

To generate temporal-coherent dehazing results for
live video streaming, we first compute the atmosphere
veil VR(x) for each frame as it arrives in the input
video streaming, using the same atmosphere veil recov-
ering method as the single image. Then, instead of com-
puting atmosphere light A in a current single frame,

we estimate the A using several neighboring frames
information around current frame (usually 5 frames),
which makes more robust atmosphere light in the vary-
ing scene. Then based on VR(x) and A, we compute the
transmission t(x), and finally recover the scene irradi-
ance J(x). Figure 6 shows the video dehazing results us-
ing our method. For input video with size 1024 × 560,
we efficiently remove the haze in the video streaming
with average 2.687 seconds to dehaze one frame. The
experiments show that the proposed dehazing accelera-
tion techniques make our method applicable for efficient
video dehazing.

Fig. 6 Video dehazing, Top row, the input video, bottom row,
our dehazed results. From left to right, the 48th, 62th and 81th
frame.

6 Experimental results

In this section, we show and discuss the results of the
proposed method, and compare with several state of the
art image dehazing methods in both image restoration
quality and the time complexity. We also give several
video streaming dehazing results to illustrate the af-
fectivity and efficiency of the proposed method. Our
approach is implemented in C++ on a Pentium Dual-
Core CPU E5200@2.50GHz with 2GB RAM.

In our method, the window size Ω of median fil-
ter is very important to the recovery results. If Ω is
too small, it will cause white object larger than Ω re-
moved as fog in the original image; if Ω is too large, it
will cause over blurring in the filtered image, and lots of
edge detail lost in the generated atmospheric scattering
light. In this paper, the window size is adaptively cho-
sen as: size(Ω) = floor[2× (max(h,w)/50)] + 1, where
floor[·] represents the rounding operation, w and h are
the width and height of the input image, respectively.
In the bilateral filtering and guided joint bilateral fil-
tering steps, we can get desirable filtered results using
both small and large range kernel variances σr and σt.
In this paper, σs = 0.03×min(h,w), σr = 20, σt = 20.

Figure 7 shows atmosphere veil compared with Tarel
et al. [18]. From the second row, we can find that the
atmosphere veil obtained only through the median filter
lose much tiny edge information, such as the edges of
the leaves. However, at these locations, the depth value
changes abruptly, which is very important for the image
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Table 1 Time consumption comparison with He et al.[3], He et al. [4], Tarel [18] and Fattal [2].

Image size He et al.[3] He et al. [4] Tarel [18] Fattal [2] the proposed algorithm
441×450 18.67 minutes 16.579 seconds 0.521 seconds 26.496 seconds 1.016 seconds
384×399 13.11 minutes 12.766 seconds 0.362 seconds 20.457 seconds 0.719 seconds
651×509 39.87 minutes 27.516 seconds 1.076 seconds 44.241 seconds 1.325 seconds

Fig. 7 From top to down: the original images; atmosphere
veil obtained through median filtering; atmosphere veil obtained
through guided joint bilateral filtering; the transmission map; the
dehazed images.

restoration. By filtering the initial atmosphere veil us-
ing guided joint bilateral filter, as the third row shows,
the generated atmosphere veil is smoother, the useless
texture details are further removed, and the edge in-
formation is recovered effectively. We also present the
computed transmission map t(x) in the fourth row, and
the results of t(x) conform to actual depth of scenes.
The final dehazed images are shown in the fifth row.

In Figure 8, we compare with the state of the art
dehazing methods based on single image, such as He et
al. [3], He et al. [4], Tarel [18] and Fattal [2]. We can find
that, for most images, He et al. [3] can produce impres-

sive recovery results. In [4], He et al further proposed a
new guided filter, took the source foggy image as a refer-
ence image to refine transmission map. Compared with
[3], the running speed of this method is significantly im-
proved, while this method may sacrifice image dehazing
quality. Method [18] is also very fast, however, it some-
times may be failed in processing tiny boundaries with
abrupt depth jumps, and note that the haze between
the small leaves can not be removed. Fattal’s method [2]
is physically based and can produce satisfactory dehaz-
ing results in most cases, however, this approach can-
not well handle heavy haze images, and furthermore,
this approach may be ineffective when the assumption
that the transmission and surface shading are locally
uncorrelated is broken. Our method could get satisfac-
tory dehazing results in distant scenes and places where
depth changes abruptly, as shown in the last column of
Figure 8, and the haze between the leaves are removed
completely.

In Table 1, we give the time consumption compari-
son with He et al.[3], He et al. [4], Tarel [18] and Fattal
[2]. We can find that our method is much faster than [3]
and [2], also is faster than [4]. The performance of our
method is comparable with Tarel [18], although we use
two more filtering operations, as its time-complexity is
O(1), thus, our method is still very fast.

We also present two video dehazing results (see the
submitted materials ), one input video is high resolu-
tion, and the other one is low resolution video, both
are with heavy haze. Figure 6 shows the video dehaz-
ing results using our method. Using our method on
CPU, for processing high resolution video with size of
1024× 560× 125, it takes average 2.687 seconds to de-
haze one frame. As our method can be performed in
parallel, we run our algorithm on GPU, and the G-
PU acceleration is based on CUDA [32] and run on
a NVIDIA GeForce GTX 285 (1GB) graphics card. It
takes average 0.231 seconds to process one frame. The
experiments show that our method is an efficient tool
for video dehazing.

7 Conclusion

In this paper, we propose a new fast dehazing method
from single image based on filtering. We firstly obtain
an initial atmosphere scattering light through median
filtering, then refine it by using a guided joint bilat-
eral filtering to generate a new atmosphere veil which
recover the depth edge information. Finally, the scene
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Fig. 8 From left to right: the original foggy images, recovered images using He et al.[3], He et al. [4], Tarel [18], Fattal [2] and the
proposed algorithm, respectively.

Fig. 9 Failed example. Left: the input image, right: the recov-
ered image using the proposed algorithm.

radiance can be restored using the atmosphere attenu-
ation model. Our method is fast with linear complex-
ity in the number of pixels of the input image, which
makes our method applicable for real-time requiremen-
t. The experimental results demonstrate that the pro-
posed method can not only achieve better haze removal
results, but also have capability to process video stream-
ing dehazing in real-time.

Our method also has a common limitation with most
dehazing methods. Similar to [3], when there are some
objects whose color is similar to the atmospheric light
in the scene, the color will become very dark after de-
hazing. As the applied atmosphere attenuation model is
relatively simple. for more complex situations, such as
strong sunlight on the sky region, the dehazing results
may not be satisfactory, as Figure 9 shows. Therefore,
our future work is to develop more applicable model to
address this problem.
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