
Abstract—Due to the complexity of general image stitching

methods, it is difficult to realize real-time video stitching at a

reasonable level of cost. To solve this problem, this paper

proposes a flexible and low-cost hardware implementation for

such application, which can be easily reconfigured or redesigned

to support different number of cameras arrayed in different ways

in 2 dimensions. When supports 4 cameras arrayed as a 2x2

square, it cost only 5 small line buffers, which are one-port rams,

and limited control and calculation resources to fulfill the

stitching task. After configuration, it can be simply regarded as

one camera with a higher resolution, generating frame valid, line

valid and pixel data signals. When works at only 78MHz, it still

can realize a real-time video stitching of 2000x1200@30fps from

4 channels of 1280x720@30fps videos. The results of simulation

and FPGA verification show no apparent artifacts in blended

pictures.

I. INTRODUCTION

Video stitching is to generate videos with higher resolution

from lowers ones, which can be used in many applications

such as video conference, film making or in-vehicle cameras.

However, due to the complexity of image stitching methods, it

is hard to realize video stitching with hardware at a reasonable

level of cost, not mention doing it in real time. Figure 1 shows

a general flow to stitch images, which explains the complexity

to a certain extent.

start projecting matching

scaling

or

rotating

seaming

blending outputing

fetching

color correction

end

Fig. 1. General flow of image stitching

Till now, few papers proposed hardware implementations.

In software area, work [5], [6] and [7] explored this problem

based on CPU or DSP. Though the stitching results are

satisfying, both the speed and the cost remain to be improved.

Besides, only one dimension is supported by these works,

which limits the practicability.

It has to be pointed out that the bottleneck of above works

or general video stitching methods mainly lies in that the

processing unit is one frame. For example, only after the

projecting to a whole frame is done, matching could be done;

or only after the seam line of a whole frame is found, blending

could be done, which causes the dilemma of either using huge

on-chip ram to store frames or consuming long time to fetch

and store frames from or to off-chip rams. In other words, if

methods of reducing the processing unit are found, stitching

can be implemented at a lower cost and a faster speed, which

inspired this papers.

II. BRIEF WORK FLOW

A. Assumptions

This design is aimed at source videos with:

1) Negligible Size Mismatch

2) Negligible Angle Mismatch

3) Fixed Camera Position and Angle

Before stitching, source videos have to be zoomed or

rotated, even be projected, if the size is mismatched, or the

angle is mismatched. No matter in which situation, data from

multiple lines are needed to generate the wanted data, which

cost not only a great amount of the storage space but also a

great amount of control and calculation resources, especially

for hardware implementations. While the last assumption

makes sure that the image-match process can be done only

once, because fixed camera position and angel means fixed

overlapped area of source videos.

Fortunately, in some real applications, like video conference,

these two assumptions can be easily satisfied.

B. Work Flow

A brief schematic of this design is shown in figure 2.

Fig. 2. Brief schematic of proposed design

The proposed design has two modes.

In one mode, it simply fetches one frame from a certain

camera and outputs the data, with which, CPU could apply

algorithms like SURT [1] to generate configuration values for

the other mode. Just as mentioned above, match algorithm is

needed only once, so it can be very complex and time-

consuming in order to get a better result.

In the other mode, module FETCH fetches lines of pixels,

does some color correction or conversion, and then stores

them into one group of original line buffers. At the same time,

module BLEND finds the seam line and blends data in the

other group of original line buffers to generate blended pixels

and store them to blended line buffers. Module CONTROL

takes charge of the control of above two modules, the Ping-

Pong access to line buffers and the output of final data.

Leilei Huang*, Yanheng Lu, Xiaoyang Zeng, Yibo Fan*

State Key Lab of ASIC & System, Fudan University, Shanghai 200433, China

Email:10300720005@fudan.edu.cn, fanyibo@fudan.edu.cn

A Flexible and Low-Cost Hardware Implementation for Real-

Time Video Stitching in 2D

B
U

S

CPU

RAM

this design

in
te

rf
a
c
e

BLEND FETCH

CONTROL

original line buffers

original line buffers

blended line buffers

c
a
m

e
ra

s

It should be pointed out that the minimum process unit in

this design is one line of pixels instead of one frame, which

makes the real time stitching can be realized at a very low cost

of storage space or bandwidth. More specifically, all of the

processes in this design are done in unit of line, so the Ping-

Pong flow, shown in figure 3, can be done at the cost of

adding only one group of line buffers instead of frame buffers.

fetch

line 0

process

line 0

fetch

line 1

process

line 1

fetch

line 2

process

line n-1

fetch

line n

process

line n

 Fig. 3. Ping-Pong work flow

From above, it can be inferred that the processing time to

get one blended frame 𝑇 satisfies the following equation:

𝑇 = 𝑡𝐹𝐸𝑇𝐶𝐻 + (𝑛 − 1) 𝑚𝑎𝑥(𝑡𝐹𝐸𝑇𝐶𝐻 , 𝑡𝑃𝑅𝑂𝐶𝐸𝑆𝑆) + 𝑡𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (1)

where 𝑡𝐹𝐸𝑇𝐶𝐻 denotes the time for module FETCH to process

one line, 𝑡𝑃𝑅𝑂𝐶𝐸𝑆𝑆 denotes the total time to blend and output

one line while 𝑛 denote the amount of lines in blended images.

This equation will be used later to prove the real-time

possibility of this design in theory.

III. DETAILED IMPLEMENTATION

A. Fetching

As a matter of fact, the above Ping-Pong flow implicitly

establishes on the assumption that the data of cameras can be

fetched in snatches. If not, then the data may be continuously

dumped into original line buffers, so when one group of lines

is filled but the blending and outputting of the other group are

not done, the loss of valid data appears. Fortunately, this kind

of cameras is very common, like OV7670 camera [2] from

OMNIVISION, and other cameras can be regarded as OV7670

when used with (off-chip) FIFOs. For this reason, cameras

used in this design can be taken as FIFOs which contain one

frame of image data, and the fetch time of one line only

depends on the line length and data format. For example, if the

line length is 1280 and the RGB value of one pixel can be got

in one cycle, 𝑡𝐹𝐸𝑇𝐶𝐻 should be exactly 1280.

B. Color Correcting and Converting

In real application, apart from the above problem, color

correction and format converting in module FETCH should

also be paid attention to.

Color correction is due to the mismatch between and

automatic calibration of cameras. It can be simply realized by

three multipliers for each color channel in RGB format. One

group of multiplication facts, of course, should be the value of

RGB and the other group is the correction coefficients which

can be calculated by CPU. For the same reason as match

process, the calculation of these coefficients can be done only

once.

While format converting is due to different formats used by

different cameras, such as Raw RGB, GRB (4:2:2), RGB 565,

RGB 555, RGB 444, YUV (4:2:2) or YCbCr (4:2:2). In our

design, full channels of each pixel is needed, so converting

process is usually inevitable.

C. Seam Line Searching

In traditional way, seam line is searched by the following

equations [3]:

 𝐸𝑖,𝑗 = 𝑒𝑖,𝑗 + 𝑚𝑖𝑛 (𝐸𝑖−1,𝑗 , 𝐸𝑖−1,𝑗−1, 𝐸𝑖−1,𝑗) (2)

where i and j denoted coordinates, E denotes the cumulative

error of overlapped regions, e denotes the error which is

calculated by the value of pixels in overlapped region 𝐵1
𝑜𝑣 and

𝐵2
𝑜𝑣 from two source images [3]:

 𝑒𝑖,𝑗 = (𝐵1,𝑖,𝑗
𝑜𝑣 − 𝐵2,𝑖,𝑗

𝑜𝑣)2 (3)

In the above method, only after the minimum cumulative

error of the last line is worked out, the seam line of two

sources images can be got by backtracking from the minimum

entry. In other words, source images have to be loaded at least

two times to find a feasible seam line, which is a bottleneck in

real-time processing.

To deal with this problem, a new method is proposed in this

paper:

1) First Step: The first line is searched to get the best

entry 𝑖1 using the absolute difference d of corresponding

pixels as the measurement, which is

 𝑑𝑖,𝑗 = |𝐵1,𝑖,𝑗
𝑜𝑣 − 𝐵2,𝑖,𝑗

𝑜𝑣 |; 𝑖 = 1, … , 𝑚; 𝑗 = 1 (4)

2) Second Step: The neighboring pixels of 𝑖1 in second

line is searched to get the second point 𝑖2 of seam line,

then the third line, the fourth line, until the last line.

 𝑑𝑖,𝑗 = |𝐵1,𝑖,𝑗
𝑜𝑣 − 𝐵2,𝑖,𝑗

𝑜𝑣 |; 𝑖 = 𝑖𝑗−1 − 1, 𝑖𝑗−1, 𝑖𝑗−1 + 1; 𝑗 = 2,3, … 𝑛(5)

 From above, it can be inferred that the proposed method has

at least three advantages:

1) Bandwidth: Source images are processed line by line,

and seam line is worked out immediately. It is unnecessary

to load one frame twice, even blending process can be

done at the same load of one line pixels, which greatly

reduces the bandwidth to store and fetch image data.

2) Storage Space: only one information is needed to

search the next line j, which is 𝑖𝑗−1. Storage space to store

all possible seams for each entry in traditional method can

be saved.

3) Expansibility: In order to get a better seam line, it is

easy to expand this method. For example, the neighboring

boundary can be expanded from[−1, +1] to [−2, +2]; the

measurement can be expanded to absolute difference of

corresponding blocks, and the middle point of the best

block is taken as the current seam point:

 𝑑𝑖,𝑗 = ∑ |𝐵1,𝑥,𝑗
𝑜𝑣 − 𝐵2,𝑥,𝑗

𝑜𝑣 |

𝑖+1

𝑥=𝑖−1

; (6)

Attention should be paid on the fact that it is possible to

find several equal minimum 𝑑 in one line. In this situation, it

is better to choose coordinate which closed to the middle as

the current seam point, otherwise the seam line would easily

decline to the left or the right boundary. When implemented

by hardware, an easy way to realize this logic is shown in

figure 4(a).

-2 -1 0 1 2 -2 -1 0 1 2

start point
Fig. 4(a). Two different search orders

Fig. 4(b). Corresponding seam line

Instead of simply searches from right to left, this design

searches from middle to the right, then to the left, then right

again left again, until to the left neighboring boundary.

D. Seam Line Boundary

Some notation should be clarified at the beginning of this

section, which is overlapped range, search range and blend

range. Overlapped range is half the horizontal length of

overlapped area. Search range is the maximum distance from

seam line to the middle of overlapped area. Blend range is the

range to do blending along the seam line. All of these amounts

are marked in figure 5.

 It is natural to understand that overlapped range should be

greater than the sum of search range and blend range, or there

wouldn’t be data existing to do blending. In traditional method,

because there is no restricts on the above three amounts, in

some situation, the seam line could be very far from the

middle, leading to a narrow margin for blend range. If this

happens, it is very likely for human eye to detect the blend line.

While in this design, a search boundary is put on the search of

seam line, which restricts the seam line into a reasonable range,

leaving enough blend margins.

search

range

overlap

range

blend

range seam

line

boundary of

overlap area

boundary of

search range

Fig. 5. Boundary added to search range

E. Blending

In this design, instead of the original linear method [4], a

better blend method is proposed and adopted, which takes

horizontal gradient of pixels into account to reduce the blur:

 𝐹(𝑝) = 𝛼 ∗ 𝐼1(𝑝) + (1 − 𝛼) ∗ 𝐼2(𝑝)

𝛼 = max (1, 𝑑1/(𝑑1 + 𝑑2) ∗ (1 + 0.1𝜕𝐼1(𝑝))), 𝑝 ≤ 𝑖𝑠𝑒𝑎𝑚 𝑜𝑟

 𝛼 = min (0, 𝑑1/(𝑑1 + 𝑑2) ∗ (1 − 0.1𝜕𝐼2(𝑝))), 𝑝 > 𝑖𝑠𝑒𝑎𝑚 (7)

where 𝑝 denotes the position of the pixel to be generated, 𝛼

denotes the blend coefficient, 𝑑 denotes the distance between

p and blend boundary, 𝐼(𝑝) denotes the value of the source

pixels and 𝐹(𝑝) denotes the blended value.

 This optimization is based on an intuitive feelings which is

that properly raising the proportion of source image with a

higher gradient would make blended image less blurred.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. (a)-(d) Source images; (e)&(g) Blend with original linear

method; (f)&(h) Blend with proposed linear method

F. Controlling

Since module FETCH and module BLEND only process

data in one line, the control logic to them becomes very simple.

Getting the signal of which cameras to fetch would be

enough for module FETCH to function properly. Still using 4

cameras arrayed like a 2x2 square as an example, figure 7

shows the correct signal in this situation:

fetch image 1image 1

image 2

image 3

image 4

fetch image 1 & 2

fetch image 3 & 4

fetch image 1 & 4

fetch image 3
Fig. 7. An example of fetch signal

The output data from module FETCH should be stored in

one group of original line buffers which can be organized in

two ways. Using 3 cameras arrayed like a horizontal line as an

example, 3 full-line buffers or 2 full-line buffers and 2 half-

line of one-port rams are used respectively, shown in figure 8.

In the serial way, data from each camera is stored in one

corresponding full-line buffer. Because these buffer consists

of one-port rams, two overlapped area in buffer 2 can’t be read

at the same time, so blend process has to be serial.

In the parallel way, data from the middle camera is stored in

two buffers, size of which is half of full-line buffers. In this

buffer 1 buffer 2 buffer 3

BLEND

buffer 1 2a buffer 3

BLEND
extra
ctrl

BLEND

2b

Fig. 8. (a) Serial Organization Way (b) Parallel Organization Way

manner, blend process can be done concurrently, which

greatly reduces the complexity of control logic at the cost of

one extra BLEND module. Furthermore, due to this

simplification, the proposed design can be easily modified to

support different number of cameras arrayed in different ways.

After blend process to one line is done, module CONTROL

could start dumping final data. Since all the final data is stored

in buffers, different clock domain can be adopted in this

design if two-port rams are used as buffers. That is to say, a

lower clock can be used to fetch data from camera due to

restriction of board level communication; a faster clock can be

used to export data to enhance the timing performance.

IV. EXPERIMENTAL RESULTS

A. Stitching Results

Using 4 cameras arrayed like a 2x2 square as an example:

Fig. 9. Stitching results

B. Comparison with Other Works

The synthesis results are got under SIMC65 when the aim

frequency is set to 400MHz. As mentioned above, the number

of BLENDs and buffers depends on the number of cameras.

For example, with mxn 720p cameras, m BLENDs are needed

and the total size of original line buffers is 2mx720 pixels.

The timing performance can be worked out in the following

way. When the neighboring boundary is 2, blend range is 64,

𝑡𝑃𝑅𝑂𝐶𝐸𝑆𝑆 should be 2132 cycles, if the output video has a

horizontal length of 2000. Using equation 1, it takes 2559680

cycles to generate one 2000x1200 blended image from 4

channels of 1280x720 videos arrayed as a 2x2 square. In other

words, this design could realize a real-time video stitching of

2000x1200@30fps when works at only 78MHz.

Thus, it can be inferred from figure 9 and table I, this design

fulfills a satisfying 2-dimension stitching result with limited

hardware resources and consuming time.

TABLE I

Comparison with Other Works

work resources timing performance notes

this

work

BLEND 1445gates

CONTROL 2517gates

FETCH 644gates

2000x1200@30fps

from 2x2 channels

of 1280x720

2-D

78MHz

[5]
embedded system

R0P7724LC0011RL

XVGA@1.67fps

from 2 channels

1-D

512MHz

[6] DSP DM643

TV resolution

@22fps from 2

channels

1-D

600MHz

[7] Intel i7 3930K CPU

real time video

stitching from 4

channels of D1

1-D

2.3GHz

V. CONCLUSIONS

This paper proposes a flexible and low-cost hardware

implementation for real-time video stitching, which can be

easily reconfigured or redesigned to support different numbers

of cameras arrayed in different ways in 2 dimensions. When

supports 4 cameras arrayed as a square, it cost only 5 small

line buffers, which are one-port rams, and limited control and

calculation resources to fulfill the stitching task. After

configuration, it can be simply regarded as one camera with a

higher resolution, generating frame valid, line valid and pixel

data signals. The results of simulation and FPGA verification

show no apparent artifacts in blended pictures. When works at

only 78MHz, it still can realize a real-time video stitching of

2000x1200@30fps from 2x2 channels of 1280x720@30fps

videos.

ACKNOWLEDGMENT

This paper is supported by National Natural Science

Foundation of China (61306023), Specialized Research Fund

for the Doctoral Program of Higher Education (SRFDP,

20120071120021), STCSM(13511503400), National High

Technology Research and Development Program

(863,2012AA012001).

REFERENCES

[1] H. Bay, T. Tuytelaars, L. Van Gool, "SURF: Speeded Up Robust

Features", in Computer Vision–ECCV, pp. 404-417, 2006.

[2] http://www.ovt.com/products/

[3] A. A. Efros and W. T. Freeman, “Image Quilting for Texture Synthesis

and Transfer”, in Proc. 28th Annual Conference on Computer Graphics

and Interactive Techniques, pp. 341-346, 2001.

[4] Szeliski, R., “Image Mosaicing for Tele-Reality Applications”, in Proc.

2th IEEE Workshop on Applications of Computer Vision, pp. 44-53, 1994.

[5] T. C. Chang, C. A. Chien, J. H. Chang, J. I. Guo, "A Low-Complexity

Image Stitching Algorithm Suitable for Embedded Systems", in IEEE

International Conference on Consumer Electronics, pp. 197-198, 2011.

[6] Z. K. Zhang, Z. H. Liu, J. B. Jiao, "DSP implementation of a multi-

channel video display system with image stitching", in IEEE Youth

Conference on Information, Computing and Telecommunication, pp.

204-207, 2009.

[7] K. C. Huang, P. Y. Chien, C. A. Chien, H. C. Chang and J. I. Guo, "A

360-Degree Panoramic Video System Design", in International

Symposium on VLSI Design, Automation and Test, pp. 1-4, 2014.

