
Iterative Disparity Voting Based Stereo Matching Algorithm and Its Hardware
Implementation

Zhi Hu1, Yibo Fan1*, Xiaoyang Zeng1
1State Key Lab of ASIC and System, Fudan University, Shanghai, China

*fanyibo@fudan.edu.cn

Abstract - Stereo matching is one of the key problems in
computer vision. A large number of algorithms have been
proposed but few of them achieve both high accuracy and short
processing time on hardware. This paper presents a
hardware-oriented stereo matching algorithm which is able to
generate software-oriented-level results for 1920×1080
images at 48fps. Such performance prefigures new vistas of the
applications of VLSI in stereo vision.

I. Introduction
Stereo matching is the corner stone of stereo vision.

Generated disparity can be used to estimate the depth of
every object in the image, making visual interactions with the
real world feasible. Practical applications include free view
point TV [1], robotic vision [2], automotive control [3] etc.

During the past decades, a number of algorithms
implemented on different platforms have been proposed and
roughly they can be divided into 2 groups, software-oriented
and hardware-oriented. The former usually produce high
quality results at the cost of long computational time due to
complicated numerical computations and data structures.

Conversely, hardware-oriented algorithms aiming at real
time processing often adopt straightforward strategies
considering the constraints of limited resources and the
direction of dataflow whereby in most cases generate
incompetent results, being an obstacle to further effective
processing. Many attempts have been made of building a
hardware based stereo matching system. Jin et al. design[4]
generates 64-level disparity map for a 640×480 image
@230fps on XC4VLX200-10 FPGA; Zhang et al. [5]
produces 64-level map for a 1024×768 image@ 60fps on
EP2SL150 FPGA; Jin et al. design [6] outputs 64-level map
for a 640×480 image@507fps on XC6VLX240T FPGA.
Even though substantial progress has been witnessed, there is
much room for improvement: image resolution, quality of
output disparities, and the consumption of hardware
resources.

This paper proposes a hardware-oriented algorithm based
on iterative weighted disparity voting and it possesses
following advantages: 1) it produces results comparable to
the software-oriented algorithms; 2) it is able to process
1080p images at low memory cost; 3) it can process
1920x1080 image streams at 48 fps, reaching the level of
real-time processing, being a prospect of future 3D video
processing.

II. Background and Related Works
The purpose of stereo matching is to extract horizontal

disparities from a pair of largely-overlapping images, Il
and Ir, taken at the same level. In terms of methodology,
prior algorithms can be divided into 2 groups, namely those
adopting global and local matching methods. The former
involves globally-optimizing strategies, for instance,
graph-cut[7], belief propagation[8], dynamic programming[9]

etc. These are memory resource exacting and time consuming
intended for software implementation. Far from global
strategies, local strategies focus only on the neighbouring
pixels of current pixel being processed. Orderly data
accessing and repetitive computation make it friendly for
hardware and the proposed algorithm belongs to this category.
A typical local matching method consists of following steps,
though each step can be implemented in various ways. They
are: 1) cost computation; 2) correspondence matching; 3)
disparity refinement; 4) occlusion detection and filling.

Step 1 and 2 are instrumental to give an initial estimation
of the disparity. The method of finding correspondence is to
enumerate every candidate pixels pri in Ir within the disparity
range (0..dmax) and choose the one with least matching cost
between two pixels. Therefore we get, for a pixel pl in Il, its
disparity can be expressed as:

argmin cost(,) pl rii ld p p (1)
, where (,)l l l lp I x y , (,)

ir r l lp I x y i (1)maxi d .
Different cost functions have been developed including
census transform[10], pixel-based SAD (sum of absolute
difference of luminance)[11], flexible-region-based SAD[12].
 Step 3 is crucial since it largely determines the quality of
the final result. The output of step 1 and 2 is a coarse
disparity map with scattering misestimations. A
non-content-based method is proposed by [4], which
interpolates every disparity with its horizontally adjacent
pixels using parabolic function without referring to the
luminance of the input images. More effective methods are
content-based, which refines every disparity considering the
luminance of neighbouring pixels, such as bilateral
filtering[13], its discrete simplification disparity voting [12],
and the orthogonally decomposed version of voting[14].
 Step 4 serves as detecting and extrapolating occluded
disparities caused by perspective difference of 2 cameras.

III. Motivation
Most existent hardware-oriented local stereo matching

algorithms are combinations of aforementioned strategies.
They are inherently uncomplicated due to constraints of
hardware resources. However, by optimization and iterative
processing, artless methods can produce good results. Our
motivation will be elaborated below within the framework of
the processing steps of a local stereo matching algorithm.
A. Cost Computation and Correspondence Matching
 Census transform is hardware-friendly but fails to be
robust enough because small perturbations in a smooth
region (with almost constant luminance) may lead to
significantly different cost. Pixels-based SAD is
computationally economical yet insufficient since values of
neighboring pixels are ignored. Flexible-region-based gives
good estimation but needs a 2D demarcation process to
delineate the region which is incompatible with
high-throughput pipeline structure.

978-1-4799-7792-5/15/$31.00 ©2015 IEEE

2C-3

196

Notice: This paper was presented at ASP-DAC 2015 but not by one of the authors.

To enhance the robustness and improve accuracy and
meanwhile considering feasibility, a fixed-size window based
cost function with luminance and gradient terms is adopted in
this paper. The proposed method hardly increases the
processing time, since all the arithmetic operations here are
additions and subtractions that will necessarily appear also in
the later weighted disparity voting stage. Besides, the
arithmetic units will not increase drastically since adjacent
N×N windows share (N-1)/N data which can be reused.

B. Disparity Refinement
 Bilateral filtering has shown strong competence among
various disparity refinement strategies. Some GPU-based
implementations [11, 13] are able to process low-resolution
images in real time by using so-called O(1) filter. Yet
bilateral filtering is not an easy task for hardware. Most
bilateral filters need floating point operations to ensure the
high accuracy which are extremely resource-demanding for
hardware when sufficient accuracy is demanded.

Disparity voting
computation and thereby being a good choice for hardware
implementation. Nevertheless, [14] ting only
serves as a minor fix to the yet high-quality disparity map
generated by dynamic programming. Actually, disparity
voting can be far more useful than the [14] has exhibited; our
improvements made to voting enable it to transform a coarse
initial estimation into a high-quality disparity map.

The first improvement is weighted voting. In [14], each
pixel contributes the same weight to the result. However we
discover that results can be better if pixels with different
disparity and distance to the central pixel are evaluated with
different weights, given the error distribution on the initially

complexity and overhead to hardware resources.
The second improvement is iterative voting. It will be

shown that the quality of the disparity map increases
remarkably after every weighted voting and that after 6 times
of weighted voting the result converges to a fine level. The
main problem of iterative voting is huge memory
consumption resulting from row buffers for pipelining. A
slice-based processing scheme is proposed to reduce memory
consumption and make the iterative voting feasible.

Thirdly, in [14] the vertical voting results are directly sent
out so there is no data dependence between adjacent pixels.
But if the results can be immediately used (updated) in the
voting of successive pixels in the current stage, the disparity
map is effectively voted for another time. A memory
write-back strategy is developed in our work.

C. Occlusion Detection and Filling
Occlusion filling process fills the occluded pixel with

smallest horizontally adjacent disparity, which is not a purely
raster-order operation. Considering investigated researches

en a detailed description of the implementation,
this paper proposes a ping-pong buffer based architecture to
accomplish the task.

IV. Proposed Algorithm

A. Cost Computation and Correspondence Matching
For each pair of pixels, the cost is computed by two

respective 3×3 windows centering on them. For the sake of
compact architecture, the size of window is fixed, and the

choice of size is a trade-off between memory usage and
accuracy (actually, as will be shown in Fig. 4, voting will
satisfactorily mitigate the misestimations resulting from
small local window).Our definition of the cost is:

cost (,) l lr rp pp p
l r pl pr

I II I
p p I I

x x y y

 (2)
, where I denotes the luminance of pixels in the window and

I x, I y denotes respectively the vertical and horizontal
luminance difference. Due to the need for cross-check, for
every pixel pr in Ir, the disparity should also be determined
by which the cross-check is done:
 argmin cost(,) pr ri lid p p (3)
, where (,)r r r rp I x y , (,)

il l r rp I x y i (1)maxi d .
The cost function is equivalent to Eq.(2).

Fig 1. The result of initially estimated disparity map based on the
cost computed by a) census transform; b) pixel-based SAD; c)
proposed method. And d) is the ground truth (black areas are
occluded areas).

 The result of matching is shown in Fig. 1, comparing with
the result of census transform and pixel-based SAD. Test

[15]. Clearly, the proposed
method outperforms the rest two, being more competitive for
the ensuing disparity voting.

B. Iterative Weighted Disparity Voting
After correspondence matching, 3 rounds (generally after

3 rounds the result tends to stabilize, one test case is
demonstrated in Fig. 4) of voting (each round is a vertical
voting followed by a horizontal voting) are applied. The
vertical voting, shown in the upper part of Fig. 2, proceeds as
follows. For every pixel (scanned in a raster order) on the
disparity map 0 (,)p D x y , { (,)}|cp p p D x i y s.t.

channel X channel Xchannel (,) (,))(,X I x i y I x y r i r
are the pixels for voting. We choose r = 10 to strike a balance
between the capacity of error correction and the preservation
of details. As for the criterion for pixel selection,

channel X channel Xchannel (,) (,))(X I x i y I x y (based on
the assumption of the strong correlation between the

16 after tests. 3 channels are taken into consideration to
prevent the unreliable selection resulting from low contrast in
1 channel; in implementation, the least 3 bits of RGB are
discarded to cut down memory cost (we find quality of

23=2.
After that, those selected pixels are sent to histogram
accumulation for voting. The weight of each
pixel (,)D x i y is defined as,

 (,)

/ 2 (,) / 8 0
(,) / 8 0D x i y

i D x i y i
W

i D x i y i
 (4)

, where variable i denotes the distance to the central pixel.
The purpose of adding an i term is to emphasize the pixels
away from the central pixel. The reason is that in the initially

2C-3

197

generated disparity map wrongly-estimated disparities apt to
agglomerate rather than scatter around evenly, as exhibited in
Fig. 1-c. Give more weight to the peripheral pixels helps to
amend areas filled with bad pixels; for areas devoid of bad
pixels, emphasizing the peripheral pixels hardly affects the
result since disparities of selected pixels barely change in a
small region. And the reason for using i/2 for the upper pixels
while using -i for the lower pixels is those upper pixels have
just been updated thanks to write-back strategy so that they
possess finer quality and deserve more weight.
The (,) / 8D x i y term is a minor adjustment to the weight to
give less emphasis on pixels with extremely low disparity.
Empirically, wrongly-estimated disparity values tend to be
small, as shown in the dark areas of Fig. 1-c. However, for
areas with almost constant low disparities (e.g. background),
this term will not lead to an erratic result.

Current

Region of

disparity

voting

Current

Region of

disparity

voting

2r+1

Elected as

the refined

disparityCurrent

pixel

Disparity

Select

and

Vote

Current

pixel

Elected as

the refined

disparity

Disparity

......
2r+1

...
...

......

Write back for the vote of

the pixel in the next row

Send to the

next vote

Send to the

next vote

...
...

Select

and

Vote

Fig 2. Flow of disparity voting. The upper part is vertical voting and
the lower part is horizontal voting.

After the weights of all pixels have been computed, they
are accumulated into a histogram. Histogram consists of
dmax+1 bins and each is accumulated according to Eq. (5) and
then voted result can be obtained by Eq. (6).
 ()

{ | () }

() D p
p p D p i

H i W (5)

 max () ,0voted maxH i iD d (6)
 Horizontal voting is at large similar to the vertical voting,
as shown in the lower part of Fig. 2.

{ (,)}|cp p p D x y j s.t.

channel X channel Xchannel((,) (,)),()I x y j I x y r j r
 are selected for voting. The weight function, however, is
slightly different from the vertical counterpart:
 (,) (,) / 8D x y jW i D i y j (7)
.since the write-back strategy is not used in horizontal voting
(discussed in the next section). The rest processing flow is
equivalent to the vertical part.

Fig 3. Comparison between a) weighted voting and b) non-weighted
voting. Both disparity maps are generated after 3 rounds of voting,
before occlusion detection and filling. Black squares emphasize the
difference.

Fig. 3 shows the effect of weighted voting, which indicates
weighted voting gives more accurate results, especially in

terms of removing wrongly-estimated areas and delineating
the exact contours of objects.
 The voting process is not completed until 3 rounds of
vertical and horizontal voting is done, i.e.
V H V H V H. Fig. 4 demonstrates step by step the
remarkable improvement brought about by iterative voting.

Fig 4. Disparity map after each vote. Image a) ~ f) respectively
corresponds to the result of 1V (vertical voting in the 1st round), 1H
(horizontal voting in the 1st round), 2V, 2H, 3V, 3H.

C. Occlusion Detection and Filling

Now 2 disparity maps are obtained, one generated with
reference to the Il according to Eq.(1) denoted as Dl and the
other from Ir according to Eq.(3), denoted as Dr. For every
pixel in Dl, it is non-occluded if
 (,) (, (,))l r lD x y D x y D x y (8)

For every labeled pixel, its disparity is extrapolated as the

minimum horizontally adjacent non-occluded disparity. This
operation is implemented by a two-pass row scan: firstly
from left to right, if (,)lD x y is occluded, it is evaluated as the
disparity of the previous (left) non-occluded pixel; then in the
reverse order, if (,)lD x y is occluded, it is evaluated as the
minimum of the currently filled disparity and the disparity of
the previous (right) non-occluded pixel.

V. Hardware Architecture
Hardware architecture is established largely based on the

algorithm with necessary hardware-oriented adaptations. An
overall structure of the whole system is given in Fig. 5.
 Il and Ir are stored in 2 external memories, from where the
24-bit RGB values flow into the system. They are converted
to 8-bit luminance and used to produce an initial coarse
disparity map Dl and Dr in parallel. Meanwhile, truncated
RGB values of pixels are delayed by a buffer to synchronize
with the output of the correspondence matching module since
they are concurrently needed by voting module. Dl and Dr are
voted in parallel and then cross-checked. Finally the
occluded pixels are filled.

Correspondence Matching

(generate initial disparity map)
Cost Computatiom

(calculate matching cost for

every pixel in both images

at every possible disparity)

Iterative Disparity Voting

(generate refined disparity map)

Vertical

External Memory

(left image)

Horizontal

Vertical Horizontal

Occulusion

Detection

(cross check)

Occlusion

Filling

External Memory

(right image)
Correspondence Matching

(generate initial disparity map)

Vertical Horizontal

Iterative Disparity Voting

(generate refined disparity map)

Vertical Horizontal

Vertical Horizontal

Vertical Horizontal

Stereo Matching System

Final Results

(Disparities)

Left Image as Reference

Right Image as Reference

RGB value Delay Buffer

((cost calculation delay+matching delay)×15bit)

RGB value Delay Buffer

((cost calculation delay+matching delay)×15bit)

RGB to

Luma

RGB to

Luma

RGB>>3

RGB>>3

Fig 5. Overall hardware architecture of stereo matching system.

A. Cost Computation and Correspondence Matching Module
The search range of every pixel of the Il (or Ir) is determined
respectively by Eq. (1) (or (3)). It can be deducted that the
search range of the current pixel being processed of Il

2C-3

198

(denoted as pl) extends to the current pixel from Ir (pr) and
vice versa (as shown in Fig. 6) only when the x-coordinates
and the y-coordinates of the pl and pr are equal, which means
that pl and pr can be processed without adding extra delay to
either image source.

Current IInput/Output (pl) Pixel

in the Left Image

Current IInput Pixel

in the Right Image

dmax

dmax

Row Buffer 1×W
Left image

(RGB 24-bit)

Row Buffer 1×W

Row Buffer 1×W
Right image

(RGB 24-bit)

Row Buffer 1×W

...

...

...

...

...

...

3×3Window of

Current Pixel

3×3Window of

Current Pixel

Shift Registers 3×(dmax +2)

3×3Windows of

Candidate

Corresponding Pixels

of the Current Pixel

in the Right Image

3×3Windows of

Candidate

Corresponding Pixels

of the Current Pixel

in the Left Image

Shift Registers 3×(dmax +2)

Search range

for pr

Current OOutput Pixel (pr)

in the Right Image

Search range

for pl

Fig 6. Design of window generation. The upper part shows the
position of the windows in the whole image.

Each image has 2 row buffers, functioning as capturing

pixels from 3 adjacent rows of same y-coordinate
synchronously. Then they are moved into respective shift
registers which as a whole serve as the search range of the
current pixel from another image and from which 3×3
window of each pixel in range can be extracted
straightforwardly. Computation scheme is detailed in Fig. 7.

...

...

...

Shift Registers 3×(dmax+1)

(as search range of the current pixel in the right image)

2dmax pairs of 3×3Windows

for computing costs at

different disparities in parallel

Implementation Detail of Each

Processing Unit

3×3Window of
Current Pixel in
the Left Image 3×3Window of

Current Pixel in
the Right Image

Shift Registers 3×(dmax+1)

(as search range of the current pixel in the left image)

...

Processing Units for

Cost Calculation

3
R
e
g
iste

r
G
ro
u
p
s
S
h
a
re
th
e
S
a
m
e
D
a
ta

D
isp
la
y
e
d
S
e
p
a
ra
te
ly
fo
r
C
la
rity

+ +

Z-1

-

Z-3

-

-

-

-

-
In
p
u
t
fro
m
S
h
ift

R
e
g
iste

r
o
f
th
e

L
e
ft
Im
a
g
e

Counterpart from

the Right Image

Current Window

Next Window

Public Region

-

-

-

-

-

-

-

-

+

+ +

Z-1

-

Z-3

+ + +

Z-1

-

Z-2

+ +

Register

Addition+

- Absolute Difference

Cost

Counterpart from

the Right Image

Counterpart from

the Right Image

Fig 7. Design of cost computation from a pair of windows. Upper
part shows how 2dmax windows are paired up. Lower part
demonstrates the structure of cost computing.

 For each paired up pixels (windows) there is a

processing unit (PU) to generate the matching cost between
them so 2dmax costs can be computed at every clock cycle. A
typical method is to extract data from 9 registers in the shift
register group and then compute based on them. But since 2
adjacent windows overlap by 6 pixels (as is shown in the
lower right part of Fig. 7) and that according to Eq. (2) the
cost contributed by those 6 pixels is irrelevant to the position
of the window. So part of the cost data can be reused. An
improved structure is presented in the lower part of Fig. 7. At
every clock cycle 3 pixels in a column are sent into the PU
and the old cost is updated by adding three terms in Eq. (2) of
newly-arrived 3 pixels, and subtracting these 3 values

generated 3 clocks before.
 Minimum Cost is then generated by a pipelined
tournament tree in the correspondence matching module and
meanwhile the disparity is generated.

B. Disparity Voting Modules
 Among 6 sub voting process, 3 vertical/horizontal voting
instances are structurally equivalent so only 2 different
architectures, vertical and horizontal voting, are needed.
 Vertical voting architecture is shown in Fig. 8. Pixels from
row-buffers are selected following the aforementioned
criterion and weighted according to Eq. (4). Thereafter the
histogram is generated through the pipeline. At every stage,
only 1 pixel is accumulated into the histogram considering
the delay of combinational logic. The number of registers can
be reduced by discarding accumulated elements after every
stage. A tournament tree is used to pick out the dominant
disparity in the histogram and send it to the next vote. RGB
delay buffer serves as synchronizing RGB values with output
disparity due to their presence in the next vote.

Row Buffer 1×W

{Disparity,

truncated RGB value}

Row Buffer 1×W

Row Buffer

1×(W-delayvoting)

...

Row Buffer 1×W

Row Buffer 1×W

...

...

The RowWhere

the Current pixel is situated

...

...

...
...

...
...2r+1

Row

Buffers

Pixel Select

Pixel Select

Pixel Select

Pixel Select

Pixel Select

Pixel Select

...
...

selected

disparity
Weight Calc

Weight Calc

Weight Calc

Weight Calc

Weight Calc

Weight Calc

...
...

Current Column for

Voting (registers)

...

{weight, disparity}

Refined Disparity

after Voting

Row Buffer

1×delayvoting

Writeback Enable

P
ip
e
lin
e
to
B
e

C
o
n
tin
u
e
d

P
ip
e
lin
e
C
o
n
tin
u
in
g

SRAM

... ...

... ...

... ...

Weight((2r+1)×6bit) Histogram(dmax×6bit) Disparity((2r+1)×6bit)

RGB Delay

(delayvoting
×15bit)

...
...

...
...

...

Accumulation and

Distribution of

the 1st Pixel

...

...

... ...

Tournament Tree

(get the dominant disparity)

Writeback

Row Buffer 1×W

Refined disparity is

written back to the

next row after voting

...

...

Accumulation and

Distribution of

the (2r+1)th Pixel

Accumulation and

Distribution of

the 2nd Pixel

... ...

...

...

Disparity

RGB value

...

...
...

Pixel Select

Vertical Voting Module

......

Fig 8. Design of vertical voting architecture.

 The implementation of write-back strategy is also shown
in Fig. 8. The width of the image (w) is far greater than the
latency of voting for one pixel, so when one pixel has
finished voting, its old disparity value has been moved to the
next row buffer yet not shifted out again to vote for the pixel
immediately below it. Therefore the newly updated disparity
can be written back into the middle of the (r+2)th buffer,
which is split into 2 segments to facilitate the operation. A
multiplexor is used because the updated disparity is not
available at the very beginning.

{Disparity, RGB}

Shift Registers 1×(2r+1)

... ...

Disparity Voting

(identical with the

vertical counterpart)

RGB Delay

(delayvoting×15bit)

RGB for the next voteRefined Disparity

Horizontal Voting Module

Fig 9. Design of horizontal voting architecture.

 The implementation of horizontal voting demonstrated in
Fig. 9, generally resembles the vertical counterpart except for
the absence of write-back strategy. A set of shift registers are
used instead of row buffers considering the horizontal input
order. Write-back strategy is not used because when voting

2C-3

199

has completed, the updated disparity will not be used again
during the current vote (latency > r).
 Memory cost of vertical disparity voting is tremendous.
An estimation can be made: 3 vertical voting processes, each
requires a (2r+1) w (6+5×3)bits buffer (r=10;w=1920 for HD
image;6 is the bit-width of disparity when dmax=63;5×3
stands for total bits of truncated RGB), therefore the total
memory cost when the generation of Dr is also considered
equals 21×1920×21×3×2bits=620kByte.

dmaxw = w/n

w

...Slice 1 Slice 2 Slice n-1 Slice n

Slice 1 Slice 2 Slice n-1 Slice n...
Slice 2 Slice n-1 Slice n...Slice 1

Left

Image

Right

Image

Result

Fig 10. The concept of slice-based processing.

 Actually when w is reduced, the memory cost is reduced
proportionally. This inspires us to divide the input image into
slices vertically generating sub-images with smaller width.
But the concern is how the correctness of slice-based
processing can be ensured. In fact the disparities of the
leftmost h×dmax area of Il cannot be generated with full search
range, so unreliable ,
which degrades the quality of the final result. The resort is to
extend the all the slices in Il and Ir by dmax pixels so that
reliable disparities can be produced from the otherwise
unreliable zones. N unreliable
extension can simply be discarded when disparity slices are
finally appended together, as shown in Fig. 10.

Slice 3
......

Slice 1 Slice 2 Slice 3 Slice n ...
Slice 1 Slice 2 Slice n

Memory Write Selector Control Signal

Image Source (left)

Memory Read SelectorControl Signal

The Memory Currently Being Read
(next frame)

The Memory Currently Being Written
(current frame)

Stereo Matching
System

Adjacent slices should be
overlapped
by dmax pixels

Memory Write Selector

...

Control Signal

The Memory Currently Being Written
(current frame)

The Memory Currently Being Read
(last frame)

Slice 2 Slice 3 Slice n

Memory SelectorControl Signal

Disparity Map
Receiver

Left overlaping region of
the disparity map of non-first slices

will be discarded

Data is flowing within

No data is flowing

...

...

...

Corresponding
Slice from the
Right Image

...

Slice 1 Slice 3

...

...

...

Slice 1 Slice 2 Slice n

... ...

...

...

...

...

Fig 11. Architecture of slice-based processing.

dmax=63, so the memory cost for vertical voting is cut down
to 21×(320+64)×21×3×2bits = 124kByte, which is much
more hardware-friendly. The price of this solution is the
slight reduction of processing speed since it takes
320+64=384 clock cycles to process a row of 320 pixels (1.2
times longer), hence the throughput of overall system is 1.2
clock cycle per pixel. A trade-off can be made between

The significance of this method is no matter how wide the
image is, the memory cost of disparity voting remains

constant.
 Nonetheless, pixels from an image are input normally in a
raster order rather than slice by slice, a ping-pong buffer
based external memory structure is proposed, as is shown in
Fig. 11. There are two banks of memory ahead of the
matching system: one of them is being written by an image
source in raster order while the other being read by matching
system slice by slice; after the processing of the current
frame has accomplished, the memory just being written is
read slice by slice while the other memory now being written
in raster order. Similarly if the receiver of the disparity map
needs to read the image in raster order, another set of
ping-pong buffer can be used at the output of the system.

C. Occlusion Detection Module
 The criterion of an occluded pixel is given in Eq. (8). This
can be implemented by shift registers filled with Dr which
wait to be selected by Dl for cross-check. We set
threshold in Eq. (8); in practice we compare if Dl/2 and Dr/2
are equal and the error proves to be unnoticeable. Thus
generates the occlusion bit which is a label for occluded
pixels. The design is shown in Fig. 12.

...

Shift Register 1×dmax

Disparity Generated with

Reference to the Left Image

Disparity Generated with

Reference to the Right Image
...

>>1
>>1 =

Disparity Generated with

Reference to the Left Image
Occlusion Bit

Occlusion Detection

Module

Fig 12. Design of occlusion detection module.

D. Occlusion Filling Module
 We present here a ping-pong buffer based structure to
accomplish the two-pass scan. Once the forward filling of a
pixel is done, its value is stored in a buffer while at the same
time another buffer stored with filled disparity of the
previous row is being filled reversely. After the entire row
has been processed in both buffers, 2 buffers exchange their
roles. The design is shown in Fig. 13.

Disparity of Previous

Non-occluded Pixel

Input

Disparity

Occlusion Bit

M
e
m
o
ry
W
rite

S
e
le
cto
r

...

Ping-Pong Buffers as Row Buffers

Size: 1×w

M
e
m
o
ry
R
e
a
d

S
e
le
cto
r

Output in the

Reverse Order

...

Occlusion Bit

Input Disparity

Disparity of Previous

Non-occluded Pixel

m
in

Output

DisparityData is flowing

No data is flowing

Occlusion Filling Module

Fig 13. Design of occlusion filling module.

VI. Experimental Results

 The quality of the results generated by the proposed
algorithm is compared with several hardware-oriented

[15] as the test bench. Our results
are generated by the simulation of Modelsim 10.0c.
 As can be seen in Fig. 14, the proposed algorithm
generates high-quality results and especially outperforms
other hardware-oriented algorithms in delineating the exact
outline of objects in the image. This can be explained by
iterative voting which repeatedly remove the misestimated
disparities extending from correctly generated regions. Table

2C-3

200

I gives a quantitative comparison by evaluator
[15].

TABLE I.
Quantitative comparison (error rate of non-occluded pixels at error

threshold=1.0) based on Middlebury test bench.
Algorithm Tsukuba Venus Teddy Cones Platform

Proposed 2.21 1.73 5.74 3.64 FPGA

[14] 2.54 0.19 6.74 4.42 FPGA

[4] 9.79 3.59 12.50 7.34 FPGA

[16] 2.81 1.75 10.5 8.90 FPGA

[5] 3.84 1.20 7.17 5.41 FPGA

[17] 2.16 0.24 6.27 4.7 GPU

[18] 2.21 0.46 9.58 3.23 CPU
From the comparison, our algorithm outperforms listed

hardware algorithms in most test images and is able to
generate results comparable to the software-based
implementation. Nonetheless, our

plain area with the gradient of disparity being diagonal. We
hope aligning voting direction with gradient of pixels can be
implemented efficiently on hardware in our future work.

Fig 14. Disparity maps generated by the proposed algorithm

show results from [4, 5, 14]. The 4th row presents results from the
proposed algorithm. The 5th row shows the ground truth.

 Next we give the result of synthesis and evaluate the
practicability of the proposed system. We synthesize our RTL
code with Quartus II 11.0 on device EP4S40G2. Maximum
allowed frequency is 121.76MHz, which means that the
system can process a pair of 1080p images at the frame rate
of 121.76M/(1920×1080×1.2)=48fps.Thus real-time
processing of HD video can be realized. The cost of hardware
resources are: memory size 1,040kbit/14,283kbit (7.3%),
total registers 96,398/182,400(52.8%), combinational ALUTs
104,632/182,400(57.3%), all are affordable. MDES(millions

of disparities estimated/second, a widely-used index) of our
algorithm reaches 1920×1080×64×48=6370M, greater than
4521M of [4], 3019M of[5], less than 9345M of [6](but their
memory usage reaches 7128kbit).

VII. Conclusion
 This paper presents an iterative weighted disparity voting
based local stereo matching algorithm and its RTL
architecture. Experimental results show that system is able to
process 1920×1080-image at 48fps with low memory cost,
being very competitive among prior hardware-oriented
implementations.

VIII. Acknowledgement
This paper was supported by National Natural Science

Foundation of China (61306023),Specialized Research Fund
for the Doctoral Program of Higher Education (SRFDP,
20120071120021), STCSM (13511503400), National High
Technology Research and Development Program (863,
2012AA012001)

References
 [1] M. Tanimoto, "FTV: Free-viewpoint Television," Signal Processing:
Image Communication, Vol. 27(6), pp. 555-570, 2012.
 [2] D. Murray, J.J. Little,"Using Real-Time Stereo Vision for Mobile
Robot Navigation,"Auton. Robots,Vol.8(2),pp.161-171, 2000.
 [3] S. Gehrig, C. Rabe, L. Krueger, "6D Vision Goes Fisheye for
Intersection Assistance," Computer and Robot Vision, 2008,pp. 34-41,2008.
 [4] J. Seunghun, C. Junguk, D.P. Xuan, L. Kyoung-Mu, P. Sung-Kee, et
al., "FPGA Design and Implementation of a Real-Time Stereo Vision
System," Circuits and Systems for Video Technology, IEEE Transactions on,
Vol. 20(1), pp. 15-26 , 2010.
 [5] L. Zhang, K. Zhang, T.S. Chang, G. Lafruit, G.K. Kuzmanov, D.
Verkest, "Real-time high-definition stereo matching on FPGA," Proceedings
of the 19th ACM/SIGDA international symposium on Field programmable
gate arrays, pp. 55-64, 2011.
 [6] M. Jin, T. Maruyama, "A fast and high quality stereo matching
algorithm on FPGA,"FPL 2012,pp. 507-510,2012.
 [7] V. Kolmogorov, R. Zabih, "Computing visual correspondence with
occlusions using graph cuts," ICCV 2001, pp. 508-515, 2011.
 [8] J. Sun, N. Zheng, H. Shum, "Stereo matching using belief
propagation," Pattern Analysis and Machine Intelligence, IEEE
Transactions on, Vol. 25(7), pp. 787-800, 2003.
 [9] Y. Ohta, T. Kanade, "Stereo by intra-and inter-scanline search using
dynamic programming," Pattern Analysis and Machine Intelligence, IEEE
Transactions on, Vol.2, pp.139-154, 1985.
[10] R. Zabih, J. Woodfill, "Non-parametric local transforms for
computing visual correspondence," ECCV 1994, pp. 151-158, 1994.
[11] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, M. Gelautz, "Fast
Cost-Volume Filtering for Visual Correspondence and Beyond," Pattern
Analysis and Machine Intelligence, IEEE Transactions on, Vol. 35(2),
pp.504-511, 2013.
[12] Z. Ke, L. Jiangbo, Y. Qiong, G. Lafruit, R. Lauwereins, et al.,
"Real-Time and Accurate Stereo: A Scalable Approach With Bitwise Fast
Voting on CUDA," Circuits and Systems for Video Technology, IEEE
Transactions on , Vol. 21(7) , pp. 867-878, 2011.
[13] Q. Yang, "Hardware-efficient bilateral filtering for stereo matching,"
Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol.
36(5), pp. 1026-1032, 2013.
[14] C. Liao, H. Yeh, K. Zhang, V. Geert, T. Chang, G. Lafruit, "Stereo
Matching and Viewpoint Synthesis FPGA Implementation," 3D-TV System
with Depth-based Rendering, Springer New York, pp. 69-106, 2013.
[15] D. Scharstein, R. Szeliski, "A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms," Computer Vision,
International Journal on, Vol. 47(1-3), pp.7-42, 2002.
[16] K.Ohata, Y.Sanada, T.Ogaki, K.Matsuyama, T.Ohira, et al.,
"Hardware-oriented stereo vision algorithm based on 1-D guided filtering
and its FPGA implementation,"ICECS 2013,pp.169-172, 2013.
[17] V. Drazic, N. Sabater, "A precise real-time stereo algorithm," IVCNZ
2012, pp. 138-143, 2012.
[18] Y. Deng, X. Lin, "A fast line segment based dense stereo algorithm
using tree dynamic programming,"ECCV 2006,pp. 201-212, 2006.

2C-3

201

