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Abstract - Stereo matching is one of the key problems in 
computer vision. A large number of algorithms have been 
proposed but few of them achieve both high accuracy and short 
processing time on hardware. This paper presents a 
hardware-oriented stereo matching algorithm which is able to 
generate software-oriented-level   results for 1920×1080 
images at 48fps. Such performance prefigures new vistas of the 
applications of VLSI in stereo vision. 

I. Introduction 
Stereo matching is the corner stone of stereo vision. 

Generated disparity can be used to estimate the depth of 
every object in the image, making visual interactions with the 
real world feasible. Practical applications include free view 
point TV [1], robotic vision [2], automotive control [3] etc. 

During the past decades, a number of algorithms 
implemented on different platforms have been proposed and 
roughly they can be divided into 2 groups, software-oriented 
and hardware-oriented. The former usually produce high 
quality results at the cost of long computational time due to 
complicated numerical computations and data structures. 

Conversely, hardware-oriented algorithms aiming at real 
time processing often adopt straightforward strategies 
considering the constraints of limited resources and the 
direction of dataflow whereby in most cases generate 
incompetent results, being an obstacle to further effective 
processing. Many attempts have been made of building a 
hardware based stereo matching system. Jin et al. design[4] 
generates 64-level disparity map for a 640×480 image 
@230fps on XC4VLX200-10 FPGA; Zhang et al. [5] 
produces 64-level map for a 1024×768 image@ 60fps on 
EP2SL150 FPGA; Jin et al.  design [6] outputs 64-level map 
for a 640×480 image@507fps on XC6VLX240T FPGA. 
Even though substantial progress has been witnessed, there is 
much room for improvement: image resolution, quality of 
output disparities, and the consumption of hardware 
resources. 

This paper proposes a hardware-oriented algorithm based 
on iterative weighted disparity voting and it possesses 
following advantages: 1) it produces results comparable to 
the software-oriented algorithms; 2) it is able to process 
1080p images at low memory cost; 3) it can process 
1920x1080 image streams at 48 fps, reaching the level of 
real-time processing, being a prospect of future 3D video 
processing. 

II. Background and Related Works
The purpose of stereo matching is to extract horizontal 

disparities from a pair of largely-overlapping images, Il 
and Ir, taken at the same level.  In terms of methodology, 
prior algorithms can be divided into 2 groups, namely those 
adopting global and local matching methods. The former 
involves globally-optimizing strategies, for instance, 
graph-cut[7], belief propagation[8], dynamic programming[9] 

etc. These are memory resource exacting and time consuming 
intended for software implementation. Far from global 
strategies, local strategies focus only on the neighbouring 
pixels of current pixel being processed. Orderly data 
accessing and repetitive computation make it friendly for 
hardware and the proposed algorithm belongs to this category. 
A typical local matching method consists of following steps, 
though each step can be implemented in various ways. They 
are: 1) cost computation; 2) correspondence matching; 3) 
disparity refinement; 4) occlusion detection and filling.  

Step 1 and 2 are instrumental to give an initial estimation 
of the disparity. The method of finding correspondence is to 
enumerate every candidate pixels pri in Ir within the disparity 
range (0..dmax) and choose the one with least matching cost 
between two pixels. Therefore we get, for a pixel pl in Il, its 
disparity can be expressed as: 

argmin cost( , ) pl rii ld p p (1) 
, where ( , )l l l lp I x y , ( , )

ir r l lp I x y i (1 )maxi d . 
Different cost functions have been developed including 
census transform[10], pixel-based SAD (sum of absolute 
difference of luminance)[11], flexible-region-based SAD[12].
 Step 3 is crucial since it largely determines the quality of 
the final result. The output of step 1 and 2 is a coarse 
disparity map with scattering misestimations. A 
non-content-based method is proposed by [4], which 
interpolates every disparity with its horizontally adjacent 
pixels using parabolic function without referring to the 
luminance of the input images. More effective methods are 
content-based, which refines every disparity considering the 
luminance of neighbouring pixels, such as bilateral 
filtering[13], its discrete simplification disparity voting [12], 
and the orthogonally decomposed version of voting[14].
 Step 4 serves as detecting and extrapolating occluded 
disparities caused by perspective difference of 2 cameras. 

III. Motivation
Most existent hardware-oriented local stereo matching 

algorithms are combinations of aforementioned strategies. 
They are inherently uncomplicated due to constraints of 
hardware resources. However, by optimization and iterative 
processing, artless methods can produce good results. Our 
motivation will be elaborated below within the framework of 
the processing steps of a local stereo matching algorithm. 
A. Cost Computation and Correspondence Matching 
 Census transform is hardware-friendly but fails to be 
robust enough because small perturbations in a smooth 
region (with almost constant luminance) may lead to 
significantly different cost. Pixels-based SAD is 
computationally economical yet insufficient since values of 
neighboring pixels are ignored. Flexible-region-based gives 
good estimation but needs a 2D demarcation process to 
delineate the region which is incompatible with 
high-throughput pipeline structure. 
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To enhance the robustness and improve accuracy and 
meanwhile considering feasibility, a fixed-size window based 
cost function with luminance and gradient terms is adopted in 
this paper. The proposed method hardly increases the 
processing time, since all the arithmetic operations here are 
additions and subtractions that will necessarily appear also in 
the later weighted disparity voting stage. Besides, the 
arithmetic units will not increase drastically since adjacent 
N×N windows share (N-1)/N data which can be reused.  
 

B. Disparity Refinement 
 Bilateral filtering has shown strong competence among 
various disparity refinement strategies. Some GPU-based 
implementations [11, 13] are able to process low-resolution 
images in real time by using so-called O(1) filter. Yet 
bilateral filtering is not an easy task for hardware. Most 
bilateral filters need floating point operations to ensure the 
high accuracy which are extremely resource-demanding for 
hardware when sufficient accuracy is demanded.  

Disparity voting 
computation and thereby being a good choice for hardware 
implementation. Nevertheless, [14] ting only 
serves as a minor fix to the yet high-quality disparity map 
generated by dynamic programming. Actually, disparity 
voting can be far more useful than the [14] has exhibited; our 
improvements made to voting enable it to transform a coarse 
initial estimation into a high-quality disparity map.  

The first improvement is weighted voting. In [14], each 
pixel contributes the same weight to the result. However we 
discover that results can be better if pixels with different 
disparity and distance to the central pixel are evaluated with 
different weights, given the error distribution on the initially 

complexity and overhead to hardware resources. 
The second improvement is iterative voting. It will be 

shown that the quality of the disparity map increases 
remarkably after every weighted voting and that after 6 times 
of weighted voting the result converges to a fine level. The 
main problem of iterative voting is huge memory 
consumption resulting from row buffers for pipelining. A 
slice-based processing scheme is proposed to reduce memory 
consumption and make the iterative voting feasible.  

Thirdly, in [14] the vertical voting results are directly sent 
out so there is no data dependence between adjacent pixels. 
But if the results can be immediately used (updated) in the 
voting of successive pixels in the current stage, the disparity 
map is effectively voted for another time. A memory 
write-back strategy is developed in our work. 
 

C. Occlusion Detection and Filling 
Occlusion filling process fills the occluded pixel with 

smallest horizontally adjacent disparity, which is not a purely 
raster-order operation. Considering investigated researches 

en a detailed description of the implementation, 
this paper proposes a ping-pong buffer based architecture to 
accomplish the task. 

 
IV. Proposed Algorithm 

A. Cost Computation and Correspondence Matching 
For each pair of pixels, the cost is computed by two 

respective 3×3 windows centering on them. For the sake of 
compact architecture, the size of window is fixed, and the 

choice of size is a trade-off between memory usage and 
accuracy (actually, as will be shown in Fig. 4, voting will 
satisfactorily mitigate the misestimations resulting from 
small local window).Our definition of the cost is: 

cost ( , )  l lr rp pp p
l r pl pr

I II I
p p I I

x x y y
 

 (2) 
, where I denotes the luminance of pixels in the window and 

I x, I y denotes respectively the vertical and horizontal 
luminance difference. Due to the need for cross-check, for 
every pixel pr in Ir, the disparity should also be determined 
by which the cross-check is done:   
 argmin cost( , ) pr ri lid p p   (3) 
, where ( , )r r r rp I x y  , ( , )

il l r rp I x y i  (1 )maxi d  . 
The cost function is equivalent to Eq.(2). 

 
Fig 1. The result of initially estimated disparity map based on the 
cost computed by a) census transform; b) pixel-based SAD; c) 
proposed method. And d) is the ground truth (black areas are 
occluded areas). 
 
 The result of matching is shown in Fig. 1, comparing with 
the result of census transform and pixel-based SAD. Test 

[15]. Clearly, the proposed 
method outperforms the rest two, being more competitive for 
the ensuing disparity voting. 
 

B. Iterative Weighted Disparity Voting 
After correspondence matching, 3 rounds (generally after 

3 rounds the result tends to stabilize, one test case is 
demonstrated in Fig. 4) of voting (each round is a vertical 
voting followed by a horizontal voting) are applied. The 
vertical voting, shown in the upper part of Fig. 2, proceeds as 
follows. For every pixel (scanned in a raster order) on the 
disparity map 0 ( , )p D x y  , { ( , )}|cp p p D x i y s.t. 

channel X channel Xchannel ( , ) ( , ) )( ,X I x i y I x y r i r   
are the pixels for voting. We choose r = 10 to strike a balance 
between the capacity of error correction and the preservation 
of details. As for the criterion for pixel selection, 

channel X channel Xchannel ( , ) ( , ) )(X I x i y I x y  (based on 
the assumption of the strong correlation between the 

16 after tests. 3 channels are taken into consideration to 
prevent the unreliable selection resulting from low contrast in 
1 channel; in implementation, the least 3 bits of RGB are 
discarded to cut down memory cost (we find quality of 

23=2. 
After that, those selected pixels are sent to histogram 
accumulation for voting. The weight of each 
pixel ( , )D x i y is defined as,  

 ( , )

/ 2 ( , ) / 8 0
( , ) / 8 0D x i y

i D x i y i
W

i D x i y i
  (4) 

, where variable i denotes the distance to the central pixel. 
The purpose of adding an i term is to emphasize the pixels 
away from the central pixel. The reason is that in the initially 
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generated disparity map wrongly-estimated disparities apt to 
agglomerate rather than scatter around evenly, as exhibited in 
Fig. 1-c. Give more weight to the peripheral pixels helps to 
amend areas filled with bad pixels; for areas devoid of bad 
pixels, emphasizing the peripheral pixels hardly affects the 
result since disparities of selected pixels barely change in a 
small region. And the reason for using i/2 for the upper pixels 
while using -i for the lower pixels is those upper pixels have 
just been updated thanks to write-back strategy so that they 
possess finer quality and deserve more weight. 
The ( , ) / 8D x i y term is a minor adjustment to the weight to 
give less emphasis on pixels with extremely low disparity. 
Empirically, wrongly-estimated disparity values tend to be 
small, as shown in the dark areas of Fig. 1-c. However, for 
areas with almost constant low disparities (e.g. background), 
this term will not lead to an erratic result.  
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Fig 2. Flow of disparity voting. The upper part is vertical voting and 
the lower part is horizontal voting. 
 

After the weights of all pixels have been computed, they 
are accumulated into a histogram. Histogram consists of 
dmax+1 bins and each is accumulated according to Eq. (5) and 
then voted result can be obtained by Eq. (6). 
 ( )

{ | ( ) }

( ) D p
p p D p i

H i W   (5) 

 max ( ) ,0voted maxH i iD d   (6) 
 Horizontal voting is at large similar to the vertical voting, 
as shown in the lower part of Fig. 2. 

{ ( , )}|cp p p D x y j s.t.

channel X channel Xchannel( ( , ) ( , ) ),( )I x y j I x y r j r
  are selected for voting. The weight function, however, is 
slightly different from the vertical counterpart: 
 ( , ) ( , ) / 8D x y jW i D i y j   (7) 
.since the write-back strategy is not used in horizontal voting 
(discussed in the next section). The rest processing flow is 
equivalent to the vertical part. 

 
Fig 3. Comparison between a) weighted voting and b) non-weighted 
voting. Both disparity maps are generated after 3 rounds of voting, 
before occlusion detection and filling. Black squares emphasize the 
difference. 
 

Fig. 3 shows the effect of weighted voting, which indicates 
weighted voting gives more accurate results, especially in 

terms of removing wrongly-estimated areas and delineating 
the exact contours of objects.  
 The voting process is not completed until 3 rounds of 
vertical and horizontal voting is done, i.e. 
V H V H V H. Fig. 4 demonstrates step by step the 
remarkable improvement brought about by iterative voting. 

 
Fig 4. Disparity map after each vote. Image a) ~ f) respectively 
corresponds to the result of 1V (vertical voting in the 1st round), 1H 
(horizontal voting in the 1st round), 2V, 2H, 3V, 3H. 
 
C. Occlusion Detection and Filling 

Now 2 disparity maps are obtained, one generated with 
reference to the Il according to Eq.(1) denoted as Dl and the 
other from Ir according to Eq.(3), denoted as Dr. For every 
pixel in Dl, it is non-occluded if 
 ( , ) ( , ( , ))l r lD x y D x y D x y   (8) 

 
For every labeled pixel, its disparity is extrapolated as the 

minimum horizontally adjacent non-occluded disparity. This 
operation is implemented by a two-pass row scan: firstly 
from left to right, if ( , )lD x y is occluded, it is evaluated as the 
disparity of the previous (left) non-occluded pixel; then in the 
reverse order, if ( , )lD x y is occluded, it is evaluated as the 
minimum of the currently filled disparity and the disparity of 
the previous (right) non-occluded pixel.  
 

V. Hardware Architecture 
Hardware architecture is established largely based on the 

algorithm with necessary hardware-oriented adaptations. An 
overall structure of the whole system is given in Fig. 5. 
 Il and Ir are stored in 2 external memories, from where the 
24-bit RGB values flow into the system. They are converted 
to 8-bit luminance and used to produce an initial coarse 
disparity map Dl and Dr in parallel. Meanwhile, truncated 
RGB values of pixels are delayed by a buffer to synchronize 
with the output of the correspondence matching module since 
they are concurrently needed by voting module. Dl and Dr are 
voted in parallel and then cross-checked. Finally the 
occluded pixels are filled. 
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Fig 5. Overall hardware architecture of stereo matching system. 
 

A. Cost Computation and Correspondence Matching Module 
The search range of every pixel of the Il (or Ir) is determined 
respectively by Eq. (1) (or (3)). It can be deducted that the 
search range of the current pixel being processed of Il 
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(denoted as pl) extends to the current pixel from Ir (pr) and 
vice versa (as shown in Fig. 6) only when the x-coordinates 
and the y-coordinates of the pl and pr are equal, which means 
that pl and pr can be processed without adding extra delay to 
either image source.  
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dmax
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Shift Registers 3×(dmax +2)

Search range

for pr

Current OOutput Pixel (pr)

in the Right Image

Search range

for pl

Fig 6. Design of window generation. The upper part shows the 
position of the windows in the whole image. 

 
Each image has 2 row buffers, functioning as capturing 

pixels from 3 adjacent rows of same y-coordinate 
synchronously. Then they are moved into respective shift 
registers which as a whole serve as the search range of the 
current pixel from another image and from which 3×3 
window of each pixel in range can be extracted 
straightforwardly. Computation scheme is detailed in Fig. 7. 
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Fig 7. Design of cost computation from a pair of windows. Upper 
part shows how 2dmax windows are paired up. Lower part 
demonstrates the structure of cost computing. 

 
 For each paired up pixels (windows) there is a 

processing unit (PU) to generate the matching cost between 
them so 2dmax costs can be computed at every clock cycle. A 
typical method is to extract data from 9 registers in the shift 
register group and then compute based on them. But since 2 
adjacent windows overlap by 6 pixels (as is shown in the 
lower right part of Fig. 7) and that according to Eq. (2) the 
cost contributed by those 6 pixels is irrelevant to the position 
of the window. So part of the cost data can be reused. An 
improved structure is presented in the lower part of Fig. 7. At 
every clock cycle 3 pixels in a column are sent into the PU 
and the old cost is updated by adding three terms in Eq. (2) of 
newly-arrived 3 pixels, and subtracting these 3 values 

generated 3 clocks before.  
 Minimum Cost is then generated by a pipelined 
tournament tree in the correspondence matching module and 
meanwhile the disparity is generated. 
 

B. Disparity Voting Modules 
 Among 6 sub voting process, 3 vertical/horizontal voting 
instances are structurally equivalent so only 2 different 
architectures, vertical and horizontal voting, are needed. 
 Vertical voting architecture is shown in Fig. 8. Pixels from 
row-buffers are selected following the aforementioned 
criterion and weighted according to Eq. (4). Thereafter the 
histogram is generated through the pipeline. At every stage, 
only 1 pixel is accumulated into the histogram considering 
the delay of combinational logic. The number of registers can 
be reduced by discarding accumulated elements after every 
stage. A tournament tree is used to pick out the dominant 
disparity in the histogram and send it to the next vote. RGB 
delay buffer serves as synchronizing RGB values with output 
disparity due to their presence in the next vote.  
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Fig 8. Design of vertical voting architecture. 
 
 The implementation of write-back strategy is also shown 
in Fig. 8. The width of the image (w) is far greater than the 
latency of voting for one pixel, so when one pixel has 
finished voting, its old disparity value has been moved to the 
next row buffer yet not shifted out again to vote for the pixel 
immediately below it. Therefore the newly updated disparity 
can be written back into the middle of the (r+2)th buffer, 
which is split into 2 segments to facilitate the operation. A 
multiplexor is used because the updated disparity is not 
available at the very beginning. 
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... ...

Disparity Voting
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vertical counterpart)

RGB Delay

(delayvoting×15bit)
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Fig 9. Design of horizontal voting architecture. 

 
 The implementation of horizontal voting demonstrated in 
Fig. 9, generally resembles the vertical counterpart except for 
the absence of write-back strategy. A set of shift registers are 
used instead of row buffers considering the horizontal input 
order. Write-back strategy is not used because when voting 
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has completed, the updated disparity will not be used again 
during the current vote (latency > r). 
 Memory cost of vertical disparity voting is tremendous. 
An estimation can be made: 3 vertical voting processes, each 
requires a (2r+1) w (6+5×3)bits buffer (r=10;w=1920 for HD 
image;6 is the bit-width of disparity when dmax=63;5×3 
stands for total bits of truncated RGB), therefore the total 
memory cost when the generation of Dr is also considered 
equals 21×1920×21×3×2bits=620kByte.  

dmaxw = w/n

w

...Slice 1 Slice 2 Slice n-1 Slice n

Slice 1 Slice 2 Slice n-1 Slice n...
Slice 2 Slice n-1 Slice n...Slice 1

Left

Image

Right

Image

Result

 
Fig 10. The concept of slice-based processing. 

 
 Actually when w is reduced, the memory cost is reduced 
proportionally. This inspires us to divide the input image into 
slices vertically generating sub-images with smaller width. 
But the concern is how the correctness of slice-based 
processing can be ensured. In fact the disparities of the 
leftmost h×dmax area of Il cannot be generated with full search 
range, so unreliable , 
which degrades the quality of the final result. The resort is to 
extend the all the slices in Il and Ir by dmax pixels so that 
reliable disparities can be produced from the otherwise 
unreliable zones. N unreliable 
extension can simply be discarded when disparity slices are 
finally appended together, as shown in Fig. 10. 
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Fig 11. Architecture of slice-based processing. 

 
 
dmax=63, so the memory cost for vertical voting is cut down 
to 21×(320+64)×21×3×2bits = 124kByte, which is much 
more hardware-friendly. The price of this solution is the 
slight reduction of processing speed since it takes 
320+64=384 clock cycles to process a row of 320 pixels (1.2 
times longer), hence the throughput of overall system is 1.2 
clock cycle per pixel. A trade-off can be made between 

The significance of this method is no matter how wide the 
image is, the memory cost of disparity voting remains 

constant. 
 Nonetheless, pixels from an image are input normally in a 
raster order rather than slice by slice, a ping-pong buffer 
based external memory structure is proposed, as is shown in 
Fig. 11. There are two banks of memory ahead of the 
matching system: one of them is being written by an image 
source in raster order while the other being read by matching 
system slice by slice; after the processing of the current 
frame has accomplished, the memory just being written is 
read slice by slice while the other memory now being written 
in raster order. Similarly if the receiver of the disparity map 
needs to read the image in raster order, another set of 
ping-pong buffer can be used at the output of the system. 
 

C. Occlusion Detection Module 
 The criterion of an occluded pixel is given in Eq. (8). This 
can be implemented by shift registers filled with Dr which 
wait to be selected by Dl for cross-check. We set 
threshold in Eq. (8); in practice we compare if Dl/2 and Dr/2 
are equal and the error proves to be unnoticeable. Thus 
generates the occlusion bit which is a label for occluded 
pixels. The design is shown in Fig. 12. 
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Fig 12. Design of occlusion detection module. 

 

D. Occlusion Filling Module 
 We present here a ping-pong buffer based structure to 
accomplish the two-pass scan. Once the forward filling of a 
pixel is done, its value is stored in a buffer while at the same 
time another buffer stored with filled disparity of the 
previous row is being filled reversely. After the entire row 
has been processed in both buffers, 2 buffers exchange their 
roles. The design is shown in Fig. 13. 
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Fig 13. Design of occlusion filling module. 

 
VI. Experimental Results 

 The quality of the results generated by the proposed 
algorithm is compared with several hardware-oriented 

[15] as the test bench. Our results 
are generated by the simulation of Modelsim 10.0c. 
 As can be seen in Fig. 14, the proposed algorithm 
generates high-quality results and especially outperforms 
other hardware-oriented algorithms in delineating the exact 
outline of objects in the image. This can be explained by 
iterative voting which repeatedly remove the misestimated 
disparities extending from correctly generated regions. Table 
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I gives a quantitative comparison by evaluator 
[15]. 

TABLE I. 
Quantitative comparison (error rate of non-occluded pixels at error 

threshold=1.0) based on Middlebury test bench. 
Algorithm Tsukuba Venus Teddy Cones Platform 

Proposed 2.21 1.73 5.74 3.64 FPGA 

[14] 2.54 0.19 6.74 4.42 FPGA 

[4] 9.79 3.59 12.50 7.34 FPGA 

[16] 2.81 1.75 10.5 8.90 FPGA 

[5] 3.84 1.20 7.17 5.41 FPGA 

[17] 2.16 0.24 6.27 4.7 GPU 

[18] 2.21 0.46 9.58 3.23 CPU 
From the comparison, our algorithm outperforms listed 

hardware algorithms in most test images and is able to 
generate results comparable to the software-based 
implementation. Nonetheless, our 

plain area with the gradient of disparity being diagonal. We 
hope aligning voting direction with gradient of pixels can be 
implemented efficiently on hardware in our future work. 

 
Fig 14. Disparity maps generated by the proposed algorithm 

show results from [4, 5, 14]. The 4th row presents results from the 
proposed algorithm. The 5th row shows the ground truth. 
 
 Next we give the result of synthesis and evaluate the 
practicability of the proposed system. We synthesize our RTL 
code with Quartus II 11.0 on device EP4S40G2. Maximum 
allowed frequency is 121.76MHz, which means that the 
system can process a pair of 1080p images at the frame rate 
of 121.76M/(1920×1080×1.2)=48fps.Thus real-time 
processing of HD video can be realized. The cost of hardware 
resources are: memory size 1,040kbit/14,283kbit (7.3%), 
total registers 96,398/182,400(52.8%), combinational ALUTs 
104,632/182,400(57.3%), all are affordable. MDES(millions 

of disparities estimated/second, a widely-used index) of our 
algorithm reaches 1920×1080×64×48=6370M, greater than 
4521M of [4], 3019M of[5], less than 9345M of [6](but their 
memory usage reaches 7128kbit). 

 

VII. Conclusion 
 This paper presents an iterative weighted disparity voting 
based local stereo matching algorithm and its RTL 
architecture. Experimental results show that system is able to 
process 1920×1080-image at 48fps with low memory cost, 
being very competitive among prior hardware-oriented 
implementations. 
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