
Real time vision by FPGA implemented CNNs

Juan Carlos López-Garćıa∗, Marco A. Moreno-Armendáriz†,
Jordi Riera-Baburés∗, Marco Balsi‡, Xavier Vilaśıs-Cardona∗.

Abstract — In order to get real time image pro-
cessing for mobile robot vision, we propose to use a
discrete time Cellular Neural Network implementa-
tion by a convolutional structure on Altera FPGA
using VHDL language. We obtain at least 9 times
faster processing than other emulations for the same
problem.

1 INTRODUCTION

Cellular Neural Networks (CNNs) [1, 2, 3] main as-
set is the possibility of hardware implementation of
large networks on a single VLSI chip [4, 5]. Among
the very many applications of Cellular Neural Net-
works, our efforts have been devoted to their use as
hardware platform for robot vision [7, 8, 9, 10, 11].
Starting from simple computer vision tasks, line fol-
lowing, we have shown how CNNs alone are capa-
ble of performing the necessary image processing to
guide a wheeled autonomous mobile robot. Actu-
ally, we are successfully dealing with more complex
problems such as obstacle avoidance and tracking.
Yet, CNN chips are hard to obtain and still very
expensive, so we have resorted to emulation for our
implementations [9, 10, 11]. Emulation is better
performed using Discrete-Time-CNNs [3]. Our core
operation shall be,

xij(n + 1) = Sign
(∑

kl∈N(ij) Ak−i,l−j xij(n)

+
∑

kl∈N(ij) Bk−i,l−juij(n) + I
)

(1)
using the usual CNN notation. So far, two types of
platforms have been used: a DSP programmed in
C and an FPGA coded using a high level language
called Handel C. Processing times have not yet been
satisfactory, though they have allowed a moderately
swift motion of the robot. Still, large detailed im-
ages or complex processing are too time demanding
to be considered on the current platforms. Looking
for a better performance we present in this paper a
new platform based also on FPGA, but coded using
efficient hardware description language so that the
processing time is considerably reduced.

∗Departament d’Electrònica, Enginyeria i Arquitectura
La Salle, Universitat Ramon Llull, Barcelona, Spain, email:
xvilasis@salleURL.edu

†Escuela de Ingenieŕıa, Universidad La Salle, México,
email: mmoreno@ci.ulsa.mx

‡Dipartimento di Ingegneria Elettronica, Università di
Roma ”La Sapienza”, Italy, email: balsi@uniroma1.it

2 HARDWARE SOLUTION

To solve our problem in autonomous robotics we
need: a) real-time image processing by a sequence
of CNN templates, in the way of a CNN-Universal
Machine; b) a compact low power hardware solu-
tion to be housed on a robot of 20 × 10cm size.

FPGAs are programmable logic devices [15] that
can be customized using Hardware Description
Languages (HDL) or other high level languages
in order to implement application-specific hard-
ware functions. From the literature, we know that
FPGA emulations of CNN prove to be the best
non-VLSI hardware implementations [12, 13, 14]
in terms of processing speed. Moreover, there
are small and powerful FPGA development boards
readily available on the market. So, they seem the
ideal hardware solution for us.

Direct hardware implementation of some critical
functional blocks in the FPGA gives good chances
for speed optimizations, but involves a full redesign
of the CNN emulation process. As an example,
operations such as mathematical functions become
more difficult to implement in the FPGA, but may
take advantage of hardware parallelism.

In order to meet the size and consumption re-
quirements, we resort to a Stratix Smartpack board
hosting an Altera Stratix EP1S25F672C6 FPGA.
Besides, we have prepared an adaptation board
to interface a 1/3′′ monochrome camera module
and to adapt the voltage levels between camera
(TTL) and FPGA (3.3 LVTTL), as seen of figure 1.
The camera uses OmniVision CMOS image sensor
OV7120 and provides a digital output, which can be
connected through a bi-directional expansion port
to our robot hardware [10, 11]. Our goal is to have
the full image processing performed by such a vi-
sual co-processor: camera and dedicated FPGA.

3 VHDL IMPLEMENTATION

In order to optimize the hardware implementation
of the FPGA we decided to use a low level lan-
guage, VHDL (Very High Speed Integrated Circuit
HDL) [16]. To emulate the Discrete-Time CNN
process, a fully parallel individual neuron imple-
mentation appears to be, after preliminary calcu-
lations, too area demanding. Therefore, we resort
to take advantage of the convolutional structure of



Figure 1: Connection scheme between the camera
and the FPGA board

Figure 2: CNN implementation block diagram.

the DT-CNN evolution operation. The general di-
agram of the implementation is shown in figure 2

The RAM components are used to store the origi-
nal images captured by the camera and the iterative
results of the processes. Images of up to 256 × 256
pixels are allowed. However, to reduce the process-
ing time we work with 128×96 pixels images. This
resolution should be enough for most applications,
including our robot vision tasks.

The Image Windowing block is used to prepare
the image to be convoluted with the cloning tem-
plate. That means that it has to extract the 5 × 5
matrix containing the bit currently being processed
in the central position and its surrounding neigh-
bors. There are two Image Windowing blocks, one
operating on the original image (U matrix) and the
other operating in the last resulting image (X ma-
trix) from an iteration.

The Template Acquisition block is used to ac-
quire the cloning templates from internal memories,

Figure 3: Block diagram for the convolution imple-
mentation.

which can store up to 32 cloning templates. As a
result we will have two 5×5 matrices A, B and one
constant value I. Finally, the Convolution block is
used to obtain the new state of the pixels using the
selected cloning template.

Once we know the functionality of each block we
can see their time cost. The Image Windowing
block requires time to load the buffers to get the
first 5 × 5 valid output block. This is a function of
the image size, and follows the equation

tLoad = (2 · Columns + 3) · tClk. (2)

After that time, each tClk gives us a new 5×5 valid
block. The next step is to make the convolution
between the matrices A, B, U and X. This pro-
cess has to be repeated over all the pixels of the
image. We use the convolution diagram shown on
figure 3 to study the time cost of this operation.
As can be seen, we use 4 different block types to
make the convolution. First one is a signed mul-
tiplier, which is used to make the component-to-
component multiplication. As it should be as fast
as possible, we have taken the optimized Embedded
Multipliers provided by the FPGA, which work in
parallel. Although these multipliers are specific for
the selected FPGA architecture, no much difficulty
should be encountered to accommodate to other
ones. The operation takes 4 tClk to produce the
correct results in the worts case.

Then, we have to add the results of the prod-
ucts. Two 25-input signed adders are implemented
to produce the convolution between A and X, and
between B and U , respectively. Those adders will
take 3 tClk to propagate their result. Immediately,
we have to add the products AX and BU with the
constant value I. This requires waiting an addi-
tional 2 tClk. Finally, the last step is to decide the



Figure 4: Iteration Time (in seconds) as a function
of the number of columns and rows.

new value of the state. A comparator is used (1
tClk).

The diagram in figure 3 shows the basic functions
of the process, but we have to spend a little more
time making slight normalizations of the camera
pixels. In total, one pixel convolution takes 10 tClk.
This should be repeated for all pixels in the image.
As a result we require tIter time to complete an
iteration process, which is:

tIter = tLoad + PIXELS · tConv,
= [(10 · Rows + 2) · Columns + 3] · tClk,

(3)
where tConv is the time to perform one pixel con-
volution and Columns/Rows/PIXELS are, respec-
tively, the total number of columns/rows/pixels in
the image. In figure 4 we plot tIter as a function of
the number of columns and rows.

This implementation, including some more
blocks to perform image acquisition and serial com-
munications to a PC for monitoring purposes, has
been tested on the Stratix EP1S25F672C6 with the
synthesis results: 3.618 logic cells (13%), 1.584.992
memory bits (81%), 50 signed multipliers (62%),
25 In/Out pins (5%), maximum clock frequency of
56MHz.

4 RESULTS AND DISCUSSION

To test the implementation, we start by individ-
ually checking the templates used in our robotic
applications. For a typical line-following task, the
list of templates [7] includes: a Small Object Killer
to binarise and clean the image; direction detec-
tors (horizontal, vertical, oblique); and projectors
(Connected Component Detector). Parameters for
such cloning templates are listed in table 1 and the
processing results are shown in figure 5.

(a) (b)

(c) (d)

(e) (f)

Figure 5: Examples of application of some cloning
templates needed for the line following task: from
original image (a) we obtain (b) applying the Small
Object Killer; from a collection of lines (c) we ex-
tract only those with horizontal direction (d) using
the correct selector; finally, we perform the projec-
tion of sample line (e) to (f) by using the connected
component detector.

Then, we use an standard process that requires
120 iterations (about 8 cloning templates) on 30 ×
30 pixel images to compare full processing times
of our VHDL FPGA implementation against that
of the emulations based on other platforms (DSP
and Handel-C FPGA) which had been previously
used by our robots [10, 11]. The inverse of process-
ing time, that is, the number of images per second
that can be processed in each platform, is shown
in figure 6. As can be seen there is a significant
improvement with respect to our previous results,
at least a factor 9 reduction in processing time.

On this ground we can envisage to deal with
larger images or more complex template sequences,
to face more realistic problems. As a by product,
we have produced a compact low consumption vi-
sual co-processor whose use can be planned beyond
robot vision.



A B I

small object killer

(
1 1 1
1 2 1
1 1 1

)
0 0

horizontally-tuned filter 2


−1 0.5 1 0.5 −1
−1 1 1 1 −1
−1 −1 5 −1 −1
−1 1 1 1 −1
−1 0.5 1 0.5 −1

 -13

connected-component detector

(
0 1 0
0 2 0
0 −1 0

)
0 0

Table 1: Sample templates tested.

Figure 6: CNN emulation platform versus images
per second for a 120 iteration process (about 8
cloning templates) applied on images of size 30×30.

Acknowledgments

This work is financially supported by FUNITEC
under contract PGR-PR-2004-03.

References

[1] Chua, L.O., Yang, L. (1988) Cellular Neural Net-
works: Theory. IEEE Trans. Circ. Syst. CAS-35
1257-1272

[2] Chua, L.O., Roska, T. (1993) The CNN Paradigm.
IEEE Trans. Circ. Syst. CAS-I-40 147-156

[3] Harrer, H., Nossek, J.A. (1992) Discrete-time Cel-
lular Neural Networks. Int. J. of Circ. Th. Appl.20
453-467

[4] Liñan, L., et. al. (2002) ACE4K: An Analog I/O
64x64 Visual MicroProcessor Chip with 7-bit Ana-
log Accuracy. Int. J. of Circ. Th. Appl., 30 89-116

[5] Kananen, A., Paasio, A., Laiho, M., Halonen,
K. (2002) CNN Applications from the Hardware
Point of View: Video Sequence Segmentation. Int.
J. of Circ. Th. Appl., 30 117-137

[6] Roska, T., Chua, L.O. (1993) The CNN Univer-
sal Machine: an Analogic Array Computer . IEEE
Trans. Circ. Syst. CAS-I-40 163-173

[7] Vilaśıs-Cardona, et. al. (2002) Guiding a mobile
robot with Cellular Neural Networks, Int. J. of
Circ. Th. Appl. 30 611-624.

[8] Balsi, M., Vilaśıs-Cardona, X. (2002) Robot Vi-
sion using Cellular Neural Networks mobile robot
vision. Zhou, C., Maravall, D., Ruan, D. Eds. Au-
tonomous Robotic Systems, Physica-Verlag 2002.

[9] Balsi, M., Bellachioma, D., Graziani, S., Vilaśıs-
Cardona, X. (2003) Robot Vision by CNNs emu-
lated in FPGAs, Proc. of European Conference on
Circuit Theory and Design Cracow, Poland 2003.

[10] Vilaśıs-Cardona, X., et. al. Robot Vision with
Cellular Neural Networks: a Practical Implemen-
tation, in Grau, A., Puig, V., Recerca en Au-
tomàtica, Visió i Robòtica, Edicions de l’UPC,
2004, p 353.

[11] Pazienza, G., et. al. (2005) Tracking for a CNN
guided robot, in Proceedings of ECCTD 2005.

[12] Nagy Z., Szolgay, P., (2003) Configurable Multi-
layer CNN-UM Emulator on FPGA, IEEE Trans.
Circ. Syst. I 50 774-778.

[13] Wielher K., Perezowsky M., Grigat R.-R., (2000)
A detailed analysis of different CNN implementa-
tions for real-time image processing system, Pro-
ceedings of CNNA 2000, 351-355.

[14] Perko, M., Faifar, I., Tuma T., Puhan J., (2000),
Low-cost, high performance CNN simulator im-
plemented in FPGA, Proceedings of CNNA 2000,
277-282.

[15] Brown, S., Rose, J. (1996) Architecture of FPGAs
and CPLDs: A Tutorial, IEEE Design and Test of
Computers, 13, No. 2, pp. 42-57

[16] Shahdad, M., (1986) An overview of VHDL lan-

guage and technology, Proceedings of the 23rd

ACM/IEEE conference on Design automation,

pages 320-326




