Deeper Deep Networks

presented by:
Spencer Cappallo

Overview

e Three recent papers discussing “deeper” deep networks

e All achieve state-of-the-art results

e High-level overview of new ideas in these networks

Network in Network

Lin, Min, Qiang Chen, and Shuicheng Yan. "Network In
Network." arXiv preprint arXiv:1312.4400 (2013).

Basic ldea:

Uses small “micro networks” as a function
approximator to replace conventional
convolution operation

Network in Network: Intuition

- Activations correspond to latent concepts

- Convolutional filters act as linear binary classifiers for
these latent concepts in local patches

- These filters work well when the local latent concepts
are linearly separable, but instead often very nonlinear

- NIN instead opts for nonlinear network structure to
replace convolutional filters

Network in Network: milpconv layers

Use multilayer perceptrons as universal function
approximator in place of standard convolutions

- Easily incorporated into backpropagated network
- Uses RelLUs

- Shared hidden units

Network in Network: milpconv layers

(a) Linear convolution layer (b) Mlpconv layer

Hidden layers are shared between output feature maps
- Cross channel information

Network in Network: Structure

Replace fully connected layers with global average pooling

- More interpretable: direct connection between
categories and feature maps

- Enforces a correspondence between last feature
map and category

- Prevents overfitting

Network in Network: Structure

The network used in the paper:

Figure 2: The overall structure of Network In Network. In this paper the NINs include the stacking
of three mlpconv layers and one global average pooling layer.

- Three mlpconv layers
- Global average pooling layer
- No FC layers

Network in Network: Results

Comparison of global average pooling to fully connected
layers on CIFAR-10:

Method Testing Error
mlpconv + Fully Connected 11.59%
mlpconv + Fully Connected + Dropout 10.88%
mlpconv + Global Average Pooling 10.41%

Improvement over fully connected layers. This result will
also be repeated in the next paper.

Network in Network: Results

Table 1: Test set error rates for CIFAR-10 of various methods. N .
Table 3: Test set error rates for SVHN of various methods.

Method Test Error

Stochastic Pooling [11] 15.13% Method , Test Error
CNN + Spearmint [14] 14.98% Stochastic Pooling [11] 2.80%
Conv. maxout + Dropout [8] 11.68% Rectifier + Dropout [18] 2.78%
NIN + Dropout 10.41% Rectifier + Dropout + Synthetic Translation [18] 2.68%
CNN + Spearmint + Data Augmentation [14] 9.50% Conv. maxout + Dropout [8] 2-472/"
Conv. maxout + Dropout + Data Augmentation [8] 9.38% NIN + Dropout . 2.35 0/0
DropConnect + 12 networks + Data Augmentation [15] 9.32% Multi-digit Number Recognition [19] 2.16%
NIN + Dropout + Data Augmentation 8.81% DropConnect [15] 1.94%

Table 2: Test set error rates for CIFAR-100 of various methods. R .
Table 4: Test set error rates for MNIST of various methods.

Method Test Error

; Method Test Error
1 (¥,
lgf;‘éggilz Ogéi)‘}ign{gl ?l] . j;_ ;/i ;z 3-Layer CNN + 2-Layer NN [11] _ 0.53%
N . B H ',
Conv. maxout + Dropout [8] 38.57% litﬁﬁhf sl;rco;’gsimg 1) 8:342
Trﬁs bai%)ed priors [17] ;6-233 Conv. maxout + Dropout [8] 0.45%
NIN + Dropout 5.68 %

* Note that NIN still needs dropout

Network in Network: Take-aways

- Additional non-linearity may significantly improve
discriminative abilities of layers

- Replacing fully connected layers with the global average
pooling seems to improve performance

- Impressive performance on datasets tested

...but how well do these ideas scale up?

GooglLeNet

Szegedy, Christian, et al. "Going deeper with
convolutions." arXiv preprint arXiv:1409.4842 (2014).

Submission to ILSVRC2014 challenge

- 1st place Classification

- 1st place Object Detection with
additional Training Data

GooglLeNet

:

E3 B3 B3 B3 BN

! :ifi
‘

Convolution/FC Softmax Concatenation

Looks like a big, ugly mess.

Fortunately, if we break it down a bit it's not too bad.

GooglLeNet: Inception Module

Idea 1:

Use 1x1, 3x3, and 5x5
convolutions in parallel to
capture a variety of
structures

Also add a parallel max
pooling path

Filter
concatenation

1x1 convolutions

3x3 convolutions

5x5 convolutions

3x3 max pooling

GooglLeNet: Inception Module

Idea 1:

Use 1x1, 3x3, and 5x5
convolutions in parallel to
capture a variety of
structures

Also add a parallel max
pooling path

Filter
concatenation

1x1 convolutions

3x3 convolutions

5x5 convolutions

3x3 max pooling

The problem: Computational Expense quickly balloons

GooglLeNet: Inception Module

Idea 2:

Use 1x1 convolutional layers
for dimensional reduction.

- Limits computational blow

Filter
concatenation

ﬂ‘\

1x1 convolutiens

3x3 convolutions

5x5 convolutions

1x1 convolutions

A

)

ﬂtions

up from increasing parameters

- The 1x1 convolutions also use RelLUs, so provide an

added element of non-linearity

1x1 convolutions

i

3x3 max pooling

"

Previous layer

GoogLeNet

type "”::::lw 0‘;::’:‘ depth | #1x1 ﬁ;f #3x3 ﬁi;f #5X5 l‘:‘:} params | ops

convolution TXT/2 112x112x64 1 2.7K RENY |
max pool 3x3/2 56 X 56 x 64 0

convolution 3x3/1 56 xX56x192 2 64 192 112K 360M
max pool 3x3/2 28 x28x192 0

inception (3a) 28 x28x256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x28x480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14x14x480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4¢) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TXTXx832 0

inception (5a) TXTxX832 2 256 160 320 32 128 128 1072K 54M
inception (5b) 7TXTx1024 2 384 192 384 48 128 128 1388K 71IM
avg pool TXT/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K IM

softmax 1x1x1000 0

Note, they also replaced FC with avg pool

GooglLeNet

Not so scary after all, just 9 of these “inception modules”
stacked on top of each other

GooglLeNet

Not so scary after all, just 9 of these “inception modules”
stacked on top of each other

...but wait, what are these things?

GooglLeNet: Auxiliary Classifiers

Problem:

The depth of the network raises concerns about the
effectiveness of the backpropagating gradient

Their solution?
Throw on auxiliary classifiers part way through

- Small convnets with a pooling layer, a 1x1 convolution
layer, fully connected layers, and softmax loss layer on
1000 classes

- Combined with backprop’d loss with relative weight of
0.3

- (Removed at test time)

GooglLeNet

Now the structure should be less intimidating

GooglLeNet: Stats

12x fewer parameters than AlexNet

- The move away from fully connected layers near the top
of the network helps with this

22 Layers deep

~2X more operations than AlexNet

GooglLeNet: Results

Team Year | Place | Error (top-5) | Uses external data
SuperVision || 2012 | Ist 16.4% no

SuperVision || 2012 | Ist 15.3% Imagenet 22k
Clarifai 2013 | 1st 11.7% no

Clarifai 2013 | 1st 11.2% Imagenet 22k
MSRA 2014 | 3rd 7.35% no

VGG 2014 | 2nd 7.32% no

GooglLeNet | 2014 | 1st 6.67% no

Table 2: Classification performance

GooglLeNet: Take-aways

- Once more we see the replacement of a fully-connected
layer with global average pooling

- 1x1 Convolutional filters similar to multilayer
perceptrons in Network in Network paper

- Concatenation of different size convolutional filters

- Mid-network classification to improve backpropagation
signal and increase mid-network discriminant abilities

Very Deep ConvNets

Simonyan, Karen, and Andrew Zisserman. "Very Deep
Convolutional Networks for Large-Scale Image
Recognition." arXiv preprint arXiv:1409.1556 (2014).

How much effect does extra depth add?

Very Deep ConvNets

Basic idea:

- Stack a bunch of convolutional layers on top of each
other, with occasional max-pooling

- All convolutional layers either 3x3 or 1x1

- Stacks of 3x3 layers have equivalent receptive fields
to larger convolutional filters

- 1x1 convolutions being used here, again, to
iIntroduce extra non-linearity
(input/output channels’ dimensions are equal here)

Very Deep ConvNets

Why stacks of 3x3 Convolutions?

- Added discriminative ability from more RelLU layers

- Effective receptive field equivalent to larger
convolutions

- Fewer parameters

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB 1mage)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Table 2: Number of parameters (in millions).

Network

AA-LRN | B

C D

Number of parameters

133

133

134 1 138

144

Very Deep ConvNets: Results

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1) | smallest image side | top-1 val. error (%) | top-5 val. error (%)
train (S) | test (Q)
A 256 256 29.6 10.4
A-LRN 256 256 29.7 10.5
B 256 256 28.7 9.9
256 256 28.1 9.4
C 384 384 28.1 9.3
[256:512] 384 27.3 8.8
256 256 27.0 8.8
D 384 384 26.8 8.7
[256:512] 384 25.6 8.1
256 256 27.3 9.0
E 384 384 26.9 8.7
[256;512] 384 255 8.0

— Deeper is better

Very Deep ConvNets: Take-aways

- Again we see deeper nets pushing the state of the art

- Once more, greater non-linearity improving network
ability

- Both through 1x1 convolutions and stacks of 3x3

