Deeper Deep Networks

presented by: Spencer Cappallo

Overview

• Three recent papers discussing "deeper" deep networks

• All achieve state-of-the-art results

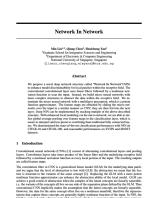
• High-level overview of new ideas in these networks

Network in Network

Lin, Min, Qiang Chen, and Shuicheng Yan. "Network In Network." *arXiv preprint arXiv:1312.4400* (2013).

Basic Idea:

Uses small "micro networks" as a function approximator to replace conventional convolution operation



mane, in this work, we show emilitype proception [1] is the instantiation of the mixino strends, which is a survival factorion approximation and a neural network translated by back-propagation. The results gravitational processing and a strenge in the strength of the st

Network in Network: Intuition

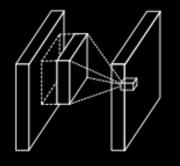
- Activations correspond to latent concepts
- Convolutional filters act as linear binary classifiers for these latent concepts in local patches
- These filters work well when the local latent concepts are linearly separable, but instead often very nonlinear
- NIN instead opts for nonlinear network structure to replace convolutional filters

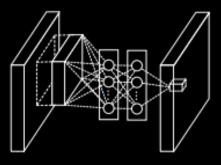
Network in Network: mlpconv layers

Use multilayer perceptrons as universal function approximator in place of standard convolutions

- Easily incorporated into backpropagated network
- Uses ReLUs
- Shared hidden units

Network in Network: mlpconv layers





(b) Mlpconv layer

Hidden layers are shared between output feature maps

- Cross channel information

Network in Network: Structure

Replace fully connected layers with global average pooling

- More interpretable: direct connection between categories and feature maps
 - Enforces a correspondence between last feature map and category
- Prevents overfitting

Network in Network: Structure

The network used in the paper:

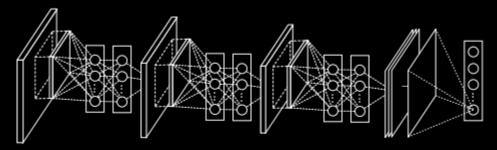


Figure 2: The overall structure of Network In Network. In this paper the NINs include the stacking of three mlpconv layers and one global average pooling layer.

- Three mlpconv layers
- Global average pooling layer
- No FC layers

Network in Network: Results

Comparison of global average pooling to fully connected layers on CIFAR-10:

Method	Testing Error
mlpconv + Fully Connected	11.59%
mlpconv + Fully Connected + Dropout	10.88%
mlpconv + Global Average Pooling	10.41%

Improvement over fully connected layers. This result will also be repeated in the next paper.

Network in Network: Results

Table 1: Test set error rates for CIFAR-10 of various methods.

Method	Test Error
Stochastic Pooling [11]	15.13%
CNN + Spearmint [14]	14.98%
Conv. maxout + Dropout [8]	11.68%
NIN + Dropout	10.41%
CNN + Spearmint + Data Augmentation [14]	9.50%
Conv. maxout + Dropout + Data Augmentation [8]	9.38%
DropConnect + 12 networks + Data Augmentation [15]	9.32%
NIN + Dropout + Data Augmentation	8.81%

Table 3: Test set error rates for SVHN of various methods.

Method	Test Error
Stochastic Pooling [11]	2.80%
Rectifier + Dropout [18]	2.78%
Rectifier + Dropout + Synthetic Translation [18]	2.68%
Conv. maxout + Dropout [8]	2.47%
NIN + Dropout	2.35%
Multi-digit Number Recognition [19]	2.16%
DropConnect [15]	1.94%

Table 2: Test set error rates for CIFAR-100 of various methods.

Method	Test Error
Learned Pooling [16]	43.71%
Stochastic Pooling [11]	42.51%
Conv. maxout + Dropout [8]	38.57%
Tree based priors [17]	36.85%
NIN + Dropout	35.68%

Table 4: Test set error rates for MNIST of various methods.

Method	Test Error
2-Layer CNN + 2-Layer NN [11]	0.53%
Stochastic Pooling [11]	0.47%
NIN + Dropout	0.47%
Conv. maxout + Dropout [8]	0.45%

Network in Network: Take-aways

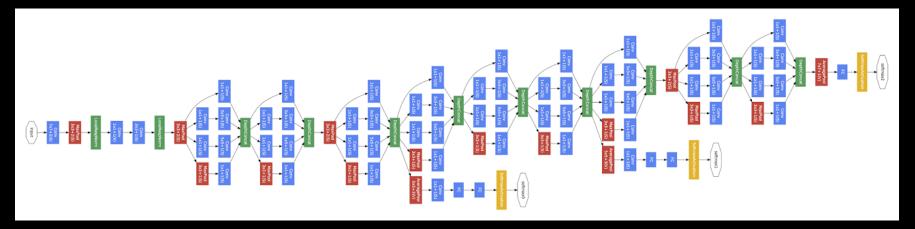
- Additional non-linearity may significantly improve discriminative abilities of layers
- Replacing fully connected layers with the global average pooling seems to improve performance
- Impressive performance on datasets tested

...but how well do these ideas scale up?

Szegedy, Christian, et al. "Going deeper with convolutions." *arXiv preprint arXiv:1409.4842* (2014).

Submission to ILSVRC2014 challenge

- 1st place Classification
- 1st place Object Detection with additional Training Data



Convolution/FC

Max Pooling Softmax

Concatenation

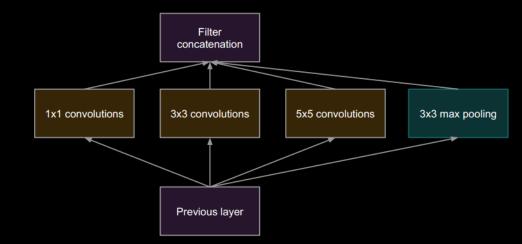
Looks like a big, ugly mess.

Fortunately, if we break it down a bit it's not too bad.

GoogLeNet: Inception Module

Idea 1:

Use 1x1, 3x3, and 5x5 convolutions in parallel to capture a variety of structures

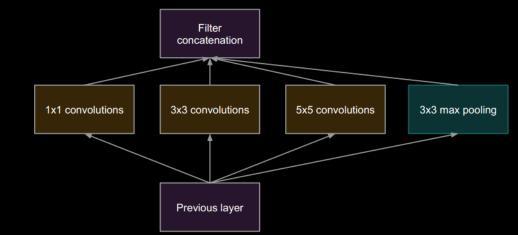


Also add a parallel max pooling path

GoogLeNet: Inception Module

Idea 1:

Use 1x1, 3x3, and 5x5 convolutions in parallel to capture a variety of structures



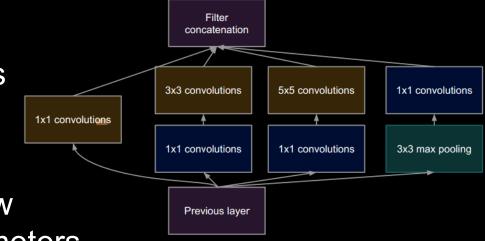
Also add a parallel max pooling path

The problem: Computational Expense quickly balloons

GoogLeNet: Inception Module

Idea 2:

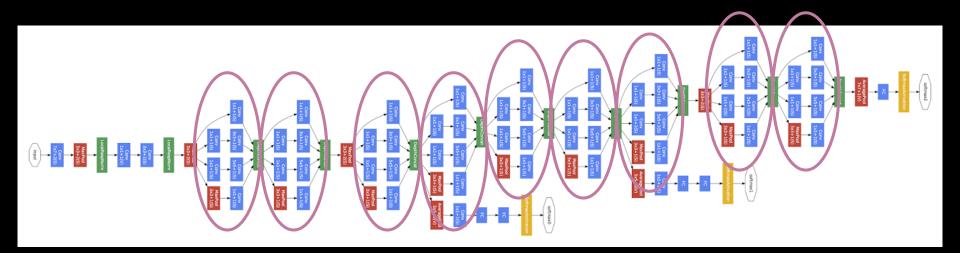
Use 1x1 convolutional layers for dimensional reduction.



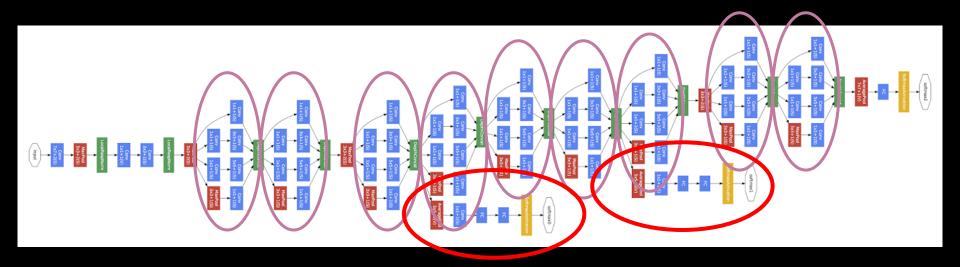
- Limits computational blow up from increasing parameters
- The 1x1 convolutions also use ReLUs, so provide an added element of non-linearity

type	patch size/	output	depth	#1×1	#3×3	#3×3	$#5 \times 5$	$#5 \times 5$	pool	params	ops
type	stride	size	ucptii	#1/1	reduce	#373	reduce	#0/0	proj		ops
convolution	$7 \times 7/2$	$112 \times 112 \times 64$	1							2.7K	34M
max pool	$3 \times 3/2$	$56 \times 56 \times 64$	0								
convolution	$3 \times 3/1$	$56\!\times\!56\!\times\!192$	2		64	192				112K	360M
max pool	$3 \times 3/2$	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	$3 \times 3/2$	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	$3 \times 3/2$	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	$7 \times 7/1$	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		$1 \times 1 \times 1000$	1							1000K	1M
softmax		$1 \times 1 \times 1000$	0								

Note, they also replaced FC with avg pool



Not so scary after all, just 9 of these "inception modules" stacked on top of each other



Not so scary after all, just 9 of these "inception modules" stacked on top of each other

...but wait, what are *these things*?

GoogLeNet: Auxiliary Classifiers

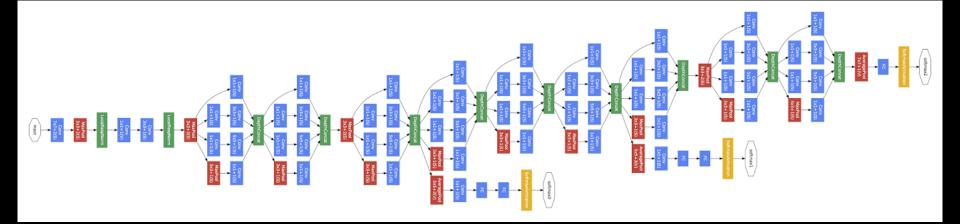
Problem:

The depth of the network raises concerns about the effectiveness of the backpropagating gradient

Their solution?

Throw on auxiliary classifiers part way through

- Small convnets with a pooling layer, a 1x1 convolution layer, fully connected layers, and softmax loss layer on 1000 classes
- Combined with backprop'd loss with relative weight of 0.3
- (Removed at test time)



Now the structure should be less intimidating

GoogLeNet: Stats

12x fewer parameters than AlexNet

- The move away from fully connected layers near the top of the network helps with this

22 Layers deep

~2x more operations than AlexNet

GoogLeNet: Results

Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

Table 2: Classification performance

GoogLeNet: Take-aways

- Once more we see the replacement of a fully-connected layer with global average pooling
- 1x1 Convolutional filters similar to multilayer perceptrons in Network in Network paper
- Concatenation of different size convolutional filters
- Mid-network classification to improve backpropagation signal and increase mid-network discriminant abilities

Very Deep ConvNets

Simonyan, Karen, and Andrew Zisserman. "Very Deep **Convolutional Networks for Large-Scale Image** Recognition." arXiv preprint arXiv:1409.1556 (2014).

How much effect does extra depth add?

Very Deep Convolutional Networks for Large-Scale Image Recognition

ren Simonyan Andrew Zisse Visual Geometry Group, University of Oxford {karen,az}@robots.ox.ac.uk

Abstract

In this work we investigate the effect of the convolutional network depth on in accuracy in the large-scale image recognition setting. Our main contribution is abrough evaluation of networks of increasing depth, which shows that a signifi-cant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These fundings were the basis of our ImageNC Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively.

Consolutional networks (ConvNets) have recently enjoyed a great nuccess in large-scale visue recognition [10, 16, 17, 17, 19] which has become possible due to the large public image requirition instances of the state of the instance due to the public large possible due to the state of the state of the state of the instance due to the state of the state o deep visual recognition archi-tion Challenge (ILSVRC) [1]

With Com/view becoming more of a commodity in the computer vision field, a number of att have been made to improve the original architecture of [10] in a bid to achieve better accuracy instance, the best-performing submissions to the LIXPAC-2013 [16, [10] Hilded smaller rese window size and smaller stride of the first convolutional layer. Another line of improvements with training and testing the networks densely over the whole image and over multiple scales]. In this paper, we address another in this end, we fix other parameters of by adding more convolutional layer another important aspo ameters of the architect

The rest of the paper is organised as follows. In Sect. 2, we describe our ConvNet configuration The details of the image classification training and evaluation are then presented in Sect. 3, and the configurations are compared on the ILSVRC classification task in Sect. 4. For completeness, we also describe and assess our object localisation system in Sect. 5, and Sect. 6 concludes. 2 ConvNet Configuration

To measure the improvement brought by the increased ConvNet depth in a fair setting, all our ConvNet layer configurations are designed using the same principles, inspired by [2, 10]. In this section, we find settine a generic layout of our ConvNet configuration (Sect. 2.1) and then de-tail out the specific configurations used in the evaluation (Sect. 2.2). Our design choices are then discussed and compared to the prior and in Sect. 2.3. 2.1 Architectur

The input to a ConvNet is a fixed-size 224 × 224 RGB image. The only pre-processing we de is subtracting the mean RGB value, computed on the training set, from each pixel. The image

Very Deep ConvNets

Basic idea:

- Stack a bunch of convolutional layers on top of each other, with occasional max-pooling
- All convolutional layers either 3x3 or 1x1
 - Stacks of 3x3 layers have equivalent receptive fields to larger convolutional filters
 - 1x1 convolutions being used here, again, to introduce extra non-linearity (input/output channels' dimensions are equal here)

Very Deep ConvNets

Why stacks of 3x3 Convolutions?

- Added discriminative ability from more ReLU layers

- Effective receptive field equivalent to larger convolutions
- Fewer parameters

ConvNet Configuration							
Α	A-LRN	В	С	D	E		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
input (224×224 RGB image)							
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
			pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
			pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
maxpool							
FC-4096							
FC-4096							
FC-1000							
soft-max							

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

Very Deep ConvNets: Results

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train (S)	test (Q)		
A	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
B	256	256	28.7	9.9
	256	256	28.1	9.4
С	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
E	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

Table 3: ConvNet performance at a single test scale.

 \rightarrow Deeper is better

Very Deep ConvNets: Take-aways

- Again we see deeper nets pushing the state of the art

- Once more, greater non-linearity improving network ability
 - Both through 1x1 convolutions and stacks of 3x3