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Abstruct- A neural network with 136000 connections for 11. THE ANNA NEURAL NETWORK CHIP ARCHITECTURE 
recognition of handwritten digits has been implemented using 
a mixed analogldigital neural network ship. The neural network 
chip is capable of processing 1000 characters per second. The 
recognition system has essentially the same error rate (5%) as a 
simulation of the network with 32-bit floating-point precision. 

I. INTRODUCTION 

E have designed, fabricated, and tested a reconfig- W urable neural network chip, called the ANNA chip (for 
analog neural network arithmetic and logic unit). The chip 
is optimized for locally connected, weight-sharing networks 
and time-delay neural networks (TDNN’s), but can also be 
used for a wide variety of other network architectures, such 
as fully connected and recurrent networks. Synaptic weights 
are learned off-chip, quantized to the chip’s resolution, and 
then down-loaded into the chip’s weight memory. A detailed 
description of the chip has been published in [l] and [2]. 

Locally connected, weight-sharing neural networks have 
a wide range of application. They have been successfully 
used for optical character recognition (OCR) of both digits 
and letters [3], character recognition from touch screens [4], 
image segmentation [5], and speech recognition [6]. LeCun 
et al. [3] have described a neural network for optical recog- 
nition of digits. The network performs particularly well in 
recognizing noisy, handwritten characters and in estimating 
the confidence of the classification. The high performance 
is due to a technically advanced architecture featuring local 
connections and weight sharing. This architecture is well 
suited for implementation on the ANNA chip. An extended 
version of the network described in [3] has been chosen as 
an application example for the ANNA chip and is described 
in this paper. 

Many neural network chips have been developed to date, 
but demonstration of large real-world applications for them is 
often neglected. The implementation of the OCR network with 
a total of 136000 connections using one ANNA chip clearly 
shows its practical significance. 

Important questions, such as the speed advantage gained 
through this special-purpose hardware and the impact of 
low-resolution arithmetic on the classification accuracy, are 
discussed in this paper. 
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The ANNA neural network chip, implemented in a 0.9 pm 
CMOS technology, contains 180000 transistors on a 4.5 x 
7 mm2 die (see Fig. 1). The chip implements 4096 physical 
synapses, which can be time multiplexed in order to realize 
networks with many more than 4096 connections. The reso- 
lution of the synaptic weights is 6 bits and that of the states 
(input/output of the neurons) is 3 bits. Additionally, a 4-bit 
scaling factor can be programmed for each neuron to extend 
the dynamic range of the weights. The weight values are stored 
as charge packets on capacitors and are periodically refreshed 
by two on-chip 6-bit DIA converters. The synapses are realized 
by multiplying 3-bit D/A converters (analog weight times 
digital state). The analog results of this multiplication are 
added by means of current summing and then converted 
back to digital by a saturating 3-bit AID converter. Although 
the chip uses analog computing internally, all input/output is 
digital. This combines the advantages of high synaptic density, 
high speed, low power of analog, and easy interfacing to a 
digital system such as a digital signal processor (DSP). 

In the following, a simplified discussion of the chip’s archi- 
tecture is presented (see Fig. 2). This description leaves out 
many details but is sufficient to describe the implementation 
of the network on the chip. More detailed descriptions can be 
found in [1] and [2]. 

The chip evaluates eight dot products of state vector 2 and 
weight vectors wi in parallel. The state vector is supplied 
by a barrel shifter and the eight weight vectors are selected 
from a large (4096) on-chip weight memory by a multiplexer. 
The eight scalar results wi z are passed through a squashing 
function f ( . )  yielding eight scalar neuron outputs 2,. The 
whole neuron-function evaluation process takes 200 ns, or four 
clock cycles. The chip can be reconfigured for weight and state 
vector sizes of 64, 128, and 256. These figures also correspond 
to the number of synapses per neuron. 

The input state vector 2, is provided by a shift register 
which can be shifted by one, two, three, or four positions in 
two clock cycles (1 00 ns). Correspondingly, one, two, three, 
or four new data values are read into the left end of the shift 
register. This barrel shifter serves two purposes: (i) Because 
of pin limitations, it is not possible to load the whole state 
vector (up to 256 x 3 bits) in parallel onto the chip; therefore 
sequential loading is imperative. (ii) A barrel shifter is the 
ideal preprocessor for networks with local receptive fields and 
weight sharing (convolutional networks) as well as time-delay 
neural networks (the reason for this will be clarified in the 
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Fig. I .  Micrograph of the ANNA chip 
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Fig. 2. Simplified architecture of the ANNA chip. The input state vector, 
which can be of size 64, 128, or 256 (x3  bit), is loaded into the barrel shifter. 
This vector is multiplied with eight weight vectors of the same size selected 
from the weight memory. The result of the dot product is passed through a 
squashing function (neuron function) which appears at the output of the chip. 

network implementation section). The barrel shifter on the chip 
has length 64, but can be extended to larger sizes by means 
of an associated vector-register file. The barrel shifter can be 
operated in parallel to the neuron-function unit, such that the 
new state vector is available as soon as a new calculation 
cycle starts. 

A total of 4096 analog weight values are stored on the chip. 
These values can be grouped into vectors of size 64, 128, 
and 256 in a flexible way. For instance, it is possible to have 
simultaneously 32 weight vectors of size 64, eight vectors of 
size 128, and four vectors of size 256 on the same chip. Of 
the many weight vectors stored on chip, eight (MI. . . . , wg) 
are selected in each calculation cycle and multiplied with the 
content of the barrel shifter (z). 

If all neurons are configured for the maximum size of 
256 synapses, the chip can evaluate a maximum of 10 . 
IO9 connections per second (10 GC/s), corresponding to 8 
neurons x 256 synapses/200 ns %IO GC/s. In practical ap- 
plications the speed may be lower for the following reasons: 
(i) the application does not make full use of the chips paral- 
lelism, i.e., the neurons have fewer than 256 synapses or fewer 
than eight neurons use the same input data, and (ii) the neuron- 
function unit has to wait for the barrel shifter to prepare the 
state vector for the next calculation. For example a network 
with a 16 x 16 local receptive field, weight sharing, and 16 
features performs at a rate of 5 GC/s. 

For practical use, the chip has to be integrated into a 
system. The hardware around the chip has to perform three 
major tasks: (i) supply and store the state data to and from 
the chip (memory controller), (ii) generate microcode words 
corresponding to the network topology to be evaluated (se- 
quencer), and (iii) refresh the dynamic on-chip weight storage 
(refresh controller). A VME board (see Fig. 3) has been built 
that contains the ANNA chip and, for maximum flexibility, 
a digital signal processor (DSP32C). On the one hand the 
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Fig. 3.  VME board containing the ANNA chip and a DSP32C digital signal procc\wr 

DSP acts as a memory controller, sequencer, and refresh 
controller for the ANNA chip, while on the other it  can be 
used to preprocess the input to the neural network (e.g. size 
normalization), postprocess the results from the network (e.g. 
by implementing a classification algorithm), and run learning 
algorithms (e.g. back-propagation). In this way a complete 
task can be performed on the board with a minimum of data 
exchange with the host. 

111. OPTICAL CHARACTER RECOGNITION (OCR) NETWORK 

The general structure of the OCR digit recognizer is a 
five-layer feedforward network (see Fig. 4). Since there is no 
feedback the network can be evaluated in a single pass. The 
net has 400 inputs, corresponding directly to the 20 x 20 
pixel image; i.e., no preprocessing, such as feature extraction, 
is done. The ten outputs of the network code the ten digits 
in a “1 out of 10” code. Since the outputs of the neurons are 
real valued (as opposed to thresholded outputs), the output 
contains information not only about the classification result 
(the most active output), but also about the confidence of this 
classification. Actually, the difference between the most active 
and the second most active neuron is an accurate measure of 
the confidence which can be used to reject ambiguous digits. 
An example showing all the states of the network for the case 
of a handwritten 6 is shown in Fig. 5.  The states of the input 
and the first four layers are represented as gray levels; the 
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Fig. 4. General structure of the OCR network. 

states of the output layer are proportional to the size of the 
black (negative) and the white (positive) squares. 

Of the five layers of the network, only the last layer is fully 
connected, with all weights being independent. The first four 
layers are carefully constrained to improve the capability of 
the network to generalize well for patterns the network has 
not been trained on [3]. These constraints are symbolized by 
the local receptive fields shown in Fig. 4 and are discussed in 
greater detail below. 

Each neuron in the first layer has 25 inputs and connects 
to a 5 x 5 neighborhood in the pixel image (see Fig. 6). This 
neighborhood is called the receptive field of the neuron. Two 
adjacent neurons, belonging to the same feature map, have 
local receptive fields that are displaced by one pixel. The 
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Fig. S. Example for  the states of the OCR network 
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Fig. 7. Architecture of the second layer of the OCR network. 
Fig. 6. Architecture of the first layer of the OCR network 

neurons are grouped into four feature maps, each organized 
as described above. All neurons within one feature map have 
identical weights (weight sharing); therefore the whole layer 
is determined by just 4 x 25 parameters (plus four bias 
values). Another way to interpret the operation of the first 
layer is to view it  as four separate two-dimensional, nonlinear 
convolutions of the pixel image. 

The second layer reduces the spatial resolution of the 
four feature maps generated by the first layer, resulting in 
another four feature maps a quarter of the original size. The 
purpose of this layer is to provide some degree of translational 
and rotational invariance. This operation is implemented by 
neurons with four synapses, each neuron averaging four inputs. 

Again, the architecture of weight sharing and local receptive 
fields is used, but now in order to reduce the spatial resolution, 
the local receptive fields of adjacent neurons do not overlap, 
but are displaced by IWO input units (see Fig. 7). 

The third layer is similar to the first. I t  performs feature 
extraction using a 5 x 5 receptive field. The new aspect of this 
layer is that inputs from one or two feature maps are combined. 
Most neurons in layer 3 have 50 inputs, 25 of which connect 
to one feature map, with the other 25 connecting to the same 
spatial area in another feature map (see Fig. 8). 

The fourth layer performs the same averaging and subsam- 
pling function as explained for the second layer. 

The fifth and last layer has 300 inputs and ten outputs and is 
fully connected; i.e., i t  contains 3000 independent connections. 



502 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 3, MAY 1992 

Feature Map (12 in total) 

0 Neuron#l 

::I NeuronH 

Feature Map (4 in total) 

Receptive Field of Neuron #1 

~.....~ Receptive Field of Neuron #2 
......~ 

Fig. 8. Architecture of the third layer of the OCR network. 
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Fig. 9. A one-dimensional nonlinear convolution suitable for the ANNA 
chip. 

This layer classifies the patterns by using ten hyperplanes in 
the 300-dimensional feature space generated by the first four 
layers of the network. 

Iv. IMPLEMENTATION O F  THE OCR 
NETWORK ON THE ANNA CHIP 

To demonstrate the practical usefulness of the chip for real- 
world applications, the OCR network has been implemented 
using the ANNA chip. 

The computational precision required for each layer in a 
multilayer feedforward network typically increases from the 
input layer to the output layer [7 ] .  At the same time the number 
of connections and thus the computational load decrease from 
the input to the output. The optimal hardware implementation 
of the OCR network is therefore to put the first nc layers on 
the ANNA chip and the remaining 5 - n, layers on a float- 
ing point processor such as the DSP 32C. Implementations 
with both n, = 3 and nc = 4 have been realized and studied. 
In the first case, 96.9% of the connections of the network are 
evaluated by the ANNA chip; in the second case this figure 
increases to 97.8%. In the following, the implementation of the 
first four layers on the ANNA chip will be discussed in detail. 

The ANNA chip can directly perform a one-dimensional 
nonlinear convolution. The corresponding network for this 
operation is illustrated in Fig. 9. All neurons have the same 
weight vector (indicated by corresponding line types) and are 
displaced by one input unit. The straightforward implementa- 
tion on the ANNA chip is to realize only one neuron on the 
chip and to time multiplex it between the various locations. 
As can be seen from Fig. 9, the barrel shifter set to shift- 
count = 1 performs the correct multiplexing for this network. 
The evaluation of such a network with n neurons takes n 
calculation cycles on the ANNA chip; however if the network 
contains more than one neuron with identical receptive fields, 
then up to eight neurons can be evaluated in parallel. 

I 5 2 6 3 7 4 8 5 9 6 1 0  I 13 I 14 I 15 1 16 I 

Fig. 10. Implementation principle of the first layer on the ANNA chip. 
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Fig. 11. Implementation principle of the second layer on the ANNA chip. 

As explained previously, the first layer of the OCR network 
carries out a two-dimensional nonlinear convolution. How 
can this 2-D convolution be mapped to the 1-D convolution 
suitable for the chip? Fig. 10 illustrates the principle for 
the example of a 4 x 4 image and a 2 x 2 receptive 
field: (i) The two-dimensional image data is reformatted into 
a one-dimensional stream as illustrated by the figure. This 
reformatting transforms the two-dimensional receptive fields 
into one-dimensional receptive fields. (ii) Although this refor- 
matting transforms all two-dimensional receptive fields into 
one-dimensional ones, not all of the one-dimensional receptive 
fields are used; for example, the field 5-2-6-3 is not used. 
These fields can easily be skipped by using a shift count 
larger than 1 ( 2  and 4 is the example) or by using multiple 
shift instructions. Up to eight new state values (two shift 
instructions with shift count = 4) can be loaded while a 
calculation takes place and thus the execution speed remains 
the same as in the simple one-dimensional case. 

The second layer and the fourth layer are mapped to a 1-D 
convolution as illustrated in Fig. 11. In contrast to the first 
layer, subsampling causes more of the 1-D receptive fields to 
be skipped. This is carried out by increasing the shift count 
or using multiple shift instructions, as previously mentioned 
for the first layer. 

The third layer is different from the first one in that it ex- 
tracts features from two feature maps simultaneously. Fig. 12 
shows how this type of feature extraction can be mapped to 
an ordinary 2-D convolution with a subsampling factor of 2. 
By interleaving the columns of the feature maps as well as 
the columns of the kernel data, the two disjoint local receptive 
fields become one contiguous field. The implementation of this 
2-D convolution on the chip is straightforward. 

The ANNA chip’s programmable weight range is -0.5 
. . .  0.5; the OCR network, however, requires weights up to 
the value of 1.0 in layers 1 and 3. These large weights are 
realized on the chip by using two connections fed by the same 
input value. Neurons with many synapses typically have small 
weights, which means that in larger networks this procedure 
will be unnecessary. 

In order to facilitate the implementation of neural networks 
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Fig. 12. Implementation principle of the third layer on the ANNA chip 

on the ANNA chip, a LISP program has been developed 
(called NECTAR) which generates assembly code for the 
ANNA chip. Convolutional networks with subsampling and 
extraction from multiple feature maps are covered. Further- 
more, NECTAR supports configuration of the chip for the 
appropriate neuron sizes (64, 128, and 256), quantization of 
the real-valued weights (and biases) from the simulation to 
6 bits, and selection of the optimal scale factor, as well 
as realization of large ( > O S )  weight values. The output of 
NECTAR (symbolic assembly code) is then passed through 
ANNANAS (ANNA Assembler), which generates microcode 
that can be run on the ANNA chip. 

The percentage of on-chip weight-memory used for layers 1 
to 4 is 69%. The first and second layers each occupy four vec- 
tors of length 64; the third layer requires 12 vectors of length 
128 since each neuron has 2 x (25 + 2 5 )  synapses (the factor 2 
is because the weights here are larger than 0.5); and the fourth 
layer uses 12 vectors of length 64. Note, that many weight 
values are programmed to 0; for instance in  the second layer 
only four of the 64 weight values are nonzero. This means that 
much larger networks can be implemented on a single ANNA 
chip if the number of synapses per neuron is larger. 

V. PERFORMANCE 

The execution time of the network on the chip is an 
important parameter. High speed is necessary when either the 
patterns appear at a high rate, or when each pattern is classified 
several times using different scales, translations, and rotations 
in order to recognize it independent of distortions. 

In Table I the speed of the ANNA chip is compared with 
the corresponding figures of a DSP 32C (40 MHz) and a 
SUN SPARC.' The execution time for the ANNA chip is 
specified for a 20 MHz clock rate and for the microcode 
generated by the NECTARiANNANAS system.' The numbers 
also include the time necessary to refresh the dynamic weight 
storage. It is assumed that the formatter can supply and store 
the state data at the rate the ANNA chip consumes and 
produces them. The total is calculated for the case where the 
four layers are executed sequentially on the same chip. If a 

separate chip is assigned to each layer and the chips operate 
as a pipeline, the total time decreases to 330 ps .  

The average speed measured in connections per second of 
the network on the chip is 140 MC/s. The chip, however, 
is capable of performing 5000 MC/s. The reason for this low 
utilization is that only a small fraction of the chip's parallelism 
is used by this particular network. The chip can multiply 
vectors of size 256 in one calculation cycle, but layers 2 and 4 
of the network require only the multiplication of vectors of size 
4. Larger networks (more synapses per neuron) will execute 
more efficiently on the ANNA chip than the current one. 

The figures of Table I show that a classification rate of 1000 
characters/second can be achieved by a pipelined system using 
the ANNA chip and a DSP. This rate corresponds to a speedup 
factor of 50 over the DSP and a factor of 500 over the SUN 
implementation. 

The error rate measures how many misclassification the 
network makes per 100 patterns when tested on a test set it has 
never seen before. Another even more important performance 
parameter is the reject rate, which specifies the number of 
patterns, with low classification confidence, that have to be 
rejected in order to achieve a desired error rate, for example 
1 %. This figure is important since errors are usually related to 
a cost which must be kept under a certain limit. The rejected 
patterns can for instance be classified manually. 

The network running on the SUN using 32-bit floating point 
arithmetic achieves an error rate of 4.9% and a reject rate 
of 9.1% (for an error rate of 1%) on a test set taken from 
segmented, handwritten ZIP codes that appeared on real U.S. 
mail [3].' These performance figures have also been measured 
for three ANNA chips and for two implementations, one with 
three layers (71, = 3)  and one with four layers on the chip 
(r tr  = 4), and are shown in Fig. 13. The degradation with 
respect to error rate is small and in  the case of n, = 3 is 
less than 1%. The reject rate is affected more seriously by the 
chip's low-resolution arithmetic. This can be explained by the 
fact that the error rate depends only on the most active output 
of the network while the reject rate depends on the precise 
value of the most active and the second most active output, 
which requires more precision for its calculation. 

The observed degradation is due to the following chip non- 
idealities, presented here in order of decreasing importance: 

quantization of the states to 3 bits; 
'The  figures for the DSP 32C and SUN SPARC are estimates assuming 

efficient code. 
'A handcrafted implementation of the first three layers using more weight 

storage than the one described here runs at the following speed: first layer 
200 } I S ,  second layer 100 ~ t s ,  and third layer 130 1 1 s .  

quantization of the weights to 6 bits; 
imprecision in the analog computation; 

'The test set is rather difficult; i.e., human performance on this set is 2.5% 
raw error ratc and 3.5% reject rate (for I O 4  error rate). 



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO 3. MAY 1992 

18.8 19.8 20.9 Instead of back-propagation the “optimal hyperplane” algo- 
rithm [S, p. 3531 has been tried to train the last layer. The 
algorithm adjust the weights of the last layer such that they 
correspond to hyperplanes optimally separating the training 
examples of one class from the rest. With this algorithm, the 
error rate is reduced to 4.9% in the case of 71, = 3. This 
is the same value as for the original network evaluated with 

16.1 15.9 17.8 

6 8 6 6 6.7 

n=3 n=4 n=3 n=4 floating-point precision. 
The effect of retraining the last layer can be illustrated as 

follows: By quantizing the weights and the states of the first Raw Error Rate Reject Rate for 1% Error Rate 

0 Chip#1 Chip#2 Chip #3 
four layers, the feature representation of each pattern in the 
second to last layer is shifted slightly in the feature space. The 

Fig. 13. Recognition accuracy of the ANNA chip. The error and reject rates 
are given in percent for three different chips and for the implementation of 
three and four layers on the chip. 

hyperplanes in the Same feature ’pace as given by 
the last layer, however, stay in the same place. By retraining 
the last layer, the corresponding hyperplanes are moved such 
that they take into account the systematic deviations introduced 

13.4 13.2 12.5 by the chip’ 
11.1 10.9 11.4 

5.6 5.0 5.2 5.6 5.2 5.6 

n=3 n=4 n=3 n=4 

Raw Error Rate Reject Rate for 1% Error Rate 

0 Chip#l Chip#2 Chip #3 

Fig. 14. Recognition accuracy with the ANNA chip after retraining. The 
error and reject rates are given in percent for three different chips and for the 
implementation of three and four layers on the chip. 

approximation of the tanh nonlinearity by a piece wise- 

A simulation using full precision but a piecewise-linear func- 
tion shows only little performance degradation: 5.0%/10.3% 
(raw error rateheject rate for 1% error rate). If quantization 
effects are included in the simulation, the performance drops 
to 5.5%/14.2%. The actual chip implementation performs at 
an average of 5.7%/16.6%, showing the effects of the analog 
computation. 

A simple and effective way to improve the performance of 
the network is to retrain the lust layer. During retraining with 
back-propagation, the chip is used for the forward pass, and 
the backward pass affects only the last layer which is off- 
chip; the weights on the chip are frozen. This method is very 
effective since back-propagation is used only for one layer and 
thus reduces to the simple delta rule. Back-propagating further 
into the networks is difficult because of the weight quantization 
(large steps in weight space) and state quantization (derivatives 
are 0 or infinite). The results (Fig. 14) obtained by retraining 
just the last layer are encouraging. 

After retraining, not only the error rate, but also the reject 
rate, is very close to the original performance of the network 
without quantization. It is very important for practical purposes 
that retraining not be done for each individual chip. The above 
figures were obtained by using chip 1 as a distortion model to 
retrain the last layer. After that, chip 1 was replaced by other 
chips without degradation of performance. This is due to good 
chip-to-chip matching. 

linear function. 

VI. CONCLUSIONS 
It has been demonstrated that a large and practical neural 

network application can be implemented with a single ANNA 
chip. A speed advantage of 50 to 500 over conventional 
hardware is gained, despite the fact that the network has 
not been specifically tailored to take advantage of the chip’s 
resources. 

The recognition accuracy achieved with the chip’s 
6 bit/3 bit arithmetic compares favorably with the accuracy 
of the network evaluated with floating-point precision. This 
accuracy has been achieved by retraining the last layer to adapt 
to the chip’s low-resolution arithmetic. Chip-to-chip matching 
is sufficiently good that one chip can be replaced with another 
without adversely affecting performance. 

The ANNA chip is well suited for networks larger than 
the one described. Networks with more synapses per neuron 
will take even better advantage of the chip: (i) The chip’s 
parallelism is utilized better and more connections per second 
are evaluated. (ii) The impact of the state quantization will be 
less because each neuron takes into account, and thus averages, 
the quantization errors of more state values. 
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