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Abstract 

We present in this paper the architecture and imple- 
mentation of the Virtual Image Processor (VIP) which 
is an SIMD multiprocessor build with large FPGAs. 
The SIMD architecture, together with a 2D torus con- 
nection topology, is well suited for image processing, 
pattern recognition and neural network algorithms. The 
VIP board can be programmed on-line a t  the logic level, 
allowing optimal hardware dedication to any given al- 
gorithm. 

1: Introduction 

Even with the last decades exponential growth in 
performance of integrated circuits, many image pro- 
cessing and neural network applications still demand 
increased hardware speed. A first approach to increase 
performance is to build massively parallel computers. 
Their high price and difficulty to program have resulted 
in a very low acceptance rate. The design cycle of those 
computers is usually too long, and thus their technol- 
ogy is obsolete before they are commercially available. 
Consequently, users often prefer to use the latest high 
performance general workstation that is much less ex- 
pensive and more easy to program. A second approach 
to solve the performance problem is to design dedi- 
cated parallel hardware for one task (or set of similar 
tasks). Their programmation is usually simple (or even 
nonexistent) while their performance/cost ratio is high. 
However, they are not flexible and their design cycle is 
long. 

Over the last few years, advances in programmable 
logic devices have resulted in the commercialization of 

field programmable gate arrays (FPGA) which allow 
to put large numbers of programmable logic elements 
on a single chip. The size and speed of those circuits 
improve at the same rate as microprocessors' size and 
speed, since they rely on the same technology. In sec- 
tion 2 ,  we propose an architectural framework for the 
virtual image processor (VIP) which is a parallel pro- 
cessor having large FPGAs as main components. In 
section 3, we present the first prototype of the VIP 
board that uses 5 large FPGAs, has 1.5 MB of static 
RAM and communicates through a fast PCI bus. 

We are currently targeting at applications requir- 
ing a large number of simple low precision operations. 
Many commercially attractive applications fall into this 
category such as image processing and pattern recogni- 
tion (e.g., recognition of fax documents, bank checks, 
postal addresses). Those applications are particularly 
well suited for FPGA implementation since a simple 
processing element (PE) may perform their most basic 
operations. Consequently, many instances of this PE 
may be fitted on one FPGA. We present in section 4 
two algorithms that fall into this category. We compare 
the performance of the VIP board with those achieved 
by dedicated hardware and general processors. 

2: Architecture 

One of the most efficient and cost-effective architec- 
ture for parallel vector and matrix processing is the 
2D systolic architecture [4, 9, 7, 81. However, this ar- 
chitecture is somewhat restrictive for more general ap- 
plications. We have thus preferred an SIMD (Single- 
Instruction Multiple-Data) architecture together with 
a 2D torus connection topology, which include the 2D 
systolic architecture. 
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Such architecture implementation permits to com- 
pute efficiently the following basic matrix and vector 
operations [4]: 1D and 2D convolutions, matrix mul- 
tiplication, matrix addition, matrix-vector multiplica- 
tion, scalar multiplication, vector addition, etc. How- 
ever, it is implicitly less reconfigurable since it has a 
rigid data flow [7]. We believe that this rigidity is over- 
come by FPGA configurability. 

The SIMD architecture has a 2D torus interconnec- 
tion topology of its processing elements (PE). Each PE 
has a local memory. As depicted in Figure 1, the VIP 
architecture is composed of three basic components: 
the SIMD controller, the processing matrix and the 
1/0 controller. Those components are connected by 
a shared global bus and two control buses. The pro- 
cessing matrix is a set of identical PES interconnected 
in a 2D grid topology (Figure 1). The 1/0 controller 
manages off-board communication and initiates mem- 
ory transfers. The SIMD controller decodes and ex- 
ecutes the program stored in its instruction memory, 
and read or write to its data memory. There are three 
distinct types of memory: instruction memory, global 
data memory and PE's local memory. 

For SIMD architecture, the same address and con- 
trol signals are used by every PE (Figure 2). This 
architecture has many advantages. The simple PE in- 
terconnection topology is cheap (only 4 connections per 
PE), and very efficient for processing 2D data struc- 
tures such as images. The complexity of the address 
buses is reduced since the same address is used by ev- 
ery PE. Many useful vector processing algorithms still 
perform optimally with such constraint. 

-W 

2.1: SIMD Controler 

Memory 

Memory 

SIMD 
Controller - Instruction 

The SIMD controller is the control unit of the VIP. It 
reads a program from its instruction memory and uses 
its data memory for storing global informations. Once 
an instruction is decoded, data and control signals are 
sent to the PES through the global bus and a dedicated 
control bus. The global bus may be used to send both 
control and data signals. The SIMD controller also 
provides addresses and control to every memory dur- 
ing both program execution and 1/0 memory transfers. 
If configured accordingly, it exchanges status informa- 
tions with the 1/0 controller. 

2.2: Processing Matrix 

The PE matrix is organized as a 2D grid. Each PE is 
connected in direction N, S, E and W to its 4 neighbors 
(Figure 1). Each PE has a local memory addressed by 
the SIMD controller. 

U 0  Controller 4 4  
+Control 1 Data I 

h Control+ control and address signals 

Processing Matrix 

Figure 1. VIP architecture overview 

2.3: 1 /0  Controler 

The I/O controller is responsible for the following 
operations: 

0 Communicating with the host. 

0 Exchanging status information with the SIMD 
controller. 

0 Managing data transfer between the host and the 
board. 

Data transfers between the host and the board use 
the global bus to send address and data to PES and 
SIMD controller. 

3: VIP Implementation 

We present in this section the implementation of the 
VIP printed circuit board based on the architecture 
presented in the previous section. A photography of 
the board is presented in Figure 6. The connection 
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Memory Control signals 

SIMD controller 

Global shared bus 

mMdon+ 1 Global BUS 

32 bits 

Figure 2. Detailed view of a Processing Ele- 
ment 

Three address buses 
Control bus between 1/0 and 

to the host computer is done through a PCI bus inter- 
face, The board has a 2 x 2 FPGA matrix and each of 
the 6 memory blocks is a 20 ns static-RAM module of 
64Kx32 bits. The processing matrix and SIMD con- 
troller are each implemented by an SRAM-based Altera 
EPF81500 [l] FPGA. Each one of those FPGA has a p  
proximately 16,000 usable gates. The 1 /0  controller 
is implemented by an EPROM-based Altera EPM7192 
EPLD [2] (3,750 usable gates), and an AMCC 55933 
PCI controller [3] with its configuration EPROM. 

Using SRAM-based FPGAs for implementing the 
PES has major impact on the overall system perfor- 
mance. Usually such architecture implementation is 
very expensive for general purpose processing or very 
restricted for dedicated computing. Since each PE may 
be configured on-board, we may perform any dedicated 
function by using exactly the logic needed for its im- 
plementation. For low precision processing, it has for 
effect to increase the number of processing element and 
thus increases performance. Also, such architecture is 
order of magnitude faster than general purpose proces- 
sors having the same cost. 

This follows characteristics of low precision compu- 
tation that are not handle efficiently by those proces- 
sors (e.g., manipulation of 1 bit data on a 32 bit archi- 
tecture). 

The 128 bit vertical torus connections (two 32 bit 
North connections and two 32 bit South connections) 
are routed to a 128 pin connector header. The North- 
South torus connection may be established by using 
jumpers. This connector is also useful to provide those 
signals off-board for multiple-board processing. 

18 bits each 
23 bits 

Control 10 bits 
bus between SIMD controler 
and processing matrix 
2D grid connections 32 bits ! Configuration signals 8 bits 

Table 1. Width of each bus. 

3.1: SIMD Controler 

The SIMD controller is implemented by an FPGA. 
This implies that decoding and executing instructions 
may be different from one application to the other. In 
the convolution application presented in section 4, both 
data and instruction memories are used to  store large 
instruction words, while for the character recognizer, 
global informations are stored in data memory. Once 
an instruction is decoded, data and control signals are 
sent to the FPGAs through the global bus and a dedi- 
cated control bus. 

3.2: Processing Matrix 

The processing matrix is implemented by a 2x2 
FPGA matrix. Each FPGA is connected to its North, 
South, East and West neighbors and to  a local mem- 
ory as it is the case for a PE (Figure 2). Each North, 
South, East and West connection have 32 bits (Table 
1). Conceptually, an FPGA represents a sub-matrix 
of the global PE matrix. The data and control sig- 
nals of an FPGA are shared among every PES of its 
sub-matrix. 

For example, in a 2D SIMD computation, each 
FPGA is configured as a 2D PE  matrix. The FPGA 
matrix then becomes a single large PE  matrix. The 
connections between FPGAs are used for connecting 
adjacent PES located in different FPGAs (Figure 3).  
Since a 1D topology may be mapped on a 2D topology, 
the board may be configured as a 1D SIMD processor. 
Obviously, any architecture that fit into this framework 
may be implemented by configuring the FPGAs. 

3.3: 1 / 0  Controler 

We have chosen the PCI local bus standard for the 
1/0 interface. This selection is motivated by its widely 
acceptance by the PC industry and for its high transfer 
rate (132 MBytes/sec). The design of the bus interface 
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Figure 3. Mapping of a 4 x 4  PE matrix over the 
FPGA matrix 

is greatly simplified by the AMCC Sfi933 [3] PCI con- 
troller. It is a powerful and flexible controller support- 
ing several levels of interface sophistication. The con- 
trol of the PCI interface chip is provided by an Altera 
EPM7192 EPROM-based programmable logic device. 
A 32-bit bus (multiplexed address and data) intercon- 
nects those two chips. This bus is connected to the 
board’s global bus through a 32-bit kransceiver. This 
transceiver has three modes: write to global bus, read 
from global bus and disconnect from global bus. 

3.4: FPGA Configuration 

Each Altera EPF81500 is on-line configurable. The 
reserved configuration pins for all 5 of those devices 
(SIMD controller and four FPGAs) are connected to 
the EPM7192 device (Table 1). It is thus possible 
to configure each FPGA at any time by providing the 
configuration data from the host. All FPGAs may be 
configured in parallel in less than 40 rns. The on-board 
memories are accessible only by the SIMD controller 
and the FPGAs. Therefore, they must be configured 
before any memory transfer is initiated. 

crystal clock. A programmable clock is generated from 
the EPM7192, based on those two clocks. For added 
flexibility, the crystal clock is mounted on a, socket. 

3.6: Multiple-board processing 

It is possible to connect together two or more VIP 
boards by using their 128-pin connectors. In that case, 
the North and South connections of the processing ma- 
trix are routed to other boards. Some of those connec- 
tions may be used as control signals to synchronize the 
execution on a multi-board system. This is greatly sim- 
plified by the use of the same PCI clock on each board. 

3.7: The big picture 

We present in this section the generic steps that are 

1. Initially, the designer determines a program for 
an application and a dedicated logic design for 
the SIMD controller and each FPGAs. 

2. This design is translated into a form that may 
be used to configure the corresponding FPGAs. 
This configuration is send to the 1/0 con- 
troller which supervises the configuration of each 
FPGA. 

3. At this point, the SIMD controller and FPGAs 
have the capability to access each memory bank. 
Data transfers may be initiated by the host. 

4. The 1/0 controller signals the SIMD controller 
to start program execution. 

5. During program execution, status informations 
are transmitted to the 1/0 controller. SIMD pro- 
cessing is done in parallel to those trainsmissions. 

6. The SIMD controller indicates to the 1/0 con- 
troller that the processing is done. 

7. The result of the computation may be read from 
registers or memories as initiated by the host. 

followed to perform computation on the VIP board. 

4: Application of the VIP board 

We present in this section two representative a p  
plications implemented on the VIP board, comparing 
the achieved speed performance with those obtained by 
other implementations. 

4.1: Convolution 
3.5: Clocks 

Two clock signals are available on-board. The first 
one is the 33 MHz PCI bus clock that is provided by 
the PCI controller while the second one is an on-board 

We present in this section the implementation of a 
convolution over a binary image. The convolution pro- 
cess is the following. Each pixel zi, j  in the resulting 
feature map is expressed as: 
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The processing steps for each tile convolution are: 
1 if y;]j > t 
0 otherwise zi,j = 

where 
N M  

k = l  n = l  

and f() is any 3-input Boolean function, xj,j is a pixel 
in the original image (precision: 1 bit), wk,n is a tem- 
plate pixel (precision: 2 bits), N and M are respec- 
tively the height and width of the template image. Fi- 
nally, yi,j is the cross correlation between image field 
and the template and t is threshold level for a match. 
The interested reader is refered to [6] for more details. 
It is reported in this article that convolution with tem- 
plates as large as 16x16 are useful for many different 
tasks in pattern recognition preprocessing (e.g., noise 
removal, printed or handwritten text differentiation). 

Implementation details 

We have implemented a 2 D  systolic algorithm. A 
matrix of 8 x 4 PES are assigned to each FPGA, for a 
total of 16 x 8 PES considering all four FPGAs. The 
systolic algorithm computes 16 x 8 convolutions in par- 
allel in N x M steps. This is done by partitioning the 
image in (15 + N )  x (7 + M )  pixel tiles. Each tile has a 
16 x 8 convolution results. A tile image is shifted over 
the PE matrix by using the North, South and East con- 
nections. The ”border” of the sliding-window is feed 
from the PES’ local memory. The template values are 
broadcasted from the global bus to each PE. At any 
time, every PE computes a partial sum for its convo- 
lution. Reading pixel columns and rows from memory 
is pipelined with the processing, and an initial latency 
of 3 cycle is required. 

- 
19x1 1 Image for 4x4 template convolution 

Figure 4. Tile processing for 4x4 template 

Processing time 

1. Load a tile (1 cycle memory read, 3 cycle la- 
tency); 

2. N x M computation (1 cycle each); 

3. Threshold function evaluation with output z ( )  (1 
cycle); 

4. Write result (2 cycles memory write). 

The number of cycles is thus N x ( M  + 7) cycles per 
tile. The initial VIP prototype has a processing rate of 
16.6 MHz for this application. 

Performance comparison 

This implementation speed performances are com- 
pared to those of the NET32K board [ll]. We have 
also optimized the same algorithm for a 90 MHz Pen- 
tium computer having 32 MB of main memory and 
256 KB level-2 cache. Table 2 shows a comparison 
between those three implementations. The Net32K 
board is configured to process only templates of size 
16 x 16, this explain why no performance improvement 
is achieved for smaller templates. The reported perfor- 
mance shows that the VIP board is between 24 and 
76 times faster than a 90 MHz Pentium depending 
on template size. Also, we show that for small tem- 
plate it is faster than the NET32K board, however for 
larger template it is 6 times slower. Considering that 
slow FPGAs and SRAM are used in our current imple- 
mentation, those results are very impressive. The VIP 
board outperforms in some cases a dedicated proces- 
sor. This is not a trivial achievement for programmable 
hardware which is much slower than custom chip im- 
plementation. Furthermore, the added flexibility of the 
VIP over the NET32K board permits to implement al- 
gorithms that could not be processed by this board. 
For example, the VIP board could process image with 
many level of gray which is not possible for the Net32K 
board. 

16 x 16 

Table 2. Performance comparison between 
different processors for convolution (time for 
a convolution over a 51 2 x512 pixel image) 
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4.2: Handwritten character recognition 

We present in this section the implementation of an 
optical handwritten character recognizer. The program 
is based on the evaluation of a feedforward neural net- 
work. We are using a forward propagation without 
multiplication [5, 121. The forward propagation for 
each unit i, is given by the equation: 

where f is the unit function, wji is the: weight from unit 
i to unit j ,  and xi is the activation of unit i. For our im- 
plementation, we consider the following resolution and 
format of neural network variables. The weights are 8 
bit fixed point numbers with 6 bit fractional value. The 
states are 3 bit floating point values with 1 bit man- 
tissa (m), and 2 bits exponent ( e ) .  The corresponding 
real numbers are -1" x 2-e. Each neuron has the 
same unit function which is a discretized version of a 
sigmoid function. The output function is a state value 
as defined above. 

Let define the shift-operation a < b where a is a 
fixed point number with same resolution as weights and 
b = (m, e )  is a floating point number.. We have 

(a  x b )  = (a  << b )  = -1ma2-e 

which is implemented by a barrel shifter. The sign in- 
version is performed by the adder used for the multaply- 
accumulate operation. This implementation permits to 
reduce the hardware by about 40% over one using an 
8 bit multiplier. This is done without any degradation 
of recognizer performance. 

Neural network architecture 

Figure 5 shows the neuron states in the network af- 
ter processing the pattern "A". The first hidden layer 
(hl)  performs a convolution with kernel 5x5 over the 
32 x 32 pixel input (3 bit per pixel), and generates 
4 feature maps. The second layer (H2) makes a sub- 
sampling of those 4 feature and reduces the resolution 
by four. The third layer (H3) performs a set of con- 
volution (similarly to first layer) by combining differ- 
ent feature maps and results in 12 new maps. Layer 
(H4) perform the same operation as layer (H2) but on 
smaller feature maps. Finally layer (115) is a fully con- 
nected neural network connected with 73 outputs corre- 
sponding to letters, digits and punctuation. All weighs 
in the network were learned from examples using the 
backpropagation algorithm. 

Implementation details 

out 

Input I 
U 

Figure 5. Architecture of the neural network 
for ~ a n ~ w r ~ t t e n  character recognition 

The forward pass algorithm was implemented with 
a 2D systolic network of 12 x 12 PES (6 x 6 PES per 
FPGA). Only a square sub-matrix of 8 x8  is able to ger- 
form a shift-accumulate operation and a discretized sig- 
moid function. The other PES are used only to shift in- 
formations around. It is able to perform at i3 frequency 
of 16.6 MHz. The processing is time-multiplexed over 
the layers of the network. Each feature map is diced 
into tiles that fits into the 12 x 12 PES of the 2D sys- 
tolic network. For example, the 32 x 32 input is diced 
into 16 tiles (9 of size 12 x 12, 6 of size 12x8 and 1 of 
size 8 x 8). It is important that the resulting feature 
map for a tile is not larger than 8 x 8 since only 8 x 8 
convolutions may be computed per tile. 
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Performance comparison 

Only the first three layers were executed on the VIP 
board (86% of the connections). The remaining lay- 
ers require higher precision and were computed on the 
host. The total execution time for the three layers are 
presented in Table 3. We compare the obtained per- 
formance our implementations to  those of the ANNA 
board [lo, 111 and a dual-processor SPARC 10 work- 
station [ll].  Loading and storing transfer operations 
were included in the execution time of the VIP board. 
The VIP board is respectively 1.36 and 16 times faster 
than the ANNA and SPARC implementations. This 
is due mainly to  the improved parallelism and 2D sys- 
tolic network that is well suited for processing 2D data 
structure. For example, at each step of the convolution, 
144 state values of 3 bits are exchanged between PES, 
giving an impressive bandwidth of 900 MBytes/sec. 

ANNA board [ 16 MHz VIP I SPARC 10-41x2 
1.02 ms I 0.75 ms I 12.3 ms 

Table 3. Comparison of execution time for 
recognition of one character on different 
hardware 

4.3: Conclusion 

We have presented in this paper the architecture and 
implementation of the Virtual Image Processor having 
large FPGAs as main building blocks. This has for 
impact of having maximal flexibility for the processor 
logic design. The VIP has a SIMD ”virtual” archi- 
tecture with a 2D interconnection network that is well 
suited for implementing 2D systolic networks. 

We used two applications to compare the speed per- 
formance of the VIP board with other dedicated and 
general hardware designs. The VIP board is order of 
magnitude faster than general processor implementa- 
tion. Furthermore, it has speed performances similar 
to those obtained by dedicated hardware. Those re- 
sults are excellent, considering our approach is much 
more general and much cheaper than dedicated hard- 
ware. Also, the initial prototype reported here uses the 
slowest version of the EPF81500 FPGA available from 
Altera. We are planning to  use faster chips and faster 
memory in the second prototype of the VIP board. 
This should permit to  increase performance by a factor 
from 2 to 3. 

We anticipate that more and more coprocessors will 
use an approach similar to  ours. The advantage of 
such approach are lower cost and fast execution time. 

The price to pay for the added flexibility is the time 
taken for designing an hardware implementation for 
each new algorithm. We conjecture that current ad- 
vances in hardware/software codesign should reduce 
the time taken for such design. 
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