
VIP: An FPGA-Based Processor for Image Processing
and Neural Networks

Jocelyn Cloutier, Eric Cosatto", Steven Pigeon, Fransois R. Boyer and Patrice Y . Simard*
Dbpartement d'Informatique et

de Recherche Opkrationnelle

C.P. 6128, Succ. Centre-Ville
Montrkal, H3C 3J7, Canada

*AT&T Bell Laboratories
101 Crawfords Corner Road

Universit k de Mont r6al Holdmdel, NJ 07733, USA

E-mail: clout ierOiro . umontreal . ca

Abstract

We present in this paper the architecture and imple-
mentation of the Virtual Image Processor (VIP) which
is an SIMD multiprocessor build with large FPGAs.
The SIMD architecture, together with a 2D torus con-
nection topology, is well suited for image processing,
pattern recognition and neural network algorithms. The
VIP board can be programmed on-line a t the logic level,
allowing optimal hardware dedication to any given al-
gorithm.

1: Introduction

Even with the last decades exponential growth in
performance of integrated circuits, many image pro-
cessing and neural network applications still demand
increased hardware speed. A first approach to increase
performance is to build massively parallel computers.
Their high price and difficulty to program have resulted
in a very low acceptance rate. The design cycle of those
computers is usually too long, and thus their technol-
ogy is obsolete before they are commercially available.
Consequently, users often prefer to use the latest high
performance general workstation that is much less ex-
pensive and more easy to program. A second approach
to solve the performance problem is to design dedi-
cated parallel hardware for one task (or set of similar
tasks). Their programmation is usually simple (or even
nonexistent) while their performance/cost ratio is high.
However, they are not flexible and their design cycle is
long.

Over the last few years, advances in programmable
logic devices have resulted in the commercialization of

field programmable gate arrays (FPGA) which allow
to put large numbers of programmable logic elements
on a single chip. The size and speed of those circuits
improve at the same rate as microprocessors' size and
speed, since they rely on the same technology. In sec-
tion 2 , we propose an architectural framework for the
virtual image processor (VIP) which is a parallel pro-
cessor having large FPGAs as main components. In
section 3, we present the first prototype of the VIP
board that uses 5 large FPGAs, has 1.5 MB of static
RAM and communicates through a fast PCI bus.

We are currently targeting at applications requir-
ing a large number of simple low precision operations.
Many commercially attractive applications fall into this
category such as image processing and pattern recogni-
tion (e.g., recognition of fax documents, bank checks,
postal addresses). Those applications are particularly
well suited for FPGA implementation since a simple
processing element (PE) may perform their most basic
operations. Consequently, many instances of this PE
may be fitted on one FPGA. We present in section 4
two algorithms that fall into this category. We compare
the performance of the VIP board with those achieved
by dedicated hardware and general processors.

2: Architecture

One of the most efficient and cost-effective architec-
ture for parallel vector and matrix processing is the
2D systolic architecture [4, 9, 7, 81. However, this ar-
chitecture is somewhat restrictive for more general ap-
plications. We have thus preferred an SIMD (Single-
Instruction Multiple-Data) architecture together with
a 2D torus connection topology, which include the 2D
systolic architecture.

1086-1947/96 $5.00 0 1996 IEEE
Proceedings of MicroNeuro '96

330

Such architecture implementation permits to com-
pute efficiently the following basic matrix and vector
operations [4]: 1D and 2D convolutions, matrix mul-
tiplication, matrix addition, matrix-vector multiplica-
tion, scalar multiplication, vector addition, etc. How-
ever, it is implicitly less reconfigurable since it has a
rigid data flow [7]. We believe that this rigidity is over-
come by FPGA configurability.

The SIMD architecture has a 2D torus interconnec-
tion topology of its processing elements (PE). Each PE
has a local memory. As depicted in Figure 1, the VIP
architecture is composed of three basic components:
the SIMD controller, the processing matrix and the
1/0 controller. Those components are connected by
a shared global bus and two control buses. The pro-
cessing matrix is a set of identical PES interconnected
in a 2D grid topology (Figure 1). The 1/0 controller
manages off-board communication and initiates mem-
ory transfers. The SIMD controller decodes and ex-
ecutes the program stored in its instruction memory,
and read or write to its data memory. There are three
distinct types of memory: instruction memory, global
data memory and PE's local memory.

For SIMD architecture, the same address and con-
trol signals are used by every PE (Figure 2). This
architecture has many advantages. The simple PE in-
terconnection topology is cheap (only 4 connections per
PE), and very efficient for processing 2D data struc-
tures such as images. The complexity of the address
buses is reduced since the same address is used by ev-
ery PE. Many useful vector processing algorithms still
perform optimally with such constraint.

-W

2.1: SIMD Controler

Memory

Memory

SIMD
Controller - Instruction

The SIMD controller is the control unit of the VIP. It
reads a program from its instruction memory and uses
its data memory for storing global informations. Once
an instruction is decoded, data and control signals are
sent to the PES through the global bus and a dedicated
control bus. The global bus may be used to send both
control and data signals. The SIMD controller also
provides addresses and control to every memory dur-
ing both program execution and 1/0 memory transfers.
If configured accordingly, it exchanges status informa-
tions with the 1/0 controller.

2.2: Processing Matrix

The PE matrix is organized as a 2D grid. Each PE is
connected in direction N, S, E and W to its 4 neighbors
(Figure 1). Each PE has a local memory addressed by
the SIMD controller.

U 0 Controller 4 4
+Control 1 Data I

h Control+ control and address signals

Processing Matrix

Figure 1. VIP architecture overview

2.3: 1 /0 Controler

The I/O controller is responsible for the following
operations:

0 Communicating with the host.

0 Exchanging status information with the SIMD
controller.

0 Managing data transfer between the host and the
board.

Data transfers between the host and the board use
the global bus to send address and data to PES and
SIMD controller.

3: VIP Implementation

We present in this section the implementation of the
VIP printed circuit board based on the architecture
presented in the previous section. A photography of
the board is presented in Figure 6. The connection

331

Memory Control signals

SIMD controller

Global shared bus

mMdon+ 1 Global BUS

32 bits

Figure 2. Detailed view of a Processing Ele-
ment

Three address buses
Control bus between 1/0 and

to the host computer is done through a PCI bus inter-
face, The board has a 2 x 2 FPGA matrix and each of
the 6 memory blocks is a 20 ns static-RAM module of
64Kx32 bits. The processing matrix and SIMD con-
troller are each implemented by an SRAM-based Altera
EPF81500 [l] FPGA. Each one of those FPGA has a p
proximately 16,000 usable gates. The 1 /0 controller
is implemented by an EPROM-based Altera EPM7192
EPLD [2] (3,750 usable gates), and an AMCC 55933
PCI controller [3] with its configuration EPROM.

Using SRAM-based FPGAs for implementing the
PES has major impact on the overall system perfor-
mance. Usually such architecture implementation is
very expensive for general purpose processing or very
restricted for dedicated computing. Since each PE may
be configured on-board, we may perform any dedicated
function by using exactly the logic needed for its im-
plementation. For low precision processing, it has for
effect to increase the number of processing element and
thus increases performance. Also, such architecture is
order of magnitude faster than general purpose proces-
sors having the same cost.

This follows characteristics of low precision compu-
tation that are not handle efficiently by those proces-
sors (e.g., manipulation of 1 bit data on a 32 bit archi-
tecture).

The 128 bit vertical torus connections (two 32 bit
North connections and two 32 bit South connections)
are routed to a 128 pin connector header. The North-
South torus connection may be established by using
jumpers. This connector is also useful to provide those
signals off-board for multiple-board processing.

18 bits each
23 bits

Control 10 bits
bus between SIMD controler
and processing matrix
2D grid connections 32 bits ! Configuration signals 8 bits

Table 1. Width of each bus.

3.1: SIMD Controler

The SIMD controller is implemented by an FPGA.
This implies that decoding and executing instructions
may be different from one application to the other. In
the convolution application presented in section 4, both
data and instruction memories are used to store large
instruction words, while for the character recognizer,
global informations are stored in data memory. Once
an instruction is decoded, data and control signals are
sent to the FPGAs through the global bus and a dedi-
cated control bus.

3.2: Processing Matrix

The processing matrix is implemented by a 2x2
FPGA matrix. Each FPGA is connected to its North,
South, East and West neighbors and to a local mem-
ory as it is the case for a PE (Figure 2). Each North,
South, East and West connection have 32 bits (Table
1). Conceptually, an FPGA represents a sub-matrix
of the global PE matrix. The data and control sig-
nals of an FPGA are shared among every PES of its
sub-matrix.

For example, in a 2D SIMD computation, each
FPGA is configured as a 2D PE matrix. The FPGA
matrix then becomes a single large PE matrix. The
connections between FPGAs are used for connecting
adjacent PES located in different FPGAs (Figure 3).
Since a 1D topology may be mapped on a 2D topology,
the board may be configured as a 1D SIMD processor.
Obviously, any architecture that fit into this framework
may be implemented by configuring the FPGAs.

3.3: 1 / 0 Controler

We have chosen the PCI local bus standard for the
1/0 interface. This selection is motivated by its widely
acceptance by the PC industry and for its high transfer
rate (132 MBytes/sec). The design of the bus interface

332

Figure 3. Mapping of a 4 x 4 PE matrix over the
FPGA matrix

is greatly simplified by the AMCC Sfi933 [3] PCI con-
troller. It is a powerful and flexible controller support-
ing several levels of interface sophistication. The con-
trol of the PCI interface chip is provided by an Altera
EPM7192 EPROM-based programmable logic device.
A 32-bit bus (multiplexed address and data) intercon-
nects those two chips. This bus is connected to the
board’s global bus through a 32-bit kransceiver. This
transceiver has three modes: write to global bus, read
from global bus and disconnect from global bus.

3.4: FPGA Configuration

Each Altera EPF81500 is on-line configurable. The
reserved configuration pins for all 5 of those devices
(SIMD controller and four FPGAs) are connected to
the EPM7192 device (Table 1). It is thus possible
to configure each FPGA at any time by providing the
configuration data from the host. All FPGAs may be
configured in parallel in less than 40 rns. The on-board
memories are accessible only by the SIMD controller
and the FPGAs. Therefore, they must be configured
before any memory transfer is initiated.

crystal clock. A programmable clock is generated from
the EPM7192, based on those two clocks. For added
flexibility, the crystal clock is mounted on a, socket.

3.6: Multiple-board processing

It is possible to connect together two or more VIP
boards by using their 128-pin connectors. In that case,
the North and South connections of the processing ma-
trix are routed to other boards. Some of those connec-
tions may be used as control signals to synchronize the
execution on a multi-board system. This is greatly sim-
plified by the use of the same PCI clock on each board.

3.7: The big picture

We present in this section the generic steps that are

1. Initially, the designer determines a program for
an application and a dedicated logic design for
the SIMD controller and each FPGAs.

2. This design is translated into a form that may
be used to configure the corresponding FPGAs.
This configuration is send to the 1/0 con-
troller which supervises the configuration of each
FPGA.

3. At this point, the SIMD controller and FPGAs
have the capability to access each memory bank.
Data transfers may be initiated by the host.

4. The 1/0 controller signals the SIMD controller
to start program execution.

5. During program execution, status informations
are transmitted to the 1/0 controller. SIMD pro-
cessing is done in parallel to those trainsmissions.

6. The SIMD controller indicates to the 1/0 con-
troller that the processing is done.

7. The result of the computation may be read from
registers or memories as initiated by the host.

followed to perform computation on the VIP board.

4: Application of the VIP board

We present in this section two representative a p
plications implemented on the VIP board, comparing
the achieved speed performance with those obtained by
other implementations.

4.1: Convolution
3.5: Clocks

Two clock signals are available on-board. The first
one is the 33 MHz PCI bus clock that is provided by
the PCI controller while the second one is an on-board

We present in this section the implementation of a
convolution over a binary image. The convolution pro-
cess is the following. Each pixel zi, j in the resulting
feature map is expressed as:

333

The processing steps for each tile convolution are:
1 if y;]j > t
0 otherwise zi,j =

where
N M

k = l n = l

and f() is any 3-input Boolean function, xj,j is a pixel
in the original image (precision: 1 bit), wk,n is a tem-
plate pixel (precision: 2 bits), N and M are respec-
tively the height and width of the template image. Fi-
nally, yi,j is the cross correlation between image field
and the template and t is threshold level for a match.
The interested reader is refered to [6] for more details.
It is reported in this article that convolution with tem-
plates as large as 16x16 are useful for many different
tasks in pattern recognition preprocessing (e.g., noise
removal, printed or handwritten text differentiation).

Implementation details

We have implemented a 2 D systolic algorithm. A
matrix of 8 x 4 PES are assigned to each FPGA, for a
total of 16 x 8 PES considering all four FPGAs. The
systolic algorithm computes 16 x 8 convolutions in par-
allel in N x M steps. This is done by partitioning the
image in (15 + N) x (7 + M) pixel tiles. Each tile has a
16 x 8 convolution results. A tile image is shifted over
the PE matrix by using the North, South and East con-
nections. The ”border” of the sliding-window is feed
from the PES’ local memory. The template values are
broadcasted from the global bus to each PE. At any
time, every PE computes a partial sum for its convo-
lution. Reading pixel columns and rows from memory
is pipelined with the processing, and an initial latency
of 3 cycle is required.

-
19x1 1 Image for 4x4 template convolution

Figure 4. Tile processing for 4x4 template

Processing time

1. Load a tile (1 cycle memory read, 3 cycle la-
tency);

2. N x M computation (1 cycle each);

3. Threshold function evaluation with output z () (1
cycle);

4. Write result (2 cycles memory write).

The number of cycles is thus N x (M + 7) cycles per
tile. The initial VIP prototype has a processing rate of
16.6 MHz for this application.

Performance comparison

This implementation speed performances are com-
pared to those of the NET32K board [ll]. We have
also optimized the same algorithm for a 90 MHz Pen-
tium computer having 32 MB of main memory and
256 KB level-2 cache. Table 2 shows a comparison
between those three implementations. The Net32K
board is configured to process only templates of size
16 x 16, this explain why no performance improvement
is achieved for smaller templates. The reported perfor-
mance shows that the VIP board is between 24 and
76 times faster than a 90 MHz Pentium depending
on template size. Also, we show that for small tem-
plate it is faster than the NET32K board, however for
larger template it is 6 times slower. Considering that
slow FPGAs and SRAM are used in our current imple-
mentation, those results are very impressive. The VIP
board outperforms in some cases a dedicated proces-
sor. This is not a trivial achievement for programmable
hardware which is much slower than custom chip im-
plementation. Furthermore, the added flexibility of the
VIP over the NET32K board permits to implement al-
gorithms that could not be processed by this board.
For example, the VIP board could process image with
many level of gray which is not possible for the Net32K
board.

16 x 16

Table 2. Performance comparison between
different processors for convolution (time for
a convolution over a 51 2 x512 pixel image)

334

4.2: Handwritten character recognition

We present in this section the implementation of an
optical handwritten character recognizer. The program
is based on the evaluation of a feedforward neural net-
work. We are using a forward propagation without
multiplication [5, 121. The forward propagation for
each unit i, is given by the equation:

where f is the unit function, wji is the: weight from unit
i to unit j , and xi is the activation of unit i. For our im-
plementation, we consider the following resolution and
format of neural network variables. The weights are 8
bit fixed point numbers with 6 bit fractional value. The
states are 3 bit floating point values with 1 bit man-
tissa (m), and 2 bits exponent (e) . The corresponding
real numbers are -1" x 2-e. Each neuron has the
same unit function which is a discretized version of a
sigmoid function. The output function is a state value
as defined above.

Let define the shift-operation a < b where a is a
fixed point number with same resolution as weights and
b = (m, e) is a floating point number.. We have

(a x b) = (a << b) = -1ma2-e

which is implemented by a barrel shifter. The sign in-
version is performed by the adder used for the multaply-
accumulate operation. This implementation permits to
reduce the hardware by about 40% over one using an
8 bit multiplier. This is done without any degradation
of recognizer performance.

Neural network architecture

Figure 5 shows the neuron states in the network af-
ter processing the pattern "A". The first hidden layer
(hl) performs a convolution with kernel 5x5 over the
32 x 32 pixel input (3 bit per pixel), and generates
4 feature maps. The second layer (H2) makes a sub-
sampling of those 4 feature and reduces the resolution
by four. The third layer (H3) performs a set of con-
volution (similarly to first layer) by combining differ-
ent feature maps and results in 12 new maps. Layer
(H4) perform the same operation as layer (H2) but on
smaller feature maps. Finally layer (115) is a fully con-
nected neural network connected with 73 outputs corre-
sponding to letters, digits and punctuation. All weighs
in the network were learned from examples using the
backpropagation algorithm.

Implementation details

out

Input I
U

Figure 5. Architecture of the neural network
for ~ a n ~ w r ~ t t e n character recognition

The forward pass algorithm was implemented with
a 2D systolic network of 12 x 12 PES (6 x 6 PES per
FPGA). Only a square sub-matrix of 8 x8 is able to ger-
form a shift-accumulate operation and a discretized sig-
moid function. The other PES are used only to shift in-
formations around. It is able to perform at i3 frequency
of 16.6 MHz. The processing is time-multiplexed over
the layers of the network. Each feature map is diced
into tiles that fits into the 12 x 12 PES of the 2D sys-
tolic network. For example, the 32 x 32 input is diced
into 16 tiles (9 of size 12 x 12, 6 of size 12x8 and 1 of
size 8 x 8). It is important that the resulting feature
map for a tile is not larger than 8 x 8 since only 8 x 8
convolutions may be computed per tile.

335

Performance comparison

Only the first three layers were executed on the VIP
board (86% of the connections). The remaining lay-
ers require higher precision and were computed on the
host. The total execution time for the three layers are
presented in Table 3. We compare the obtained per-
formance our implementations to those of the ANNA
board [lo, 111 and a dual-processor SPARC 10 work-
station [ll]. Loading and storing transfer operations
were included in the execution time of the VIP board.
The VIP board is respectively 1.36 and 16 times faster
than the ANNA and SPARC implementations. This
is due mainly to the improved parallelism and 2D sys-
tolic network that is well suited for processing 2D data
structure. For example, at each step of the convolution,
144 state values of 3 bits are exchanged between PES,
giving an impressive bandwidth of 900 MBytes/sec.

ANNA board [16 MHz VIP I SPARC 10-41x2
1.02 ms I 0.75 ms I 12.3 ms

Table 3. Comparison of execution time for
recognition of one character on different
hardware

4.3: Conclusion

We have presented in this paper the architecture and
implementation of the Virtual Image Processor having
large FPGAs as main building blocks. This has for
impact of having maximal flexibility for the processor
logic design. The VIP has a SIMD ”virtual” archi-
tecture with a 2D interconnection network that is well
suited for implementing 2D systolic networks.

We used two applications to compare the speed per-
formance of the VIP board with other dedicated and
general hardware designs. The VIP board is order of
magnitude faster than general processor implementa-
tion. Furthermore, it has speed performances similar
to those obtained by dedicated hardware. Those re-
sults are excellent, considering our approach is much
more general and much cheaper than dedicated hard-
ware. Also, the initial prototype reported here uses the
slowest version of the EPF81500 FPGA available from
Altera. We are planning to use faster chips and faster
memory in the second prototype of the VIP board.
This should permit to increase performance by a factor
from 2 to 3.

We anticipate that more and more coprocessors will
use an approach similar to ours. The advantage of
such approach are lower cost and fast execution time.

The price to pay for the added flexibility is the time
taken for designing an hardware implementation for
each new algorithm. We conjecture that current ad-
vances in hardware/software codesign should reduce
the time taken for such design.

Acknowledgments

The authors would like to give many thanks for the
support and funding of the Adaptive System Research
Department research team at AT&T Bell Laboratories
in Holmdel, NJ. We express our gratitude particularly
to Hans Peter Graf, Larry D. Jackel and John Denker.
This work was also funded by NSERC (Canadian gov-
ernment) under grant OGPIN-007.

References

[l] Altera inc. FLEX 8000: Programmable Logic Device
Familly. Altera inc., March 1995. Data Sheet, ver. 6.

[Z] Altera inc. MAX 7000: Programmable Logic Device
Familly. Altera inc., March 1995. Data Sheet, ver. 3.

[3] AMCC inc. S5930-S5933 PCI Controlers. AMCC inc.,
Spring 1995. Technical reference.

[4] J. Beichter, U. Ramacher, and H. Klar. Vlsi design of
a neural signal processor. In Silicon Architectures for
Neural Nets, pages 245-260. Elsevier Science Publish-
ers B.V. (North-Holland), 1991.

[5] J. Cloutier and P. Simard. Hardware implementation
of the backpropagation without multiplication. In Pro-
ceedings of the Fourth International Conference on Mi-
croelectronics for Neural Networks and Fuzzy Systems,
pages 46-55, September 1994.

[6] E. Cosatto and H. Graf. Net32k high speed image un-
derstanding system. In Proceedings of the Fourth In-
ternational Conference on Microelectronics for Neural
Networks and Fuzzy Systems, pages 413421, Septem-
ber 1994.

[7] P. Ienne. Architecures for neuro-computers: Review
and performance evaluation. Technical Report 93/91,
Ecole polytechnique f6dCrale de Lausanne, January
1993.

[8] H. Kung and C. Leiserson. Systolic arrays (for vlsi).
In I. S. Duff and G. Stewart, editors, Sparse Matrix
Proceedings. Knoxville: Academic Press, 1979.

Image processing and pattern
recognition hardware. Tutorial at Neural Information
Processing Systems conference, November 1994.

[lo] E. Sackinger, B. E. Boser, J. Bromley, E. LeCun, and
L. D. Jackel. Application of the anna neural network
chip to high-speed character recognition. IEEE Trans.
on Neural Networks, 3(3), May 1992.

[ll] E. Sackinger and H. Graf. A system for high-speed
pattern recognition and image analysis. In Proceedings
of the Fourth International Conference on Microelec-
tronics for Neural Networks and Fuzzy Systems, pages
364-371, September 1994.

[9] D. Mammerstrom.

336

