
Document for a General FPGA Platform

I. Introduction

This platform is used to speed up the verification process of image or video related IPs.

In general case, to verify an image processing design, designers need to:

1. prepare a source image in external memories

2. launch the design

3. fetch the sink image from external memories

It seems like a simple task, however, by step 1, designers may need to prepare:

a. an off-chip camera like D5M

b. an I2C or other similar communication IPs to configure the camera

(It is decided by the communication interface adopted by the camera you choose)

c. a software or hardware driver for the camera

(If it is a software driver, a CPU is also needed)

d. an interface to dump the source images

By step 2, designers may need to prepare:

a. an interface to fetch the source images and dump the sink images.

By step 3, designers may need to prepare:

a. a display channel like VGA

b. a software or hardware for the channel

(If it is a software driver, a CPU is also needed)

c. an interface to fetch the sink images

The above tasks may be a little difficult for designers who mainly concentrate on IP-level designs because a bunch of

background knowledge in system design (AXI Bus, GM/S interface, on-chip CPU, bare machine programming …) and

peripherals integration (I2C, UART, D5M, VGA …) are needed. In addition to this, IPs like image stitching, depth extracting,

image dehazing need some specific source images which can hardly captured by general cameras.

In view of these, I established a general FPGA platform for verification use. Aiming at this target, this platform has the

following features:

a. a simple method to prepare source images

b. a simple interface to access external memories

c. a simple method to fetch sink images

d. NOT suitable for demo use because the source images are not updated in real time

The above content gives a brief introduction and motivation to this platform while the rest of this document is composed

of three questions:

How to prepare a source images?

How to access the source images in external memories?

How to fetch the sink images?

II. How to prepare a source images?

A. Backgrounds

By using control panel, one could easily access any resources on the DE2_115 board.

However, the address mapping relationship of control panel is different from our SDRAM controller. In order to put

source images in the wanted position in a wanted way, I wrote a scripts named "jpg2dat.m".

It is located in "/fpga/ALTERA_DE2/test_GFP_display/scripts/"

The input is "img_i.jpg". (Of course, you could replace it with any supported image format and name)

The output is "img_o.dat", which can be recognized by control panel.

B. Using Examples

To prepare source images,

1. Prepare a source image and put it in "/fpga/ALTERA_DE2/test_GFP_display/scripts/", for example,

2. If needed, change the parameter in "jpg2dat.m" according to image size, for example,

HON = 640;

VER = 480;

If needed, change the input and output target, for example,

INPUT = 'img_i.jpg';

OUTPUT = 'img_o.dat';

3. Run the scripts in Matlab

4. Dump it into SDRAM by control panel.

Address box should be 0

Check the file length box

5. Then it is dumped into SDRAM, with a base address of 0.

From designers' point of view, it is arranged as follows:

...

...

0 1 2

...

0
1
2

...

PIC

N

...

...

N

blank

MEM

Fig. II-1. Mapping relationship between pictures and SDRAM

In this figure, one black square stands for one pixel, which contains three color components red, green and blue.

All these color components are 8 bits in data width. In another word, one pixel can be represented with 24 bits, however,

to align the access address, it is stored with 32 bits, namely, 1 word.

Now we assume the total amount of pixels is N, then from designers' point of view, these pixels are arranged in the

memory space from word address 0 to word address N. For example, if one need to read the blue component of the 94th

pixels in the source pixels, the access address would be exactly 94 and the third byte of the data fetched would be the

blue component.

Here, word address means each address is counted in words instead of in bytes. To translate word address 94 into

byte address, just times it to 4. However, one needs to pay attention to the endian problem.

III. How to access the source images in external memories?

A. Architecture, I/O and Timing

After the above operations, source images are already dumped into external memories. However, one still need a bus

system, an sdram controller and an interface to access these images. In our platform, these components are packaged into

one block. Thus, for designers, the only cared thing is the timing of the read and write interface provided by this platform.

Nevertheless, I still will provide you with the inside architecture.

[GFP_process]

WRAPPERGM_RD

Bus System

GM_WR

WRAPPER WRAPPER

CLK_GEN

SDRAM CNTL

rd_ena_i

rd_adr_i

rd_ack_o

rd_dat_o

sys_clk

sys_rst

sdram_clk

sdram_addr

sdram_dq

... ...

sdram_sel

wr_ena_i

wr_adr_i

wr_dat_i

wr_byt_i

wr_ack_o

board_clk

board_rstn

Fig. III-1. Architecture of GFP_process

Table III-1. Main part of GFP_process

Name Description

Bus System AXI bus

GM_RD general AXI master for read

GM_WR general AXI master for write

WRAPPER convert simple rd/wr to general AXI format rd/wr

convert AXI format wr/rd to AHB format wr/rd

SDRAM CNTL sdram controller with AHB interface

Table III-2. I/O of GFP_process

Name Width I/O Viewer Description

board_clk 1 I whole system board clk

board_rstn 1 I whole system board reset, low valid

sys_clk 1 O whole system system clk

sys_rst 1 O whole system system reset, high valid

rd_ena_i 1 I read master read enable

rd_adr_i 32 I read master read address

rd_ack_o 1 O read master read acknowledge

rd_dat_o 64 O read master read data

wr_ena_i 1 I write master write enable

wr_adr_i 32 I write master write address

wr_dat_i 64 I write master write data

wr_byt_i 8 I write master write byte enable

wr_ack_o 1 O write master write acknowledge

sdram_clk 1 O sdram sdram clk

sdram_addr 32 O sdram sdram address

sdram_dq 4 IO sdram sdram data

… … … sdram sdram …

sdram_sel 1 O sdram sdram ship select

Do not Care
Valid

Data0
Unknow Datard_dat

Valid

Data1

Valid

Data2
Do not Care Do not Care

rd_ack

rd_ena

clk

Do not CareValid Addr0
Unknow

Data
rd_adr Valid Addr1 Valid Addr2 Do not Care

Fig. III-2. Timing of read

wr_dat

wr_ack

wr_ena

clk

Do not CareValid Addr0
Unknow

Data
wr_adr Valid Addr1 Valid Addr2 Do not Care

Do not CareValid ByteEn0
Unknow

Data
wr_bty Valid ByteEn1 Valid ByteEn2 Do not Care

Do not CareValid Data0
Unknow

Data
Valid Data1 Valid Data2 Do not Care

Fig. III-3. Timing of write

The related design files are located in "/rtl" and "/lib"

Top module is

"/rtl/GFP_process.v"

Sub modules include:

design files in "/rtl/GFP_axi"

design files in "/rtl/GFP_clkgen"

design files in "/lib/ALTERA_DE2/pll"

design files in "/lib/ALTERA_DE2/tri"

B. Using Example

The architecture of this example is shown in the following figure.

SDRAM CTL SDRAM (off-chip)

READ WRITEINVERSE

ID

LE

RD
WR

WA

IT

!KEY2

wr_ack &

rd_adr!=640x480x4

wr_ack &

rd_adr==640x480x4

rd_ack

GFP_process

Fig. III-4. Architecture of test_GFP_process

It fulfill a task of reading a 640×480 source images located in word address 0, inversing it, and then storing it to word

address 640×480. I establish a simulation environment in

"/sim/rtl_GFP_process"

and a corresponding FPGA project in

"/fpga/ALTERA_DE2/test_GFP_process"

To run the simulation example,
1. upload whole project onto the server

2. change directory to "/sim/rtl_GFP_process"

3. run "make ncsim" in terminal

4. open the waveform located in "/sim/rtl_GFP_process/simul_data" with Verdi, you will see,

Source images is initialized by the following statements in "/sim/rtl_GFP_process/simul_data/tb_GFP.v", namely, the

testbench.

In other words, you need to prepare the PROG_FILE, "./scripts/img_o.dat" and change MEMSIZE according to size of

the source image.

To prepare the PROG_FILE, you just follow a similar way to the one in Section II.

1. Prepare a source image and put it in "/ sim/rtl_GFP_process/scripts/"

2. If needed, change the parameter in "jpg2dat.m" according to image size, for example,

HON = 640;

VER = 480;

If needed, change the input and output target, for example,

INPUT = 'img_i.jpg';

OUTPUT = 'img_o.dat';

3. Run the scripts in Matlab

To run the FPGA example,

1. Program "/fpga/ALTERA_DE2/test_GFP_process/outputfiles/test_GFP.sof" to DE2_115

2. Press KEY2, you will see LEDG0 is on, which indicated the inverse task is done,

In the next Section, I will show how to fetch the sink image.

IV. How to fetch the sink images?

There are two different ways to fetch the sink images. One is using control panel, while the other one is using VGA.

A. Using Example

To fetch sink images by VGA,

1. Program "/fpga/ALTERA_DE2/test_GFP_display/outputfiles/test_GFP.sof" to DE2_115

2. Turn on SW0, you will see,

In fact, if you turn on SW1, another module will be launched to write over this image,

In case you are interested in the inner logic, I will provide the architecture of this example here,

SDRAM CNTL

SDRAM (off-chip)

PROC_IF

Bus System

VGA_IF

PROC VGA_CNTL DAC (offchip)

Displayer

(offchip)

SW0

SW1

Fig. IV-1. Architecture of test_GFP_display

If you changed the parameter RGB_ADR from "640*480*4" to "0", and regenerate the sof file again, it will display the

source images, since you put it there. This parameter is located in "/rtl/GFP_vga/vga_axi_if/vga_axi_if.v". Attention should

be paid that this parameter is expressed in byte address.

Although, we can directly see it on displayer by using VGA, the image size is limited to the bandwidth of SDRAM.

And, for now, I just build a 640×480 example. If we want to test other image sizes, we should use control panel.

To fetch sink images by control panel,
1. Fetch sink images by control panel, store it as "/fpga/ALTERA_DE2/test_GFP_process/scripts/img_i.dat"

Address Box should be 12C000

Length Box should be 12C000

2. If needed, change the parameter in "dat2jpg.m" according to image size, for example,

HON = 640;

VER = 480;

3. Run "dat2jpg.m" in Matlab, you will see

Attention should be paid on the following staffs.

1. It can be observed that there are several abnormal dots in the fetched images. This is because SDRAM will lose

data during the programming process.

2. Here, 12C000 is expressed in half-word address, which means the corresponding byte address is 258000.

The byte address for a 640×480 images is 640×480×4, namely, 12C000 in hexadecimal.

It is not equal because of the mapping relationship of our SDRAM controller is different from control panel. I will

try to fix it later. Nevertheless, this platform is still useable.

3. THIS PLATFORM IS NOT FULLY TESTED, PLEASE CONTACT ME IF THERE IS ANYTHING WRONG!

V. Version

Version Date Description Author

1.0 2015.09.11 Leilei Huang

	I. Introduction
	II. How to prepare a source images?
	A. Backgrounds
	B. Using Examples

	III. How to access the source images in external memories?
	A. Architecture, I/O and Timing
	B. Using Example

	IV. How to fetch the sink images?
	A. Using Example

	V. Version

