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ABSTRACT
In this paper we consider the problem of multi-view face de-
tection. While there has been significant research on this
problem, current state-of-the-art approaches for this task
require annotation of facial landmarks, e.g. TSM [25], or
annotation of face poses [28, 22]. They also require training
dozens of models to fully capture faces in all orientations,
e.g. 22 models in HeadHunter method [22]. In this paper we
propose Deep Dense Face Detector (DDFD), a method that
does not require pose/landmark annotation and is able to de-
tect faces in a wide range of orientations using a single model
based on deep convolutional neural networks. The proposed
method has minimal complexity; unlike other recent deep
learning object detection methods [9], it does not require
additional components such as segmentation, bounding-box
regression, or SVM classifiers. Furthermore, we analyzed
scores of the proposed face detector for faces in different ori-
entations and found that 1) the proposed method is able to
detect faces from different angles and can handle occlusion to
some extent, 2) there seems to be a correlation between dis-
tribution of positive examples in the training set and scores
of the proposed face detector. The latter suggests that the
proposed method’s performance can be further improved by
using better sampling strategies and more sophisticated data
augmentation techniques. Evaluations on popular face de-
tection benchmark datasets show that our single-model face
detector algorithm has similar or better performance com-
pared to the previous methods, which are more complex and
require annotations of either different poses or facial land-
marks.

Categories and Subject Descriptors
I.4 [IMAGE PROCESSING AND COMPUTER VI-
SION]: Applications
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Figure 1: An example of user generated photos on
social networks that contains faces in various poses,
illuminations and occlusions. The bounding-boxes
and corresponding scores show output of our pro-
posed face detector.
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1. INTRODUCTION
With the wide spread use of smartphones and fast mobile

networks, millions of photos are uploaded everyday to the
cloud storages such as Dropbox or social networks such as
Facebook, Twitter, Instagram, Google+, and Flicker. Orga-
nizing and retrieving relevant information from these photos
is very challenging and directly impact user experience on
those platforms. For example, users commonly look for pho-
tos that were taken at a particular location, at a particular
time, or with a particular friend. The former two queries
are fairly straightforward, as almost all of today’s cameras
embed time and GPS location into photos. The last query,
i.e. contextual query, is more challenging as there is no ex-
plicit signal about the identities of people in the photos.
The key for this identification is the detection of human
faces. This has made low complexity, rapid and accurate
face detection an essential component for cloud based photo
sharing/storage platforms.

For the past two decades, face detection has always been
an active research area in the vision community. The semi-
nal work of Viola and Jones [40] made it possible to rapidly
detect up-right faces in real-time with very low computa-
tional complexity. Their detector, called detector cascade,



consists of a sequence of simple-to-complex face classifiers
and has attracted extensive research efforts. Moreover, de-
tector cascade has been deployed in many commercial prod-
ucts such as smartphones and digital cameras. While cas-
cade detectors can accurately find visible up-right faces, they
often fail to detect faces from different angles, e.g. side
view or partially occluded faces. This failure can signif-
icantly impact the performance of photo organizing soft-
ware/applications since user generated content often con-
tains faces from different angles or faces that are not fully
visible; see for example Figure 1. This has motivated many
works on the problem of multi-view face detection over the
past two decades. Current solutions can be summarized into
three categories:

• Cascade-based: These methods extend the Viola and
Jones detector cascade. For example, [41] proposed to
train a detector cascade for each view of the face and
combined their results at the test time. Recently, [22]
combined this method with integral channel features
[3] and soft-cascade [1], and showed that by using 22
cascades, it is possible to obtain state-of-the-art per-
formance for multi-view face detection. This approach,
however, requires face orientation annotations. More-
over its complexity in training and testing increases
linearly with the number of models. To address the
computational complexity issue, Viola and Jones [39]
proposed to first estimate the face pose using a tree
classifier and then run the cascade of corresponding
face pose to verify the detection. While improving the
detection speed, this method degrades the accuracy
because mistakes of the initial tree classifier are irre-
versible. This method is further improved by [13, 12]
where, instead of one detector cascade, several detec-
tors are used after the initial classifier. Finally, [35] and
[28] combined detector cascade with multiclass boost-
ing and proposed a method for multiclass/multi-view
object detection.

• DPM-based: These methods are based on the deformable
part models technique [5] where a face is defined as
a collection of its parts. The parts are defined via
unsupervised or supervised training, and a classifier,
latent SVM, is trained to find those parts and their
geometric relationship. These detectors are robust to
partial occlusion because they can detect faces even
when some of the parts are not present. These meth-
ods are, however, computationally intensive because 1)
they require solving a latent SVM for each candidate
location and 2) multiple DPMs have to be trained and
combined to achieve the state-of-the-art performance
[22, 25]. Moreover, in some cases DPM-based models
require annotation of facial landmarks for training, e.g
[25].

• Neural-Network-based: There is a long history of using
neural networks for the task of face detection [38, 37,
27, 8, 7, 6, 26, 11, 24, 23]. In particular, [38] trained
a two-stage system based on convolutional neural net-
works. The first network locates rough positions of
faces and the second network verifies the detection and
makes more accurate localization. In [27], the authors
trained multiple face detection networks and combined
their output to improve the performance. [8] trained

a single multi-layer network for face detection. The
trained network is able to partially handle different
poses and rotation angles. More recently, [23] proposed
to train a neural network jointly for face detection and
pose estimation. They showed that this joint learning
scheme can significantly improve performance of both
detection and pose estimation. Our method follows
the works in [8, 23] but constructs a deeper CNN for
face detection.

The key challenge in multi-view face detection, as pointed
out by Viola and Jones [39], is that learning algorithms such
as Boosting or SVM and image features such as HOG or
Haar wavelets are not strong enough to capture faces of dif-
ferent poses and thus the resulted classifiers are hopelessly
inaccurate. However, with recent advances in deep learn-
ing and GPU computation, it is possible to utilize the high
capacity of deep convolutional neural networks for feature
extraction/classification, and train a single model for the
task of multi-view face detection.

Deep convolutional neural network has recently demon-
strated outstanding performance in a variety of vision tasks
such as face recognition [34, 30], object classification [19, 31],
and object detection [9, 29, 18, 32]. In particular [19] trained
an 8-layered network, called AlexNet, and showed that deep
convolutional neural networks can significantly outperform
other methods for the task of large scale image classifica-
tion. For the task of object detection, [9] proposed R-CNN
method that uses an image segmentation technique, selec-
tive search [36], to find candidate image regions and classify
those candidates using a version of AlexNet that is fine-
tuned for objects in the PASCAL VOC dataset. More re-
cently, [33] improved R-CNN by 1) augmenting the selective
search proposals with candidate regions from multibox ap-
proach [4], and 2) replacing 8-layered AlexNet with a much
deeper CNN model of GoogLeNet [31]. Despite state-of-the-
art performance, these methods are computationally sub-
optimal because they require evaluating a CNN over more
than 2, 000 overlapping candidate regions independently. To
address this issue, [18] recently proposed to run the CNN
model on the full image once and create a feature pyra-
mid. The candidate regions, obtained by selective search,
are then mapped into this feature pyramid space. [18] then
uses spatial pyramid pooling [20] and SVM on the mapped
regions to classify candidate proposals. Beyond region-based
methods, deep convolutional neural networks have also been
used with sliding window approach, e.g. OverFeat [29] and
deformable part models [10] for object detection and [17]
for human pose estimation. In general, for object detection
these methods still have an inferior performance compared
to region-based methods such as R-CNN [9] and [33]. How-
ever, in our face detection experiments we found that the
region-based methods are often very slow and result in rel-
atively weak performance.

In this paper, we propose a method based on deep learn-
ing, called Deep Dense Face Detector (DDFD), that does
not require pose/landmark annotation and is able to detect
faces in a wide range of orientations using a single model.
The proposed method has minimal complexity because un-
like recent deep learning object detection methods such as
[9], it does not require additional components for segmen-
tation, bounding-box regression, or SVM classifiers. Com-
pared to previous convolutional neural-network-based face
detectors such as [8], our network is deeper and is trained



on a significantly larger training set. In addition, by analyz-
ing detection confidence scores, we show that there seems
to be a correlation between the distribution of positive ex-
amples in the training set and the confidence scores of the
proposed detector. This suggests that the performance of
our method can be further improved by using better sam-
pling strategies and more sophisticated data augmentation
techniques. In our experiments, we compare the proposed
method to a deep learning based method, R-CNN, and sev-
eral cascade and DPM-based methods. We show that DDFD
can achieve similar or better performance even without us-
ing pose annotation or information about facial landmarks.

2. PROPOSED METHOD
In this section, we provide details of the algorithm and

training process of our proposed face detector, called Deep
Dense Face Detector (DDFD). The key ideas are 1) leverage
the high capacity of deep convolutional networks for clas-
sification and feature extraction to learn a single classifier
for detecting faces from multiple views and 2) minimize the
computational complexity by simplifying the architecture of
the detector.

We start by fine-tuning AlexNet [19] for face detection.
For this we extracted training examples from the AFLW
dataset [21], which consists of 21K images with 24K face
annotations. To increase the number of positive examples,
we randomly sampled sub-windows of the images and used
them as positive examples if they had more than a 50% IOU
(intersection over union) with the ground truth. For further
data augmentation, we also randomly flipped these training
examples. This resulted in a total number of 200K posi-
tive and and 20 millions negative training examples. These
examples were then resized to 227 × 227 and used to fine-
tune a pre-trained AlexNet model [19]. For fine-tuning, we
used 50K iterations and batch size of 128 images, where each
batch contained 32 positive and 96 negative examples.

Using this fine-tuned deep network, it is possible to take
either region-based or sliding window approaches to obtain
the final face detector. In this work we selected a sliding
window approach because it has less complexity and is in-
dependent of extra modules such as selective search. Also,
as discussed in the experiment section, this approach leads
to better results as compared to R-CNN.

Our face classifier, similar to AlexNet [19], consists of 8
layers where the first 5 layers are convolutional and the last
3 layers are fully-connected. We first converted the fully-
connected layers into convolutional layers by reshaping layer
parameters [14]. This made it possible to efficiently run the
CNN on images of any size and obtain a heat-map of the face
classifier. An example of a heat-map is shown in Figure 2-
right. Each point in the heat-map shows the CNN response,
the probability of having a face, for its corresponding 227×
227 region in the original image. The detected regions were
then processed by non-maximal suppression to accurately
localize the faces. Finally, to detect faces of different sizes,
we scaled the images up/down and obtained new heat-maps.
We tried different scaling schemes and found that rescaling
image 3 times per octave gives reasonably good performance.
This is interesting as many of the other methods such as
[22, 2] requires a significantly larger number of resizing per
octave, e.g. 8. Note that, unlike R-CNN [9], which uses
SVM classifier to obtain the final score, we removed the SVM

module and found that the network output are informative
enough for the task of face detection.

Face localization can be further improved by using a bounding-
box regression module similar to [29, 9]. In our exper-
iment, however, adding this module degraded the perfor-
mance. Therefore, compared to the other methods such as
R-CNN [9], which uses selective search, SVM and bounding-
box regression, or DenseNet [10], which is based on the
deformable part models, our proposed method (DDFD) is
fairly simple. Despite its simplicity, as shown in the exper-
iments section, DDFD can achieve state-of-the-art perfor-
mance for face detection.

2.1 Detector Analysis
In this section, we look into the scores of the proposed face

detector and observe that there seems to be a correlation
between those scores and the distribution of positive exam-
ples in the training set. We can later use this hypothesis to
obtain better training set or to design better data augmen-
tation procedures and improve performance of DDFD.

We begin by running our detector on a variety of faces
with different in-plane and out-of-plane rotations, occlusions
and lighting conditions (see for example Figure 1, Figure 2-
left and Figure 3). First, note that in all cases our detector is
able to detect the faces except for the two highly occluded
ones in Figure 1. Second, for almost all of the detected
faces, the detector’s confidence score is pretty high, close
to 1. Also as shown in the heat-map of Figure 2-right, the
scores are close to zero for all other regions. This shows that
DDFD has very strong discriminative power, and its output
can be used directly without any post-processing steps such
as SVM, which is used in R-CNN [9]. Third, if we com-
pare the detector scores for faces in Figure 2-left, it is clear
that the up-right frontal face in the bottom has a very high
score of 0.999 while faces with more in-plane rotation have
less score. Note that these scores are output of a sigmoid
function, i.e. probability (soft-max) layer in the CNN, and
thus small changes in them reflects much larger changes in
the output of the previous layer. It is interesting to see that
the scores decrease as the in-plane rotation increases. We
can see the same trend for out-of-plane rotated faces and
occluded faces in Figures 1 and 3. We hypothesize that this
trend in the scores is not because detecting rotated face are
more difficult but it is because of lack of good training ex-
amples to represent such faces in the training process.

To examine this hypothesis, we looked into the face an-
notations for AFLW dataset [21]. Figure 4 shows the distri-
bution of the annotated faces with regards to their in-plane,
pitch (up and down) and yaw (left to right) rotations. As
shown in this figure, the number of faces with more than
30 degrees out-of-plane rotation is significantly lower than
the faces with less than 30 degree rotation. Similarly, the
number of faces with yaw or pitch less than 50 degree is
significantly larger than the other ones. Given this skewed
training set, it not surprising that the fine-tuned CNN is
more confident about up-right faces. This is because the
CNN is trained to minimize the risk of the soft-max loss
function

R =
∑
xi∈B

log [prob(yi|xi)] , (1)

where B is the example batch that is used in an iteration
of stochastic gradient descent and yi is the label of example
xi. The sampling method for selecting examples in B can
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Figure 2: left) an example image with faces in different in-plane rotations. It also shows output of our
proposed face detector after NMS along with corresponding confidence score for each detection. right)
heat-map for the response of DDFD scores over the image.

significantly hurt performance of the final detector. In an
extreme case if B never contains any example of a certain
class, the CNN classifier will never learn the attributes of
that class.

In our implementation |B| = 128 and it is collected by ran-
domly sampling the training set. However, since the number
of negative examples are 100 times more than the number
of positive examples, a uniform sampling will result in only
about 2 positive examples per batch. This significantly de-
grades the chance of the CNN to distinguish faces from non-
faces. To address this issue, we enforced one quarter of each
batch to be positive examples, where the positive examples
are uniformly sampled from the pool of positive training
samples. But, as illustrated in Figure 4, this pool is highly
skewed in different aspects, e.g. in-plane and out-of-plane
rotations. The CNN is therefore getting exposed with more
up-right faces; it is thus not surprising that the fine-tuned
CNN is more confident about the up-right faces than the ro-
tated ones. This analysis suggests that the key for improv-
ing performance of DDFD is to ensure that all categories of
the training examples have similar chances to contribute in
optimizing the CNN. This can be accomplished by enforc-
ing population-based sampling strategies such as increasing
selection probability for categories with low population.

Similarly, as shown in Figure 1, the current face detector
still fails to detect faces with heavy occlusions. Similar to
the issue with rotated faces, we believe that this problem can
also be addressed through modification of the training set.
In fact, most of the face images in the AFLW dataset [21]
are not occluded, which makes it difficult for a CNN to learn
that faces can be occluded. This issue can be addressed by
using more sophisticated data augmentation techniques such
as occluding parts of positive examples. Note that simply
covering parts of positive examples with black/white or noise
blocks is not useful as the CNN may learn those artificial
patterns.

To summarize, the proposed face detector based on deep
CNN is able to detect faces from different angles and handle
occlusion to some extent. However, since the training set is
skewed, the network is more confident about up-right faces
and better results can be achieved by using better sampling
strategies and more sophisticated data augmentation tech-
niques.

3. EXPERIMENTS
We implemented the proposed face detector using the

Caffe library [16] and used its pre-trained Alexnet [19] model
for fine-tuning. For further details on the training process of
our proposed face detector please see section 2. After con-
verting fully-connected layers to convolutional layers [14], it
is possible to get the network response (heat-map) for the
whole input image in one call to Caffe code. The heat-map
shows the scores of the CNN for every 227 × 227 window
with a stride of 32 pixels in the original image. We directly
used this response for classifying a window as face or back-
ground. To detect faces of smaller or larger than 227× 227,
we scaled the image up or down respectively.

We tested our face detection approach on PASCAL Face
[42], AFW [25] and FDDB [15] datasets. For selecting and
tuning parameters of the proposed face detector we used
the PASCAL Face dataset. PASCAL Face dataset consists
of 851 images and 1341 annotated faces, where annotated
faces can be as small as 35 pixels. AFW dataset is built using
Flickr images. It has 205 images with 473 annotated faces,
and its images tend to contain cluttered background with
large variations in both face viewpoint and appearance (ag-
ing, sunglasses, make-ups, skin color, expression etc.). Sim-
ilarly, FDDB dataset [15] consists of 5171 annotated faces
with 2846 images and contains occluded, out-of-focus, and
low resolution faces. For evaluation, we used the toolbox
provide by [22] with corrected annotations for PASCAL Face
and AFW datasets and the original annotations of FDDB
dataset.

We started by finding the optimal number of scales for
the proposed detector using PASCAL dataset. We upscaled
images by factor of 5 to detect faces as small as 227/5 = 45
pixels. We then down scaled the image with by a fac-
tor, fs, and repeated the process until the minimum im-
age dimension is less than 227 pixels. For the choice of
fs, we chose fs ∈ {

√
0.5 = 0.7071, 3

√
0.5 = 0.7937, 5

√
0.5 =

0.8706, 7
√

0.5 = 0.9056}; Figure 5 shows the effect of this
parameter on the precision and recall of our face detector
(DDFD). Decreasing fs allows the detector to scan the im-
age finer and increases the computational time. According
to Figure 5, it seems that these choices of fs has little impact
on the performance of the detector. Surprisingly, fs = 3

√
0.5

seems to have slightly better performance although it does



Figure 3: A set of faces with different out-of-plane
rotations and occlusions. The figure also shows out-
put of our proposed face detector after NMS along
with the corresponding confidence score for each de-
tection.

not scan the image as thorough as fs = 5
√

0.5 or fs = 7
√

0.5.
Based on this experiment we use fs = 3

√
0.5 for the rest of

this paper.
Another component of our system is the non-maximum

suppression module (NMS). For this we evaluated two dif-
ferent strategies:

• NMS-max: we find the window of the maximum
score and remove all of the bounding-boxes with an
IOU (intersection over union) larger than an overlap
threshold.

• NMS-avg: we first filter out windows with confidence
lower than 0.2. We then use groupRectangles function
of OpenCV to cluster the detected windows accord-
ing to an overlap threshold. Within each cluster, we
then removed all windows with score less than 90% of
the maximum score of that cluster. Next we averaged
the locations of the remaining bounding-boxes to get
the detection window. Finally, we used the maximum
score of the cluster as the score of the proposed detec-
tion.

We tested both strategies and Figure 6 shows the perfor-
mance of each strategy for different overlap thresholds. As
shown in this figure, performance of both methods vary sig-
nificantly with the overlap threshold. An overlap threshold
of 0.3 gives the best performance for NMS-max while, for
NMS-avg 0.2 performs the best. According to this figure,
NMS-avg has better performance compared to NMS-max in
terms of average precision.
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Figure 4: Histogram of faces in AFLW dataset
based on their top) in-plane, middle) pitch (up and
down) and bottom) yaw(left to right) rotations.

Finally, we examined the effect of a bounding-box regres-
sion module for improving detector localization. The idea is
to train regressors to predict the difference between the lo-
cations of the predicted bounding-box and the ground truth.
At the test time these regressors can be used to estimate the
location difference and adjust the predicted bounding-boxes
accordingly. This idea has been shown to improve localiza-
tion performance in several methods including [5, 29, 4]. To
train our bounding-box regressors, we followed the algorithm
of [9] and Figure 7 shows the performance of our detector
with and without this module. As shown in this figure,
surprisingly, adding a bounding-box regressors degrades the
performance for both NMS strategies. Our analysis revealed
that this is due to the mismatch between the annotations of
the training set and the test set. This mismatch is mostly
for side-view faces and is illustrated in Figure 8. In addition
to degrading performance of bounding-box regression mod-
ule, this mismatch also leads to false miss-detections in the
evaluation process.

3.1 Comparison with R-CNN
R-CNN [9] is one of the current state-of-the-art methods

for object detection. In this section we compare our pro-
posed detector with R-CNN and its variants.

We started by fine-tuning AlexNet for face detection using
the process described in section 2. We then trained a SVM



Figure 5: Effect of scaling factor on precision and
recall of the detector.

Figure 6: Effect of different NMS strategies and
their overlap thresholds.

classifier for face classification using output of the seventh
layer (fc7 features). We also trained a bounding-box regres-
sion unit to further improve the results and used NMS-max
for final localization. We repeated this experiment on a ver-
sion of AlexNet that is fine-tuned for PASCAL VOC 2012
dataset and is provided with R-CNN code. Figure 9 com-
pares the performance of our detector with different NMS
strategies along with the performance of R-CNN methods
with and without bounding-box regression. As shown in
this figure, it is not surprising that performance of the detec-
tors with AlexNet fine-tuned for faces (Face-FT) are better
than the ones that are fine-tuned with PASCAL-VOC ob-
jects (VOC-FT). In addition, it seems that bounding-box
regression can significantly improve R-CNN performance.
However, even the best R-CNN classifier has significantly
inferior performance compared to our proposed face detec-
tor independent of the NMS strategy. We believe the inferior
performance of R-CNN are due to 1) the loss of recall since
selective search may miss some of face regions and 2) loss in
localization since bounding-box regression is not perfect and
may not be able to fully align the segmentation bounding-

Figure 7: Performance of the proposed face detector
with and without bounding-box regression.

Figure 8: Annotation of a side face in left) training
set and right) test set. The red bounding-box is the
predicted bounding-box by our proposed detector.
This detection is counted as a false positive as its
IOU with ground truth is less than 50%.

boxes, provided by selective search [36], with the ground
truth.

3.2 Comparisons with state-of-the-art
In this section we compare the performance of our pro-

posed detector with other state-of-the-art face detectors us-
ing publicly available datasets of PASCAL faces [42], AFW
[25] and FDDB [15]. In particular, we compare our method
with 1) DPM-based methods such as structural model [42]
and TSM [25] and 2) cascade-based method such as head
hunter [22]. Figures 10 and 11 illustrate this comparison.
Note that these comparison are not completely fair as most
of the other methods such as DPM or HeadHunter use extra
information of view point annotation during the training.
As shown in these figures our single model face detector was
able to achieve similar or better results compared to the
other state-of-the-art methods, without using pose annota-
tion or information about facial landmarks.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a face detection method based

on deep learning, called Deep Dense Face Detector (DDFD).
The proposed method does not require pose/landmark an-
notation and is able to detect faces in a wide range of ori-



Figure 10: Comparison of different face detectors on left) PASCAL faces and right) AFW dataset.

Figure 9: Comparison of our face detector, DDFD,
with different R-CNN face detectors.

entations using a single model. In addition, DDFD is inde-
pendent of common modules in recent deep learning object
detection methods such as bounding-box regression, SVM,
or image segmentation. We compared the proposed method
with R-CNN and other face detection methods that are de-
veloped specifically for multi-view face detection e.g. cascade-
based and DPM-based. We showed that our detector is able
to achieve similar or better results even without using pose
annotation or information about facial landmarks. Finally,
we analyzed performance of our proposed face detector on
a variety of face images and found that there seems to be
a correlation between distribution of positive examples in
the training set and scores of the proposed detector. In fu-
ture we are planning to use better sampling strategies and
more sophisticated data augmentation techniques to further
improve performance of the proposed method for detecting
occluded and rotated faces.
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