
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 62, NO. 12, DECEMBER 2015 1139

A Parallel-Access Mapping Method for the Data
Exchange Buffers Around DCT/IDCT in HEVC

Encoders Based on Single-Port SRAMs
Yibo Fan, Leilei Huang, Yufeng Bai, and Xiaoyang Zeng, Member, IEEE

Abstract—In the High Efficiency Video Coding (HEVC) stan-
dard, a notation of the transform unit (TU) is introduced with
four different sizes, i.e., 4 × 4, 8 × 8, 16 × 16, and 32 × 32,
which results in at least two problems in the use of discrete cosine
transform/inversed discrete cosine transform (DCT/IDCT). One
is changeable input/output format presented by DCT/IDCT when
it deals with TUs of different sizes, which intensifies the noncon-
formity during the data exchange with other modules. The other
is the demand for high throughput to traverse the vast possible
TU partitions to find the best one, which would be easily dragged
by an inefficient data exchange method. To solve this problem, a
parallel-access data mapping method based on single-port static
random access memory devices (SRAMs) is proposed in this brief.
It can be applied to the data exchange buffers around DCT/IDCT
in HEVC encoders to fulfill a high-throughput data exchange.
Here, parallel access means one row of 1 × 32 pixels, two rows of
1 × 16 pixels, four rows of 1 × 8 pixels, or four rows of 1 × 4 pixels
could be accessed in one cycle depending on the specific size of the
current TU.

Index Terms—Buffer, data mapping method, discrete cosine
transform (DCT), High Efficiency Video Coding (HEVC), inversed
discrete cosine transform (IDCT), single-port static random access
memory.

I. INTRODUCTION

DURING the implementation of video coding with hard-
ware, data exchange between discrete cosine transform/

inversed discrete cosine transform (DCT/IDCT) and other mod-
ules is an annoying problem. The input/output (I/O) format of
DCT/IDCT is presented in rows or columns and varies with the
matrix size. This format originates from the realization mech-
anism adopted by most DCT/IDCT designs, which replaces a
2-D one with two 1-D transforms, namely, the row–column de-
composition method (RCDM). However, due to the algorithm
set by the encoding standard or out of convenience in real
implementation, the I/O formats of other modules are usually
in blocks, leading to a nonconformity in the data exchange
between DCT/IDCT and other modules. This kind of noncon-

Manuscript received May 22, 2015; accepted August 9, 2015. Date of publi-
cation August 14, 2015; date of current version November 25, 2015. This work
was supported in part by the National Natural Science Foundation of China
under Grant 61306023 and in part by the State Key Laboratory of ASIC & Sys-
tem under Grant 2015MS006. This brief was recommended by Associate Editor
J. P. de Gyvez.

The authors are with State Key Laboratory of ASIC & System, Fudan
University, Shanghai 200433, China (e-mail: fanyibo@fudan.edu.cn; xyzeng@
fudan.edu.cn).

Digital Object Identifier 10.1109/TCSII.2015.2468915

formity exists in every related data path, which would easily
affect efficiency.

In High Efficiency Video Coding (HEVC) encoders, this
situation becomes even worse due to the introduction of the
notation of the transform unit (TU) with four different sizes,
i.e., 4 × 4, 8 × 8, 16 × 16, and 32 × 32. On one hand, the
I/O format can be changed because of the different TU sizes.
On the other hand, the throughput demand is higher because
of the traverse process. To solve the latter problem, some high-
throughput DCT/IDCT designs are proposed; Meher et al. [1]
proposed a fixed-throughput one. This design processes pixels
at a fixed rate of 32 pixels/cycle, irrespective of TU sizes, which
is very suitable for real-time encoding toward high-definition
(HD) videos. However, without an efficient data exchange
method, this design will be impractical to use.

Thus, in this brief, a parallel-access mapping method based
on single-port static random access memory devices (SRAMs)
is proposed to provide a considerable throughput for the data
exchange around DCT/IDCT in HEVC encoders with a low-
level cost in hardware resources. Here, parallel access means
that this mapping method could provide one row of 1× 32 pixels,
two rows of 1 × 16 pixels, four rows of 1 × 8 pixels, or four
rows of 1 × 4 pixels in one cycle, which can perfectly cooperate
with the work of Meher et al. [1].

The rest of Section I would give detailed background about
DCT/IDCT in HEVC and the data exchange around it, fol-
lowed by motivations and challenges. In Section II, some naive
methods will be introduced for comparison. In Section III,
the proposed mapping method will be presented with figures,
examples, and some necessary explanations. Comparisons to
other solutions would be provided in Section IV with solid
experimental data, as well as some illustrations. Finally, the
conclusion is given in Section V.

A. DCT/IDCT in HEVC

According to the HEVC standard, the TU size can vary from
4, 8, 16, to 32, as shown in the left part of Fig. 1(a), which
denotes these TUs by TU_04, TU_08, TU_16, and TU_32,
respectively. This change introduces at least two problems that
do not exist in the implementation of H.264 encoders. One
problem is the I/O format, and the other is throughput.

The I/O format problem is that the DCT/IDCT module in
HEVC would process pixels in different orders according to
different TU sizes. For example, during the process of TU_04,
DCT/IDCT would naturally process data in rows of 1 × 4 pixels
(or columns of 4 × 1 pixels). However, when the object is
TU_08, TU_16, or TU_32, the width of rows (or the length of

1549-7747 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1140 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 62, NO. 12, DECEMBER 2015

Fig. 1. (a) TU partitions in HEVC and the corresponding I/O format of DCT/IDCT. (b) Traverse toward possible TUs. (c) General hardware architecture for
HEVC encoder. The application objects of the proposed mapping method are marked with gray color.

columns) of the I/O format would increase with the TU size, as
described by the “Serial In/Out” part of Fig. 1(a). This format
origins from the commonly used implementation method for
DCT/IDCT, namely, RCDM, which is favored by many state-
of-the-art designs [2]–[4]. By RCDM, 2-D DCT/IDCT is de-
composed into two 1-D DCT/IDCTs; thus, pixels are naturally
processed in rows or columns instead of blocks.

The throughput problem is that the DCT/IDCT module in
HEVC encoders is heavily burdened, and therefore, its through-
put has to be high enough to encode HD videos in real time.
To be more specific, in order to find the best TU partition,
DCT/IDCT is required to traverse the TU tree, as shown in
Fig. 1(b); thus, 4 times of 32 × 32 transform, 16 times of
16 × 16 transform, 64 times of 8 × 8 transform, and 256 times
of 4 × 4 transform would be executed during the transform
process toward one large coding unit (LCU), which has a size
of 64 × 64 (here, if the prediction mode is also determined
by the results of DCT/IDCT, the execution time will be further
increased). Of course, some fast algorithm can be adopted to
narrow down the range of traversal. However, according to
these state-of-the-art techniques [5]–[7], the remaining range is
still wide, leading to a still huge amount of calculation, which
gives rise to many high-throughput DCT designs [8]–[10].

B. Data Exchange Around DCT/IDCT

As mentioned earlier, due to the changeable I/O format of the
DCT/IDCT module, data exchange around it is becoming an
annoying problem in HEVC. A general architecture for HEVC
encoders is presented in Fig. 1(c). It can be seen from this figure
that DCT/IDCT (TQ) module could be taken as the core module
of HEVC encoders in some sense because it has data exchange
with all of the other modules, including pixel fetching, entropy
coding, deblocking, and predicting modules, which are denoted
by FETCH, EC, DB, and PRE in this brief.

For DCT/IDCT, the I/O format is already a tricky prob-
lem, as introduced earlier. However, in order to further raise
the throughput, a fixed-throughput design is proposed by

Meher et al. [1], which makes it even trickier. To be more
specific, Meher et al.’s design could afford a throughput of
32 pixels/cycle, irrespective of TU sizes. For example, one row
of 1 × 32 pixels per cycle for TU_32, two rows of 1 × 16 pixels
per cycle for TU_16, or four rows of 1 × 8 pixels for TU_08,
which are denoted by P_I/O in this brief and described by the
“Parallel In/Out” in Fig. 1(a).

For other module, the I/O format is different from that of
DCT/IDCT. Here, EC, namely CABAC, is set as an example;
it is natural for the input data of CABAC to be provided in the
format of 4 × 4 blocks because the basic processing unit of
CABAC is one 4 × 4 block, according to the algorithm speci-
fied by the HEVC standard. In a similar way, PRE and DB also
adopt this kind of I/O format, which is denoted by B_I/O. While
for FETCH, in order to fully utilize the burst access character-
istic of external memory controller and bus system, pixels are
usually fetched in lines, which is denoted by L_O in this brief.

With the help of these abbreviations, it can be clearly shown
in Fig. 1(c) that the format nonconformity exists in every
related data path; thus, unavoidable buffers are needed between
DCT/IDCT and other modules to buffer original, predicted,
and reconstructed pixels and coefficients, which are denoted by
CUR, PRE, REC, and COE in this brief. These buffers would
be the application objects of the proposed mapping method.

C. Motivations and Challenges

Both the motivations and the challenges to propose such a
mapping method can be simply concluded into two aspects:
area and throughput.

When the area is considered first, it is worth noticing that the
data amount to be buffered is quite huge. As shown in Fig. 1(c),
a total of seven LCUs need to be buffered according to the ar-
rangement of pipeline stages (in fact, due to the traverse opera-
tion to find the best TU partition, a total of three LCUs would be
needed to store the current data, which is the best data until now
and the data for next pipeline stage). For such a high amount of
data, it is meaningful to save as more area as possible.

FAN et al.: PARALLEL-ACCESS MAPPING METHOD FOR DATA EXCHANGE BUFFERS 1141

Fig. 2. Area-oriented straightforward mapping method.

When the throughput is considered first, it is worth notic-
ing that the throughput of individual module is already high
enough, such as PRE designs [11]–[13], EC designs [14]–[16],
DB designs [17]–[19], and the aforementioned DCT/IDCT
designs. However, without an efficient data exchange method,
those high-throughput designs may be wasted. Although, in the
H.264 era, even a software method [20] would be enough to
fulfill the need for a highly efficient encoder.

Thus, it is beneficial to find a solution that could balance
both aspects, but such a solution is difficult to find. To be more
specific, the main challenge is how to accomplish the same high
throughput with different formats of P_I/O, B_I/O, and L_I/O
without using area-cost registers, multiport memory devices, or
something similar. Of course, the clock frequency and power
consumption should also be taken into considerations.

II. STRAIGHTFORWARD SOLUTIONS

A. Area Oriented

If area is given with a higher priority, SRAM would be a
straightforward choice to save hardware cost. A simple solution
is presented in Fig. 2, which puts pixels directly according to its
physical position. Since the maximum size of TU is 32 × 32,
it would be natural to take 32 × 32 blocks, namely QLCU,
as the individual mapping object. Here, a total of four single-
port SRAMs are adopted to store pixels data to accomplish the
“Serial In/Out” throughput described in Fig. 1(a), which means
four cycles are needed to access one TU_04. Of course, one
SRAM with four times the data width could afford the same
throughput, but in actual situation, such a wide data width is
not supported by general SRAM compilers. Unnecessary pixels
could be kept unread if four SRAMs are adopted, which would
save some power.

B. Throughput Oriented

If throughput is given with higher priority, these solutions can
be figured out, including registers, multiple memory devices, or
multiport memory.

Of course, if these data are stored by registers, the throughput
can be as high as possible, but the hardware cost is unbearable.

As to multiple SRAMs, it means using several memory
devices to store the data belonging to one access separately. As
shown in Fig. 3, every four lines of pixels are distributed into
the same SRAM, and the neighboring lines are distributed into

Fig. 3. Multiple memory devices. Here, numbers stands for the row number.

different SRAMs. Thus, this mapping method could fulfill the
“Parallel In/Out” throughput described in Fig. 1(a). However,
the depth of these SRAMs would be so small that it is meaning-
less to use SRAMs, considering the area cost of using a shallow-
depth SRAM will be no much better than that of using registers.

Multiport memory solves the parallel problem in a similar way
as using multiple memory devices. Thus, four pairs of READ and
WRITE ports are needed to access one 4 × 4 block in one cycle,
which is not supported by commonly used memory compilers.

III. PROPOSED METHOD

As shown in Fig. 4, the proposed data mapping method is
based on four single-port SRAMs whose data width is eight
pixels. As mentioned earlier, it would be natural to take QLCU
as the individual mapping object. One QLCU could be divided
into 16 8 × 8 blocks, which are marked with 0, 1, . . . , f , and
one 8 × 8 block can be further divided into eight rows of 1 × 8
pixels, which are marked with nBlock-0, nBlock-1, . . . ,
nBlock-7. Here, nBlock stands for the corresponding 8 × 8
block that this row belongs to. For example, row 3-7 refers to
the seventh 1 × 8 row belonging to the third 8 × 8 block of a
certain QLCU, whereas row 6-4 refers to the fourth 1 × 8 row
belonging to the sixth 8 × 8 blocks of a certain QLCU.

The proposed mapping method is explicitly expressed with
the above numbering scheme. For example, row 0-0 is stored
in address 0 of the zeroth SRAM, row 1-0 in address 0 of the
second SRAM, row 2-0 in address 0 of the first SRAM, and
row 3-0 is stored in address 0 of the third SRAM. Similarly,
row 0-1 is stored in address 1 of the first SRAM, row 1-1 in
address 1 of the third SRAM, row 2-1 in address 1 of the second
SRAM, and row 3-1 in address 1 of the zeroth SRAM. The rest
are done in the same manner, which could be concluded into
the following pseudocode:

switch (nRow%4)

case 0 : bank = (nBlock + 0)%4

case 1 : bank = (nBlock + 2)%4

case 2 : bank = (nBlock + 1)%4

case 3 : bank = (nBlock + 3)%4

end
addr = 32× nQLCU + 8× floor(nRow/4) + nBlock (1)

where nRow is the relative row number in the 8 × 8 block that
the current 1 × 8 row belongs to, nBlock is the relative block

1142 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 62, NO. 12, DECEMBER 2015

Fig. 4. Proposed mapping method.

number in the QLCU that the current 8 × 8 block belongs to,
nQLCU is the number of QLCU, and bank and addr are the
number and address to be access in SRAMs. Row 2-5 is set as
an example. If it belongs to the zeroth QCLU, then this row
would be allocated in address 32× 0 + 8× floor(2/4) + 5,
namely address 5, of SRAM (5 + 1)%4, i.e., the second
SRAM. According to (1), parallel access can be easily fulfilled
based on single-port SRAMs.

It is easy to find out that all of the 1 × 8 rows belonging
to one 1 × 32 row are always mapped to the same address of
different SRAMs; therefore, there would be no collision during
the access of 1 × 32, 1 × 16, 1 × 8, or 1 × 4 rows. During
the access to a 1 × 16 row, only half of the throughput is
occupied. In fact, the rest of the throughput could be filled by
the next 1 × 16 row, such as rows 0-0, 0-1, 1-0, and 1-1, which
have no access collision as shown in Fig. 4. Similarly, any four
neighboring 1 × 8 rows can also be accessed in one cycle, such
as rows 0-0, 0-1, 0-2, and 0-3, as also shown in Fig. 4.

Thus, no matter the P_I/O format, the B_I/O format of
4 × 4 blocks, or the L_I/O format of 1 × 32 rows, this mapping
method could always provide in one cycle. Moreover, the
throughput of the proposed method in fact could be expanded
to 64 pixels. In such situation, eight single-port SRAMs or four
two-port SRAMs will be needed. However, a throughput of
32 pixels/cycle will be enough for state-of-the-art designs such
as that of Meher et al. [1], which balanced the speed and hard-
ware cost quite well.

IV. COMPARISON

In this section, detailed comparisons to other solutions would
be given with solid data and some explanations, followed by a
conclusive results of the performances in area or throughput.

A. With Registers

A total of 64× 64× 8-bit registers would be needed to
buffer all of the predicted data of the whole LCU. According
to the driving capacities, the hardware cost would be slightly
different, as shown in Table I.

TABLE I
HARDWARE COST OF REGISTERS

TABLE II
HARDWARE COST OF MULTIPLE MEMORY DEVICES

B. With Multiple Memory

If the method of using multiple memory devices is adopted,
four separate SRAMs are needed, which have a data width of
32× 8 bits and a depth of 32 theoretically. However, in practice,
the data width of 256 bits usually exceed the capacity of normal
memory compilers; thus, one 256-bit register file may need to
be realized by two separate 128-bit register files, which makes
the final gate count larger than expected, as shown in Table II.

C. The Straightforward and Proposed Method

Both the straightforward method introduced in Section II-A
and the proposed one need four separate SRAMs, which is
similar to the method of using multiple memory devices, but
these SRAMs would have a data width of 8 × 8 bit and a depth
of 128 theoretically. In practice, such parameters can usually be
satisfied, as shown in Table III.

FAN et al.: PARALLEL-ACCESS MAPPING METHOD FOR DATA EXCHANGE BUFFERS 1143

TABLE III
HARDWARE COST OF THE PROPOSED METHOD

TABLE IV
COMPARISONS (SAME AREA)

TABLE V
COMPARISONS (SAME THROUGHPUT)

D. Comparison

Detailed comparisons are shown in Tables IV and V. Designs
in the former one have the same area, whereas designs in the
latter one have the same throughput. These comparisons show
that, if a same throughput is achieved, the proposed method
could save 82% of the gate count when compared with using
registers or 58% when compared with using multiple memory
devices. If the same area cost is occupied, the proposed one
can provide “Parallel In/Out” throughput, whereas the straight-
forward one could only fulfill “Serial In/Out” throughput. The
supported working frequency and power assumption is also
analyzed, obtained by DC and PP tools, respectively.

To conclude, the proposed design succeeds in providing a
considerable throughput for the DCT/IDCT in HEVC encoders
with a low-level cost in hardware resources.

V. CONCLUSION

In HEVC standard, a notation of TU is introduced with four
different sizes, resulting in at least two problems in the use
of DCT/IDCT. One is the changeable I/O format presented by
DCT/IDCT when dealing with TUs of different sizes, which
intensifies the nonconformity during the data exchange with
other modules. The other is the demand for high throughput
to traverse the vast possible TU partitions to find the best
one, which would be easily dragged by an inefficient data
exchange method. To solve this problem, a parallel-access
data mapping method based on single-port SRAMs has been
proposed in this brief. It could be applied to the data exchange
buffers around DCT/IDCT in HEVC encoders to fulfill a high-
throughput data exchange. Under TSMC 65-nm technology,

experimental results shows that it occupies a gate count of 42.7
K only, which saves 82% of the gate count when compared
with using registers or saves 58% when compared with multiple
memories.

REFERENCES

[1] P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, and C. Yeo, “Efficient
integer DCT architectures for HEVC,” IEEE Trans. Circuits Syst. Video
Technol., vol. 24, no. 1, pp. 168–178, Jan. 2014.

[2] H. Sun, D. Zhou, J. Zhu, S. Kimura, and S. Goto, “An area-efficient
4/8/16/32-point inverse DCT architecture for UHDTV HEVC decoder,”
in Proc. IEEE Vis. Commun. Image Process. Conf., Dec. 7–10, 2014,
pp. 197–200.

[3] H. Liang, H. Weifeng, Z. Hui, and M. Zhigang, “A cost effective 2-D
adaptive block size IDCT architecture for HEVC standard,” Proc. IEEE
56th Int. MWSCAS, Aug. 4–7, 2013, pp. 1290–1293.

[4] M. Martuza and K. Wahid, “A cost effective implementation of
8 × 8 transform of HEVC from H.264/AVC,” in Proc. IEEE CCECE,
Apr. 29–May 2, 2012, pp. 1–4.

[5] G. Tian and S. Goto, “Content adaptive prediction unit size decision
algorithm for HEVC intra coding,” in Proc. PCS, May 7–9, 2012,
pp. 405–408.

[6] J. Xiong and H. Li, “Fast and efficient prediction unit size selec-
tion for HEVC intra prediction,” in Proc. ISPACS, Nov. 4–7, 2012,
pp. 366–369.

[7] T. Nishikori, T. Nakamura, T. Yoshitome, and K. Mishiba, “A fast CU de-
cision using image variance in HEVC intra coding,” in Proc. IEEE ISIEA,
Sep. 22–25, 2013, pp. 52–56.

[8] E. Kalali, E. Ozcan, O. Yalcinkaya, and I. Hamzaoglu, “A low energy
HEVC inverse transform hardware,” IEEE Trans. Consum. Electron.,
vol. 60, no. 4, pp. 754–761, Nov. 2014.

[9] J. Zhu, Z. Liu, and D. Wang, “Fully pipelined DCT/IDCT/Hadamard
unified transform architecture for HEVC codec,” in Proc. IEEE ISCAS,
May 19–23, 2013, pp. 677–680.

[10] R. Jeske et al., “Low cost and high throughput multiplierless design of a
16 point 1-D DCT of the new HEVC video coding standard,” in Proc. VII
SPL, Mar. 20–23, 2012, pp. 1–6.

[11] Z. Liu, D. Wang, H. Zhu, and X. Huang, “41.7BN-pixels/s reconfigurable
intra prediction architecture for HEVC 2560 × 1600 encoder,” in Proc.
IEEE ICASSP, May 26–31, 2013, pp. 2634–2638.

[12] N. Zhou, D. Ding, and L. Yu, “On hardware architecture and processing
order of HEVC intra prediction module,” in Proc. PCS, Dec. 8–11, 2013,
pp. 101–104.

[13] M. Kammoun, A. Ben Atitallah, and N. Masmoudi, “An optimized hard-
ware architecture for intra prediction for HEVC,” in Proc. 1st IPAS,
Nov. 5–7, 2014, pp. 1–5.

[14] D. Zhou et al., “A 4320p 60 fps H.264/AVC intra-frame encoder chip with
1.41 Gbins/s CABAC,” in Proc. Symp. VLSI Circuits, Jun. 13–15, 2012,
pp. 154–155.

[15] P. Jayakrishnan, P. V. A. Lincy, and R. M. Niyas, “A high speed real
time multi-bin CABAC encoder for ultra high resolution video,” in Proc.
ICE-CCN, Mar. 25–26, 2013, pp. 207–210.

[16] D. Zhou, J. Zhou, W. Fei, and S. Goto, “Ultra-high-throughput VLSI
architecture of H.265/HEVC CABAC encoder for UHDTV applications,”
IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 3, pp. 497–507,
Mar. 2015.

[17] M. Mody, N. Nandan, and T. Hideo, “High throughput VLSI architec-
ture supporting HEVC loop filter for ultra HDTV,” in Proc. IEEE 3rd
ICCE-Berlin, Sep. 9–11, 2013, pp. 54–57.

[18] C. M. Diniz, M. Shafique, F. V. Dalcin, S. Bampi, and J. Henkel, “A de-
blocking filter hardware architecture for the high efficiency video coding
standard,” in Proc. DATE, Mar. 9–13, 2015, pp. 1509–1514.

[19] W. Shen, Q. Shang, S. Shen, Y. Fan, and X. Zeng, “A high-throughput
VLSI architecture for deblocking filter in HEVC,” in Proc. IEEE ISCAS,
May 19–23, 2013, pp. 673–676.

[20] H. Javaid, M. Shafique, S. Parameswaran, and J. Henkel, “Low-power
adaptive pipelined MPSoCs for multimedia: An H.264 video encoder
case study,” in Proc. 48th ACM/EDAC/IEEE DAC, Jun. 5–9, 2011,
pp. 1032–1037.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

