A hardware/software co-design approach for multiple-standard video
bitstream parsing

Sha Shen, Huibo Zhong, Yibo Fan, Xiaoyang Zeng

The State key lab of ASIC and system, Fudan University, Shanghai 200433, China
Email: 10110720050@fudan.edu.cn

Abstract — In this paper, a hardware/software co-design
approach is proposed to parse the video bitstream which
conforms to various video compression standards. The
layered structure of the syntax elements in video
bitstreams is analyzed. Then a hardware/software
partition is proposed accordingly. Due to the high data
rate, syntax elements in slice data and lower layers are
commonly parsed by hardware. As for syntax elements
in slice header and upper layers, we proposed a hw/sw
co-design approach in order to combine the advantage of
hardware acceleration and software flexibility. specific
hardware accelerators are designed to parse these codes.
But the parsing process of these codes in slice header
and upper layer is controlled by software instead of
hardware Finite state machine (FSM). This approach can
speed up the process of Variable-Length Decoding (VLD)
while it still has the flexibility to support multiple video
coding standards.

Index Terms —bitstream parsing, fixed-length code,
Exponential Golomb code, VLD

1. Introduction

As the multimedia technology advances in the recent
years, a lot of new video coding standards (such as
H.264/AVCMY, vC-1% AVSP! etc.) have emerged and
come into application along with the traditional
standards like MPEG-2!" or MPEG-4". New video
coding standard like HEVC/H.265% aiming at the
ultra-high application is also in progress. The video
decoder, especially the one used in consumer electronics
like digital TV, smart phone, STB, is desired to support
multiple coding standards. It’s a great challenge to
design a multiple standard video decoder due to the
various specification of each standard. A flexible
architecture is needed to achieve this requirement.

The first step of video decoding is to parse the video
bitstream and decode ecach syntax clement. Video
bitstream in all video standards are organized in a similar
layered structure which is shown in Fig.1. A video
sequence is composed of several pictures. Each picture is
divided into several slices. Each slice can be further
divided into several blocks. In HEVC/H.265, the block
size is 64x64 pixels square while in previous standards
the block size is generally set as 16x16.

978-1-61284-193-9/11/$26. 00 © 20111LELELE

51

slice slice

| Sequence_head | Picturce_head slice | P slice |

block | block | block block | block [block

| Block_hecad | Prediction | Residual |

Fig. 1. The layered structure of video bitstream

Various entropy coding method are used in the video
compression standards. In video standards like MPEG-2,
MPEG-4, the syntax elements in sequence layer and
picture layer are coded in fix-length code. In order to
improve the coding efficiency, AVS, H.264 and HEVC
adopt the exponential Golomb code. As for the syntax
elements of intra/inter prediction and residual in block
layer, specific VLC codes are used for each different
video standard. In H.264 and HEVC, the context
adaptive arithmetic code (CABAC) is also introduced as
an alternative to the VLC code. The arithmetic code can
improve the coding efficiency further at expense of more
computational complexity.

In this paper, we proposed a HW/SW co-design
method to parse the video bitstream. Syntax elements in
slice data and lower layer are parsed by dedicated
hardware while the syntax elements in slice header and
upper layer (including picture header and sequence
header) are parsed in a HW/SW co-design approach.

The rest of this paper is organized as following. In
Section 2, the layered bitstream structure for various
video standards is analyzed. In section 3, Several
previous architectures for video stream parsing are
surveyed. Their advantage and disadvantage are also
discussed. Then an improved HW/SW co-design
architecture is proposed. The experiment result of our
architecture is given in section 4. Finally, a conclusion is
given in section 5.

2. Analysis of bitstream structure

The video compression technology has evolved a lot
in the last twenty years. Various standards (such as
MPEG-1, MEPG-2, MPEG-4, H.264, AVS, etc.) have
been proposed by various groups and organizations. Very

Table 1. The layered structure of video bitstream

Implementation choice
Layer Syntax elements Entropy coding method -
1 | nop | oo |0
work
| Start cc).de F?xed length HW SW SW HW-SW
Emulation prevent byte Fixed length
Sequence header Fixed length, Exp-Golom
Picture header Fixed length, Exp-Golom
2 Slice header Fixed length, Exp-Golom, HW SW SW HW-SW
VLC lookup table,
User defined data Fixed length
Intra/Inter prediction Fixed length, Exp-Golom,
VLC lookup table, CABAC
3 [Residual for DCT| Fixed length, VLC lookup Hw SW Hw Hw
coefficient table, CABAC

Note: HW means hardware only, SW means software only, HW-SW means hardware-software co-design.

popular acceptance of these standards has been got in a
wide range of applications. As more complex coding
tools like CABAC, deblocking filter, multiple reference
picture, adaptive loop filter and tree-block partition have
been introduced into the latest video standards!'M®!, the
coding efficiency has been doubled!”.

But the basic structure of the video bitstream remains
almost the same. The video bitstream can be divided into
three layers: (1) start code. A start code indicates the
beginning of a video sequence. This code is presented in
fixed length code among all video standards. The parsing
process of all other syntax elements can start only after
the start code is found. In some video standard like AVS
or H.264, the same bit pattern as start code may occur in
the middle of bitstream due to the use of exponential
Golomb code. A specific byte called emulation prevent
byte will be inserted into this pattern in order to make it
different with the start code. (2) Header information and
user define data. Video sequence header contains the
parameters such as video profile and level, picture width
and height. Picture header contains the parameters such
as slice group number, QP offset. Slice header contains
parameters such as slice type, frame number. Syntax
elements for header are usually coded by fixed length
code or exponential Golomb code. User defined data can
be used to specific needs which is not defined in the
standard. For example, the description of the video
contents or the provider information of the video can be
inserted into the video bitstream. User defined data are
usually presented as fixed length code. (3) Prediction
information and residuals. Inter/intra prediction is
essential to remove the spatial and temporal redundancy
of a video sequence. The error between prediction and
actual picture is transformed by DCT and quantization.
The result is called “residuals”. Prediction information

52

and residuals constitute the most part of a coded video
bitstream. In order to achieve better coding efficiency
than exponential Golomb code or fixed length code,
some complex entropy coding algorithms like context
adaptive VLC or context adaptive arithmetic coding are
used for prediction information and residuals.

3. Proposed architecture

Table 1. shows how the syntax elements are
organized in the layered structure of video bitstream. The
possible entropy coding method of syntax elements in
the three layers are also listed in this table.

Several architectures have been proposed to parse the
video bitstream. The implementation choice to parse
each syntax element is also shown in Table 1. These
architectures can be categorized into three types: (1)
Hardware parser. The video bitstream is parsed by pure
hardware. Li®™ proposed a variable-length decoder for
MPEG-2 video decoder. Xu"! proposed a circular buffer
based H.264/AVC bitstream parser. Hardware
implementation is efficient for one single standard but
not flexible to support multiple standards. (2) Dedicated
bitstream processor. Chang!'” proposed a bitstream
parsing processor with 4 pipeline stages for MPEG-4
video decoder. Special instruction set is also designed to
facilitate the parsing process of prediction information
and residuals. This architecture is feasible to support
multiple standards. The disadvantage of this approach is
that quite a lot of effort must be taken to design a
dedicated processor and develop the associated software
tool-chain. (3) HW/SW co-design approach. Liul'
proposed a HW/SW co-design approach to parse the
video bitstream. Syntax elements in layer 1 and layer 2
are parsed by software while syntax elements in layer 3

Slave y — | | HEVC_CAVLC
H264_CABAC
\ \ H264_CAVLC 7
FSM AVS_CAVLC | ™ SRAM />
v - Fixed | % Exp Golomb
AXT |
Bus bitstream —* \
1/F FSM o 64b Yy
Barrel shifter o« |
length
A
upper buf | 32b
AXI Bus A
| lMaster
> lower buf 256b
Fig. 2 Architecture diagram of HW/SW co-design approach
are parsed by hardware. This architecture is designed to 16b 8b 8h
support both AVS and H.264. It’s easy to be extended to
support more video standards. The disadvantage of this resepvead Code Code
architecture is that syntax elements in layer 1 and 2 are length type

parsed by software only and no hardware acceleration is
used. It will pose a heavy burden on CPU.

In this paper, we proposed a new hardware/software
co-design approach to parse the video bitstream.
Compared with the work of Liul"', the major
improvement is that specific hardware acceleration for
syntax elements in layer 1 and layer 2 are provided,
which can greatly reduce the CPU loading for video
bitstream parsing. Syntax eclements in layer 3 are
processed by hardware.

Due to its superior performance, AMBA AXI bus
protocol is adopted in this work as the bus interface. The
key feature “out-of-order transaction completion” and
“multiple outstanding transaction” of the AXI protocol
maximize the bus throughput.

Both AXI bus master and bus slave are presented in
this design. AXI bus master is in charge of prefetching
the video bitstream from external video bitstream buffer
into on-chip buffer. Two on-chip buffer named “lower
buffer” and “upper buffer” are provided. In previous
work [8], these two buffers are designed to have the
same size. In order to reduce the memory transaction and
on-chip buffer size, we increase the size of lower buffer
burst transaction. In our design, the data bus width is

53

Fig 3. Bit definition of kick-off register

64-bit and burst size is 4. So the size of lower buffer is
256-bit. The upper buffer size is designed to be greater
than the maximum length of a code word. The size of
upper buffer is set as 32-bit.

After each code word is decoded and its code length
is figured out, the barrel shifter will shift the bitstream in
order to make sure that the bitstream in the buffer starts
from the beginning of next code word. The size of barrel
shifter is designed to be double than that of upper buffer.
So the size of barrel shifter is 64-bit in this design.

AXI bus slave is in charge of accessing the
configuration registers inside the video decoder. A
special 32-bit register called “kick-off” register is
provided. The definition of each bit in this register is
depicted in Fig3. The last 8 bits is used to indicate the
type of code word: fixed length code, exponential
Golomb code or other type code word. Next 8 bits before
last 8 bits are used as the word length of a fixed length
code. Each time when a syntax element in layer 1 or
layer 2 is to be parsed, this kick-off register will be
written. A write transaction to this register will trigger
the hardware to decode one code word. The parsing

result is stored in a FIFO in order to speed up the data
throughput.

The syntax elements for prediction and residual
information are parsed by hardware due to their high
data rate. Each video standard has defined its unique
coding method for these syntax elements. So hardware
sharing is not feasible here. The result is stored in
on-chip SRAM for future use.

4. Experimental results and comparison

This design has been implemented in fully
synthesizable Verilog HDL. We use SMIC 0.13um
standard library cell and Synopsys Design Compiler to
get the timing and area information of this design. The
target working frequency is set as 100MHz and the gate
count is 11K. Hardware accelerators used to parse syntax
elements in layer 3 are not included here due to the
various specification of each video standard.

Compared with the hardware only implementation,
this design shows greater flexibility. In previous work of
Li™® and Xu[g], hardware FSM is used to determine the
parsing process of syntax elements in layer 1 and 2. Each
syntax element needs a corresponding FSM state. For
example, 107 FSM states are used in Xul” to support one
single H.264 standard. If multiple video standards are to
be supported, the number of FSM states will become
extremely large. In our design, no FSM state is needed
for the syntax elements in layer land 2, which reduce the
most part of FSM state. Only 32 FSM states (5 global
states and 27 states for H.264 syntax clements in layer 3)
are needed for H.264 baseline profile.

Compared with the previous work of Liul'l, this
design can reduce the CPU loading by hardware
acceleration and speed up the parsing process of syntax
elements in layer 1 or 2. This design only takes one cycle
to decode an exponential Golomb code whose code
length is no greater than 31-bit. Software solution will
takes more than 6 cycles to decode a 31-bit exponential
Golomb code.

5. Conclusion

We have proposed a hardware/software co-design
approach to parse the video bitstream. Each syntax
element in layer 1 or layer 2 of the video bitstream can
be parsed by hardware accelerator while the overall
parsing process of such syntax element can be controlled
by the collaboration of software routine and the
“kick-off” register. Due to the high bit rate, syntax
elements in layer 3 are parsed by hardware only. This
architecture has the flexibility to support multiple video
standards while the high data throughput can also be
guaranteed.

54

References

[1] Joint Video Team, "Advanced video coding for

generic audiovisual services", ITU-T
Recommendation H.264 and ISO/IEC 14496-10 AVC,
Sept. 2005

[2] Soc. Motion Picture and Television Engs. (SMPTE),
“Proposed SMPTE Standard for Television: VC-1
Compressed Video Bitstream Format and Decoding
Process,” SMPTE 421M, SMPTE, Aug. 2005

[3] Audio Video Coding Standard Workgroup of China
(AVS), Advanced Coding of Audio and Video - Part 2:
Video, December 2004.

[4] Moving Picture Experts Group, “Information
technology-generic coding of moving pictures and

associated audio information: Video,” ISO/IEC
14496-2,1998.
[5] Moving Picture Experts Group, “Information

technology-generic coding of moving pictures and
associated audio information: Video,” ITU-T H.262,
ISO/IEC 13818-2,1994.

[6] Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T SGI6 WP3 and ISO/IEC
JTC1/SC29/WGT11, "JCTVC-E603: WD3: Working
Draft 3 of High-Efficiency Video Coding", Mar. 2011

[7] Wiegand T., Sullivan G.J., Bjontegaard G., Luthra,
A., "Overview of the H.264/AVC video coding
standard" ,IEEE Transactions on Circuits and
Systems for Video Technology, p560-576.,Jul. 2003

[8]Jui-Hua Li, Nam Ling, "Architecture and
bus-arbitration schemes for MPEG-2 video
decoder”", IEEE Transactions on Circuits and
Systems for Video Technology, p.727-736, Aug.
1999.

[9]Ke Xu, Chiu-Sing Choy, Cheong-Fat Chan,

Kong-Pong Pun, "Power-efficient =~ VLSI
Implementation of Bitstream Parsing in
H.264/AVC Decoder", IEEE International

Symposium on Circuits and Systems, 2006

[10] Yung-Chi Chang, Chao-Chih Huang, Wei-Min
Chao, and Liang-Gee Chen, "An efficient
embedded bitstream parsing processor for
MPEG-4 video decoding system", International
Symposium on VLSI Technology, Systems, and
Applications, 2003

[11] Liu Wei, Chen Yong-en, Wang Peng, "VLD
Design for AVS and H.264 Dual Standards Video
Decoder Video Decoder", S5th International
Conference on Wireless Communications,
Networking and Mobile Computing, 2009

