A Two-way Parallel CAVLC Encoder for 4Kx2K H.264/AVC

Huibo Zhong, Sha Shen, Yibo Fan, Xiaoyang Zeng

State Key Lab of ASIC and System, Fudan University, Shanghai 201203, China
Email:fanyibo@fudan.edu.cn

Abstract

This paper presents a high performance design for
Context-Based Adaptive Variable Length-Coding
(CAVLC) used in the H.264/AVC standard. To reduce
the cycles of processing one macroblock (MB), a
two-stage residual encoder is proposed to make the scan
and encode stage work simultaneously. The scan engine
scans two coefficients at each cycle. Parallel encoder for
two levels and parallel encoder for two runs are adopted
to accelerate the encoder engine. Only 228 cycles at
most are needed to process one MB. Due to the existence
coded block pattern (CBP) decided skip block mode, our
experiment shows only 160 cycles are needed on the
average. The proposed CAVLC encoder can support
4Kx2K @30fps (frames per second) real-time encoding
at 250 MHz and the gate count is only about 16k.

Index Terms: H.264/AVC, CAVLC, entropy encoding,
level encoder

1. Introduction

H.264/AVC [1] [2] is the latest international video
coding standard, this new standard significantly
improves compression performance compared with
previous standards because hosts of new technologies
are used. H.264/AVC specifies two kinds of entropy
coding methods that are Context-Based Adaptive
Variable Length Coding (CAVLC) and Context-based
Binary Arithmetic Coding (CABAC). CAVLC yields a
higher coding efficiency than conventional VLC coding
due to the context adaptive feature. On the other hand,
because of the data dependency in CAVLC, it results in a
complex encoding flow in hardware implementation.

As both the display size of flat-panel and video
resolution become increasingly larger, encoders are
desired to support higher bitrate video stream, however,
the entropy coding process often becomes the bottleneck
of the whole encoder since its bit-serial processing is
hard to be speeded up by increasing parallelism or
pipelining. Varieties of VLSI architectures for CAVLC
were proposed in [3-5]. The design in [3] is capable of
processing 1080@30fps video in real time, it requires
500 cycles for high-quality applications and about 200
cycles for low bitrate applications. Yi et al. [4] proposed
a parallel structure and their work can process
1080@601ps video in real time (YUV=4:4:4), it requires

978-1-61284-193-9/11/$26. 00 ©2011 I1LEL

83

about 323 cycles for some sequences. Literature [5]
adopted a forward order for computing the CAVLC
parameters and it takes 256 cycles to process
1080@60fps video (YUV=4:2:2). However, due to the
complexities and data dependencies of CAVLC, it is hard
to design an encoder to support high resolution
applications such as 4Kx2K video or higher.

In this paper, to reduce the cycles of processing one
macroblock (MB), we focus on increasing the hardware
parallelism for CAVLC. A two-stage CAVLC residual
encoder architecture is proposed to make the scan and
encode stage work simultaneously. A paralleled scan
engine which can scan two coefficients is proposed. In
the same way, a paralleled “levels” encoder is proposed
to accelerate the speed of encoder engine. Two
“Run_before” symbols are encoded simultaneously with
“levels”. With the methods above, only 8 cycles are
needed by each stage of the CAVLC. The proposed work
is implemented in Verilog HDL and synthesized using
SMIC 0.13um standard CMOS technology. The
maximum operation frequency amounts to 250 MHz and
the total logic gate count is only 16K. The proposed
architecture can support 4Kx2K @30fps (frames per
second) real-time encoding.

The rest of this paper is organized as follows. Section
2 briefly introduces the background of CAVLC. The
proposed design is presented in section 3. Section 4
shows the performance analysis and comparison with
previous works. And finally, conclusion is drawn in
section 5.

2. Background of CAVLC

As mentioned above, in the H.264/AVC standard, two
entropy coding methods (CAVLC and CABAC) are
included. In the CAVLC entropy coding, only the
quantized transform coefficients of the residual images
are coded. Other information, i.e., macroblock (MB)
header, is coded using Exp-Golomb codes. The detail of
CAVLC is shown in [6]. CAVLC encoder encodes the
elements listed as follows:

1) Coeff token: the first VLC symbol in the CAVLC
stream is Coeff token. It encodes both the total number
of nonzero coefficients (TotalCoeff) and the number of
trailing ones (TrailingOnes). TotalCoeff ranged from 0 to
16, and the range of TrailingOnes is from O to 3. If the
block has more than 3 trailing ones the rest are coded as

normal coefficient. There are five tables used for
Coeff token encoding. The selection of the tables is
according to the value of nC which is calculated
according to the upper and left coded 4x4 block.

2) Sign trail: The signs of the trailing ones are the
following symbols to be coded. Each sign is coded into
one single bit. Bit 0 is assigned for positive and bit 1 is
assigned for negative ones. The Sign trail is coded in
reverse zigzag scan order.

3) Levels: The nonzero coefficients excluding the
trailing ones in reverse zigzag scan order are encoded as
levels. Each level is encoded by one of the seven VLC
table depending on the magnitude of each successive
encoded level.

4) Total zeros: Total zeros encodes the total number
of zero coefficients proceeding to the first nonzero
coefficient in reverse zigzag scan order for each 4x4
(2x2) block. There are two separate VLC tables for the
luma and chroma residual blocks.

5) Run_before: Run_before encodes the number of
zeros preceding each nonzero coefficient in reverse
zigzag order by a VLC table. There are two cases where
the run_before of a coefficient does not to be encoded:
either there are no more zeros left or this is the last
coefficient of which run_before is left to encode.

Compared with conventional VLC coding, CAVLC
yields a higher coding efficiencies due to the
context-adaptive feature. However, this context-adaptive
feature introduces many data dependencies in CAVLC
such as : 1).the symbols mentioned above, such as
Coeff token, Sign_trail and so on, can only be obtained
after the statistical process of each 4x4 block is finished,
which makes the scan and encode stage hard to be
paralleled. 2). To encode Coeff token, nC should be
determined at first, however, the value of nC is
calculated according to the upper and left coded 4x4
block. 3). As for the levels in each 4x4 block, there are
seven VLC table, the table selection depends on the
previous table number and the magnitude of the
successive encoded Level. Because of the data
dependencies in CAVLC, it is hard to propose a CAVLC
encoder for high resolution application such as 4Kx2K
or larger.

3. The Proposed CAVLC Architecture

Fig.1 shows the proposed two-stage CAVLC residual
encoder. In the scan stage, the Address Generator
generates the scan address according to the MB type and
CBP code. The residual coefficients are fetched from the
residual buffer in the backward. Then the scan engine
collects the required statistics such as TrailingOnes,
TotalCoeffs, TotalZeros, and so on. The run-level
symbols are extracted by the run-level detector and
stored in the statistic Register Array. The encode engine

84

encodes the symbols obtained by the scan engine by
looking up corresponding tables. According to the
encoded codewords, the bitstream packer chooses the
codewords and packs them into bitstream. The following
of this section describes the proposed CAVLC encoder in
detail.

Scan Engine Encode Engine
TrailingOne Counter
Address
Generator
Residual TotalZeros I
Buffer Counter |
lﬂ —
H o
Level Counter

Coeff_token/
TrailingOne/Sign

1
1
TotalCoeff/
TotalZeros

Bitstream
e

ApINg wwAISHY

Runbefore/

Fig.1 CAVLC Residual Encoder
3.1 Scan engine

Scan engine is used to figure out the CAVLC
parameters. Generally, CAVLC parameters are calculated
in reverse zigzag scan order. There are totally 384
coefficients inside one MB, so scan stage may become a
bottleneck. To accelerate the speed of the whole encoder,
a parallel structure for computing CAVLC parameters is
necessary.

As shown in (1) and (2), sO, sl are the state bits
indicating whether the coefficient equals to zero. c0, cl
are the state bits indicating whether the coefficient
equals to +1. By the bits of these four states, all required
CAVLC symbols can be figured out. According to s0, s,
Total Coeff, TotalZeros, Run_before can be obtained by
certain FSM. The computation of TrailingOnes is
according to the value of c0, cl. The detail of the
architecture is shown in Fig. 2.

if coeff 0=0, s0=0
else s0=1
<

if coeff 1=0, s1=0

else sl=1)
if coeff 0=%1, c0=1

else c0=0

if coeff 1==1, cl=1

else cl1=0 ?)

w

™ TotalCocffs
Counter

s0 TotalZeros | 4
1 Counter
vl
o 16 g
3 Coell_0 g- 4
= S 7 Run_before —~—>
g‘ 16 = c0 7 Detector [—~>
[=
Cocff_1 S
g cl 6
™ Level Aﬁ
™17 Detector [—~>

TrailingOnes | 2 N
Counter

Fig.2 Parallel architecture for parameter computing

During the scan stage, the statistic data such as Levels
and Run_before have to be stored in the buffer for the
later encoding stage. In Chen’s[3] work, a ping-pong
buffer is used, by switching the ping-pong mode,
scanning and coding of the 4x4 blocks within an MB can
be processed simultaneously. However, the ping pong
buffer makes the statistic buffer occupied the most part
of the CAVLC encoder. A Register Array is adopted to
reduce the required buffer size. Due to the scan engine
and encode engine consume the same cycles, a fully
pipelined process can be achieved by using only half size
of the required ping-pong buffer used in [3].

3.2 Encode engine

The encode engine encodes the data which are
obtained by the scan engine. It is comprised of Level
encoder, Run before encoder, Coeff token and
TrailingOne encoder, TotalZeros encoder. In H.264/AVC
standard, seven VLC tables are used to define the
codewords of level symbols. The number of execution
cycles required for encoding level symbols depends on
the number of nonzero coefficients in block. For a 4x4
block, there may be at most 16 levels. Therefore, when
encoding a block data, the number of cycles required in
coding stage may exceed that in scanning stage by serial
symbol encoding. Many previous works encode the level
symbols in sequential because the evaluation of each
coefficient level depends on vic, which is derived from
the previously coded coefficient level as (3) shows. Let
inVLC € {0, 3, 6, 12, 24, 48, 65535}, vic denotes the
index of the VLC table. And to achieve higher
throughput, parallel level encoding is necessary. The
limit of data dependency can be effectively eliminated
by using the VLCN look-ahead technique so that
coefficients can be processed simultaneously.

if (vlc =0)
vic++;

if (abs(level) > incVLC[vic])
vic++;

A3)

Fig.3 shows the architecture of proposed levels coding
element with VLCN look-ahead. In the proposed design,
two level symbols are fetched from the Level Register
Buffer simultaneously, and two level encoders are used
for parallel encoding. Noted that the encode engine will
consume the same cycles as the scan engine does if this
structure is used. The controller of the level encoder
controls the two level encoders according to the value of
TotalCoeffs and TrailingOnes. VLCN look-ahead
computes the two vic codes for the corresponding level
encoder according to the absolute value of the levels and
previous vic. The two level encoders then encode the
levels and generate level prefix and level suffix. And
finally the level codeword packer packs all the two pairs
of level prefix and level suffix into level codeword.

> Level Register Buffer
i Level0 J/Levell
5
{1 abs abs
gj sign0 absLevelO absLevell
8
& VLCN look ahead
aQ
Q vle0 viel
3 RN
=
3
r? Level Level
= Encoder 0 Encoder 1
level J,\reﬁx(i J}c\ el_suffix0 evel_prefix] suffix]
— Codeword Packer
Codeword l lCode Length

Fig.3 Proposed Parallel Level Encoder Architecture

In the same way, run_before encoder should also be
processed parallel as level encoder does. Two
Run_before symbols are fetched from Run Register
array. Two codewords are produced by looking up the
Run Before&Zerosleft table. This codewords are
packed and stored in a register until all the levels are
encoded. Then run codeword is packed by the
Bitstream Packer.

3.3 CAVLC architecture
After the description of all the sub modules of the

CAVLC encoder, The CAVLC architecture is shown in
Fig.4. The controller controls the Scan Engine to

calculate the CAVLC parameters; the results are stored
in the Statistic Buffer. The whole symbol encoder can be
divided into four parts: Exp Golomb Encoder, Level
Encoder, Coeff Token and TrailingOne Encoder and
TotalZeros & Run Encoder. The codewords encoded
by the four parts are then chosen and packed by the
Bitstream Packer. The area of the Statistic Buffer, Level
Encoder and Bitstream Packer occupy about 90% of the
CAVLC encoder.

Residual CAVLC controller
Block
Buffer l T l ‘ l ‘
l Level Encoder TotalZeros
Lncoder Lxp_Golomb
Sean Level and Encoder
Engine 1 Encode 0 Run Encod
Level }
Encode | 'E"'V;r
ncader B
Level Header
— Encode 2 Encod
Statistic [—— TrailingO Run_Befc
Buffer |— Level I Encoder Lncod
FEncode 3 L I
MUX and Packer
‘ Bitstream Packer ‘
Cﬂdew"rdl JCodeLeng'h

Fig. 4 Proposed CAVLC encoder Architecture

4. Performance Analysis and Comparison

The proposed architecture has been implemented in
Verilog HDL, synthesized using SMIC 0.13um standard
CMOS technology. The circuit occupies about 16k gates
at a core speed of 250 MHz The comparison on
hardware cost and processing speed of the proposed
design with the existing design [3~5] is shown as table I.

Table T Comparison of the proposed design with others

Chen[3] Yi[4] Hsia[5] | Proposed
technology | 1g 0.09 0.18 0.13
(um)
frequency 100M 227TM 125M 250M
Gate count 23K 66K 15K 16K
Speed 256/
500 323 o 228
(cycles/MB) 308
Max. 1080 1080 1080 4kx2k
Specication | @30fps | @60fps | @30fps | @30fps
Video
format 4:2:0 4:4:4 4:2:2 4:2:0
YUV)

*1: the actual cycles computed by the method in [5].

From table I, we can see that the throughput of the

86

proposed design is 228 cycles/MB, which is smaller than
all [3~5] does. The design in [5] declare that their design
only need 256 cycles, this number is estimate by
(NC+4)x32 where NC denotes the none zero count in
one 4x4 block and is set to 4, however the value of NC
could be bigger for high quality video; the total 4x4
blocks in a MB presented in [5] is 32 which means it
didn't include the Chorma DC blocks, and the MB
header encoding and core latency have not been
reckoned with. By using the method in [S] we can figure
out the actual cycles is 308 cycles, which is larger than
our proposed. In practice, with the method using the
coded block pattern (CBP) to determine whether the
blocks need to be encoded or not, the average cycles will
be smaller than the worst case. According to our
experiment results, our design takes about 160 cycles to
encode one MB on the average.

The hardware cost of our design is 16k, which is
smaller than Chen’s [3] and Yi’s [4]. Hsia’s [5] design
did not including the MB header encoder, so it is a litter
smaller than our work; however, our design achieves
higher frequency and throughput.

5. Conclusion

This paper has presented a high-throughput CAVLC
encoder for the H.264/AVC system. To reduce the
required cycles of processing one MB, some parallel
schemes are used. With those schemes, a new CAVLC
encoder architecture is proposed. Compared with other
previous methods, this architecture has the following
advantage: 1) it greatly reduces the cycles to process one
MB, at most only 228 cycles are needed. 2) It achieves
high coding speed with a less hardware cost. This
high-speed CAVLC encoder can process 4Kx2K@301ps
video in real time.

References

ITU-T, H.264, Advanced video coding for generic
audiovisual services, March 2005.

Joint Video Team (JVT) of ITU-T VCEG and ISO/
IEC MPEG, “Joint Model (JM) Reference Software
Version 15.17, http.//iphome.hhi.de/suehring.

T. C. Chen, Y. W, Huang, C. Y. Tsai, B. Y. Hsieh,
and L. G. Chen, “Architecture design of
context-based adaptive variable-length coding for
H.264/AVC,” IEEE Trans. on Circuits Syst. I, Exp.
Briefs, vol. 53, no. 9, pp. 832-836, Sep. 2006.

Y. Yiand B. C. Song, “High-speced CAVLC
encoder for 1080p 60-Hz H.264 codec,” IEEE
Signal Process. Lett., vol. 15, pp. 891-894, 2008.

S.C Hsia and W.S Liao, “Fowward Computations
for Context-Adaptive Variable-Length Coding
Design,” IEEE Trans. on Circuits Syst. II, Exp.
Briej%, vol.57 no.8, pp. 637-641, Aug 2010.

G. Bjontegaardand K. Lillevold, “Context-adaptive
VLC (CVLC) coding of coefficients,” JVT
Document JVT-C028. Fairfax, VA,2002.

