
A Parallel CAVLC Design For 4096x2160p Encoder

Huibo Zhong
1
, Yibo FAN

1a)
, Xiaoyang ZENG

1

1
State Key Lab of ASIC & System, Fudan University, Shanghai, China

a)
fanyibo@fudan.edu.cn

Abstract — This paper presents a high performance VLSI

design of Context-Based Adaptive Variable Length-Coding

(CAVLC) for 4096x2160p@60fps H.264/AVC encoder. A

parallel architecture is proposed to make the scan and encode

stage work simultaneously. Four coefficients are scanned in

parallel, and four Levels and Run_before are coded in parallel.

From experimental results, only 120 cycles at most are needed

to process one macroblock (MB), which reduce more than

50% cycles compare to state-of-the-art designs. The hardware

implementation results show that the proposed design achieves

real-time encoding at 250 MHz and the hardware cost is about

32k gates.

Keywords: Entropy coding, CAVLC, H.264/AVC, Level coding

I. INTRODUCTION

H.264/AVC [1] [2] is the latest international video coding
standard. It significantly improves compression performance
compared with previous standards since a lot of new
technologies are used. H.264/AVC specifies two kinds of
entropy coding methods that are Context-Based Adaptive
Variable Length Coding (CAVLC) and Context-based Binary
Arithmetic Coding (CABAC). CAVLC yields a higher coding
efficiency than conventional VLC coding due to the context
adaptive feature. On the other hand, because of the data
dependency in CAVLC, it results in a complex encoding flow
in hardware implementation.

As video resolution becomes larger, encoder need to
support higher bitrate video stream. However, the entropy
coding becomes the bottleneck of the whole encoder since its
bit-serial processing is hard to speed up by increasing
parallelism or pipelining. Many VLSI architectures for
CAVLC were proposed [3-5]. The design in [3] is capable of
processing 1080@30fps video in real time, it requires 500
cycles for high-quality applications and about 200 cycles for
low bitrate applications to process one MB. Yi et al. [4]
proposed a parallel structure and their work can process
1080@60fps video in real time, it requires about 323 cycles for
some sequences for each MB. Recently, Literature [5] adopted
a forward order for computing the CAVLC parameters and it
takes 256 cycles to process 1080@60fps video. However, due
to the complexities and data dependencies of CAVLC, it is
hard to design an encoder to support high resolution
applications such as 4096x2160p video or higher.

In this paper, we focus on increasing the hardware
parallelism for CAVLC. A two-stage parallel CAVLC encoder
is proposed to make the scan and encode stage work
simultaneously. A paralleled scan engine which can scan four

coefficients is proposed. In the same way, a paralleled Levels
encoder is proposed to accelerate the speed of encoder engine.
Four Run_before symbols are encoded simultaneously with
Levels. As a result, only 4 cycles are needed by each stage of
the design. Totally only 120 cycles at most are needed to
process one macroblock (MB).

The rest of this paper is organized as follows. Section II
briefly introduces the background of CAVLC. The proposed
design is presented in section III. Section IV shows the
performance analysis and comparison with previous works.
Finally, conclusion is presented in section V.

II. BACKGROUND

For CAVLC coding, only the quantized transform
coefficients of the residual images are coded. Other
information, i.e., MB header, is coded using Exp-Golomb
codes. The details of CAVLC can be referred from [6]. The
coefficients need to be coded by CAVLC are listed as follows:

1) Coeff_token: The first VLC symbol in the CAVLC
stream. It encodes both of the total number of nonzero
coefficients (Total_Coeff) and the number of trailing ones
(TrailingOne). Total_Coeff ranged from 0 to 16, and the range
of TrailingOne is from 0 to 3. If the block has more than 3
trailing ones the rest are coded as normal coefficient. There are
five tables used for Coeff_token encoding. The selection of the
tables is according to the value of nC which is calculated
according to the upper and left coded 4x4 block.

2) Sign_trail: The signs of the trailing ones. Each Sign_trail
is coded into one single bit. 0 is assigned for positive ones and
1 is assigned for negative ones. The Sign_trail is coded in
reverse zigzag scan order.

3) Levels: The nonzero coefficients excluding the trailing
ones in reverse zigzag scan order are encoded as Levels. Each
Level is encoded by one of the seven VLC tables depends on
the magnitude of each successive encoded level.

4) TotalZero: TotalZero encodes the total number of zero
coefficients proceeding to the first nonzero coefficient in
reverse zigzag scan order for each 4x4/2x2 block. There are
two separate VLC tables for the luma and chroma residual
blocks.

5) Run_before: Run_before encodes the number of zeros
preceding each nonzero coefficient in reverse zigzag order by a
VLC table. There are two cases where the Run_before of a
coefficient does not to be encoded: either there are no more
zeros left or it is the last coefficient of which Run_before is left
to encode.

Compared with conventional VLC coding, CAVLC has
higher coding efficiency due to the context-adaptive feature.
However, this context-adaptive feature introduces many data
dependencies, such as: 1) Many symbols (Total_Coeff,
Sign_trail and so on) can only be obtained after the statistical
process of each 4x4 block, which makes the scan and encode
hard to be parallel. 2) For Total_Coeff coding, nC should be
pre-determined, however, the value of nC depends on the upper
and left coded 4x4 block. 3) For Levels coding, there are seven
VLC tables, table selection depends on previous table number
and the magnitude of the successive encoded Level. Due to the
data dependencies in CAVLC, it is hard to design an encoder
for high resolution, such as 4Kx2K or larger.

III. THE PROPOSED PARALLEL ARCHITECUTRE

3.1 2-stage pipeline, 4-coefficient parallel, cycle-balanced

CAVLC encoder hardware architecture
Fig.1 shows the proposed two-stage CAVLC encoder. It

includes two engines: scan engine and encode engine. For scan
engine, the residual coefficients are fetched from the residual
buffer in the backward order. And then the scan engine counts
the coefficients such as TrailingOne, Total_Coeff, TotalZero,
and so on. The Run_before-level symbols are extracted by the
Run_before -level detector and stored in the Statistics Buffer.
For encode engine, it encodes the coefficients generated by
scan engine. All the code words produced by encode engine are
packed into bitstream by Bitstream Packer.

From Fig. 1, both of the scan engine and encode stage may
become the bottleneck of the encoder. Due to the serial
processing of the symbol encoding in CAVLC, the cycles used
for encode engine changes very much according to different bit
rates.

Many previous works have adopted two-stage structure.
Chen et al. [3] adopted a two stage structure, but their work did
not implement coefficient-level parallelism, which makes it
require at most 500 cycles to process one MB and greatly
restrict the throughput. Yi et al. [4] also employed the two-way
structure which process two coefficients in parallel. However,
it did not balance the cycles consumed by the scan and encode
engine, which makes it need (nC+4) cycles to process one 4x4
block where nC equals to the nonzero coefficients in each 4x4
block. Once the nC becomes larger, the throughput of the
encoder will be greatly decreased.

In our work, two efforts are made to improve the efficiency:

1) Cycle-Balance: Scan engine and Encode engine are well
designed to consume the same clock cycles for each 4x4 block.

2) 4-Coefficient parallel processing: The scan engine
generates four coefficients at one cycle. It takes only four
cycles to finish the coefficient calculation of one 4x4 block.

3.2 Parallel scan engine
Scan engine is used to generate symbols to be coded.

Generally, the coefficients are calculated in reverse zigzag scan
order. There are totally 384 coefficients inside one MB, so scan
engine may become bottleneck. In order to accelerate scan
engine, 4 coefficients are processed in parallel in our design.

Scan Engine

Controller

TrailingOne Counter

Total_Coeff Counter

TotalZero Counter

Run_before Counter

Level Detector

Residual

Burrer

CAVLC

Contorller

Encode

Engine

Controller

B
itstream

Scan Engine Encode Engine

MB header encoder

Total_Coeff encoder

TotalZero encoder

Level encoder

Run_before encoder

MB

header

Buffer
B

itstream
 P

ack
er

S
tatistics B

u
ffer

Fig.1 Two-stage architecture of CAVLC.

As shown in equation (1) and (2), s0~s3 are the state bits
indicating the coefficient equals to zero. c0~c3 are the state bits
indicating the coefficient equals to ±1. For Total_Coeff,
TotalZero and Run_before, they can be obtained according to
s0~s3. For TrailingOne, all of the eight states should be
considered together which makes the latency very long.

In order to reduce the TrailingOne latency, four coefficients
are divided into two parts, the low and high. Each part is
calculated independently, and the results are merged finally.
The detailed structure is shown in Fig. 2.

0 0, 0 0

0 1

1 0, 1 0

1 1

2 0, 2 0

2 1

3 0, 3 0

3 1

if coeff s

else s

if coeff s

else s

if coeff s

else s

if coeff s

else s

 




  





 
 


 
 

 (1)

0 1, 0 1

0 0

1 1, 1 1

1 0

2 1, 2 1

2 0

3 1, 3 1

3 0

if coeff c

else c

if coeff c

else c

if coeff c

else c

if coeff c

else c

  




   





  
 


  
 

 (2)

C
o
eff b

u
f

S
tate b

it d
ecisio

n

16

16

16

16

Coeff0

Coeff1

Coeff2

Coeff3

s0

s1

s2

s3

c0

c1

c2

c3

Total_Coeff

Counter

TotalZero

Counter

Run_before

Detector

TrailingOne

Counter

2

4

4

5

Level

Detector

16

low

high

Fig.2 Parallel scan engine structure

For data storage between scan engine and encode engine, it
normally uses a ping-pong buffer, such as Chen’s [3] work.
Since ping-pong buffer needs to store two sets of transaction
data, it needs double size of memory, which occupies most of
area cost of the CAVLC encoder. For our design, a register
array which stores one set of transaction data is adopted to
reduce the required buffer size, since the clock cycle of scan
engine and encode engine in our design has already been
balanced. As a result, it saves 50% buffer size.

3.3 Parallel encode engine
The encode engine encodes coefficients obtained in the

scan engine. It consists of Level encoder, Run_before encoder,
Total_Coeff and TrailingOne encoder, TotalZero encoder.
Total_Coeff, TrailingOne and TotalZero are coded by lookup
tables. The key part of the encode engine is Level encoder and
Run_before encoder.

In H.264/AVC standard, 7 VLC tables are used to define
the codeword of Level symbols. There are at most 16 Levels
inside one 4x4 block. The number of execution cycle for Level
symbols depends on the number of nonzero coefficients in one
4x4 block. Therefore, the number of cycles required for encode
stage is various. It may more than or less than that in scan stage.
Most of previous works encode the Level symbols in serial,
because the evaluation of each coefficient Level depends on vlc
[5], which is derived from the previously coded coefficient
level, as shown in equation (3). Let incVLC ϵ {0, 3, 6, 12, 24,
48, 65535}, vlc denotes the index of the VLC table.

(0)

;

(() [])

;

if vlc

vlc

if abs level incVLC vlc

vlc



 



 

 (3)

In order to achieve higher throughput, a parallel Level
encoding is proposed. The data dependency can be eliminated
by using the look-ahead technique so that coefficients can be
processed in parallel.

Fig.3 shows the top structure of Levels encoder with VLCN
look-ahead. In our design, four Level symbols are fetched from
the Level Register Buffer simultaneously, and four Level
encoders are used for parallel encoding. Especially, the encode
engine will consume the same cycles as the scan engine does.
VLCN look-ahead module computes the two vlc codes for the
corresponding Level encoder according to the absolute value of
the Levels and previous vlc. The two Level encoders then
encode the Levels and generate Level_prefix and Level_suffix.
And finally the Level codeword packer packs all the four pairs
of Level_prefix and Level_suffix into FourLevelCode. The
details of Level Encoder 0/1/2/3 module are shown in Fig.4.

Similarly, Run_before encoder is processed parallel same as
Level encoder. Two Run_before symbols are fetched from
Run_before Register array. Two codewords are produced by
looking up the Run_Before&Zerosleft table. This codewords
are packed and stored in a register until all the levels are
encoded. The stored codeword is called TotalZero/Run_before
code and packed by the Bitstream Packer. The detail of the
Run_before encoder is shown in Fig 5.

V
L

C
N

 L
o

o
k

-

ah
ead

Level

Encoder 1

Level

Encoder 0

Level

Encoder 2

Level

Encoder 3

abs absabsabs

Level Register Buffer

L
ev

el E
n
co

d
er C

o
n
tro

ller

Codeword Packer

Level0 Level1 Level2 Level3

Abs

Level0

Abs

Level1sign0 sign1 sign2 sign3

vlc0
vlc

1

vlc

2

vlc

3

Abs

Level2

Abs

Level3

Codeword Code Length

Codeword0
Code Length0

Codeword1

Code Length1

Codeword2

Code Length2

Codeword3

Code

Length3

Fig.3 Parallel Level encoder structure.

Shift(>>)

Shift(<<)
65535

And

+2032

Shift(<<)
1111

+2048

Shift(<<1)
vlc

1
0

16

4096

8192

16384

32768

Abs(level)

C
o
m

p
. an

d
 M

u
x

1

Vlc>0?

Vlc>0?

Regular code

Escape code

Levelprefix

Levelsuffix

Suffixlength

m
u

x

m
u

x

Fig. 4 Detailed structure of Level Encoder 0/1/2/3.

R
u
n
_
b
efo

re R
eg

.

TotalZeroCode

Run

Code

TotalZero/

Run_before

Code

R
u
n
 C

o
d
e P

ack
er

B
it p

ack
er

R
eg

.

TotalZero/Total_Coeff

encoder

Totalzero/Run_before

encoder controller

Run_before

encoder0

Run_before

encoder1

Run_before

encoder2

Run_before

encoder3

Fig.5 Proposed Parallel Run_before Encoder Architecture

3.4 Bitsteam Packer

Enc_Cycle0 Enc_Cycle1 Enc_Cycle2 Enc_Cycle3

4x4 block

FourLevel

Code

TotalZero/

Run_before

codePacker

FourLevel

Code

FourLevel

Code

Total_Coeff

Code

FourLevel

Code

Fig.6 Timing diagram of the Bitstream Packer

The codeword generated by the encoder should be packed
into bitstream and this work is done by the Bitstream packer.
As mentioned before, all of the codeword should be packed
within 4 cycles, so the timing of Bitstream packer should be
carefully designed. The detailed timing diagram of Bitstream
packer is shown in Fig.6. In Enc_Cycle0, the Total_coeff code
is packed with the first of FourLevelCode. The Total_Coeff
code can be obtained by looking up the VLC tables according
to the value of total Total_coeff and TrailingOne. The Four
LevelCode is generated as Fig.3 shows. In Enc_Cycle1~2, the
next two FourLevelCode are packed. In Enc_Cycle3, the
TotalZero/Run_before codes are packed with the last Four
LevelCode.

IV. PEFOFRMACE ANALYSIS AND COMPARISON

The proposed CAVLC hardware design has been
implemented by using SMIC 0.13um standard CMOS
technology. The total hardware cost is about 32k gates, and the
clock frequency is 250 MHz. The hardware cost and
performance comparison with the existing designs [3~5] is
shown in table I.

For our design, the worst case of throughput is 120
cycles/MB, which is much smaller than previous works [3~5].
It saves more than 50% cycles compare to the state-of-the-art
design [5]. In real practice, with the method of coded block
pattern (CBP) to determine the blocks that need to be encoded
or not, the average cycles will be smaller than the worst case.
Fig.7 shows the actual clock cycles consumed under different
QP values and video sequences with CBP enabled. According
to our experimental result, the average clock cycle under
different QPs is about 90.

V. CONCLUSION

This paper proposes a high-throughput CAVLC encoder for
high resolution video encoder. The contribution of our work
relies on parallel coefficients processing. In order to achieve
this parallelism, many methods are proposed, such as clock
cycle balance, parallel scan engine and encode engine, statistic
buffer size reduction and so on. The implementation results
show that our design reduce more than 50% clock cycles, and
has ability to support 4096x2160p@60fps video coding in real
time.

Table I Comparison with previous works

 Chen[3] Yi[4] Hsia[5] Proposed

Technology

(um)
0.18 0.09 0.18 0.13

Frequency 100M 227M 125M 250M

Gate count 23K 66K 15K 32K

speed
(cycle/MB)

500 323 256 120

Max.

Spec

1920x1080

@30fps

1920x1080

@60fps

1920x1080

@30fps

4096x2160

@60fps

Video

format

(YUV)

4:2:0 4:4:4 4:2:2 4:2:0

Fig.7 Actual clock cycles used under different

QPs and video sequences.

REFERENCES

[1] ITU-T, H.264, Advanced video coding for generic audiovisual services,
March 2005.

[2] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, “Joint
Model (JM) Reference Software Version 15.1”,
http://iphome.hhi.de/suehring.

[3] T. C. Chen, Y. W. Huang, C. Y. Tsai, B. Y. Hsieh, and L. G. Chen,
“Architecture design of context-based adaptive variable-length coding
for H.264/AVC,” IEEE Trans. on Circuits Syst. II, Exp. Briefs, vol. 53,
no. 9, pp. 832-836, Sep. 2006.

[4] Y. Yi and B. C. Song, “High-speed CAVLC encoder for 1080p 60-Hz
H.264 codec,” IEEE Signal Process. Lett., vol. 15, pp. 891–894, 2008.

[5] S.C Hsia and W.S Liao, “Fowward Computations for Context-Adaptive
Variable-Length Coding Design,” IEEE Trans. on Circuits Syst. II, Exp.
Briefs, vol.57 no.8, pp. 637-641, Aug 2010.

[6] G. Bjontegaardand K. Lillevold, “Context-adaptive VLC (CAVLC)
coding of coefficients,” JVT Document JVT-C028. Fairfax, VA,2002.

