
1022 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 6, JUNE 2016

A Combined Deblocking Filter and SAO
Hardware Architecture for HEVC

Weiwei Shen, Yibo Fan, Yufeng Bai, Leilei Huang, Qing Shang, Cong Liu, and Xiaoyang Zeng, Member, IEEE

Abstract—The latest video coding standard high-efficiency
video coding (HEVC) provides 50% improvement in coding
efficiency compared to H.264/AVC to meet the rising demands
for video streaming, better video quality, and higher resolution.
The deblocking filter (DF) and sample adaptive offset (SAO) play
an important role in the HEVC encoder, and the SAO is newly
adopted in HEVC. Due to the high throughput requirement in the
video encoder, design challenges such as data dependence, external
memory traffic, and on-chip memory area become even more
critical. To solve these problems, we first propose an interlacing
memory organization on the basis of quarter-LCU to resolve the
data dependence between vertical and horizontal filtering of DF.
The on-chip SRAM area is also reduced to about 25% on the
basis of quarter-LCU scheme without throughput loss. We also
propose a simplified bitrate estimation method of rate-distortion
cost calculation to reduce the computational complexity in the
mode decision of SAO. Our proposed hardware architecture of
combined DF and SAO is designed for the HEVC intraencoder,
and the proposed simplified bitrate estimation method of SAO can
be applied to both intra- and intercoding. As a result, our design
can support ultrahigh definition 7680 × 4320 at 40 f/s applications
at merely 182 MHz working frequency. Total logic gate count is
103.3 K in 65 nm CMOS process.

Index Terms—Deblocking filter (DF), hardware
implementation, high-efficiency video coding (HEVC), sample
adaptive offset (SAO), UHD.

I. INTRODUCTION

I TU-T video Coding Experts Group and ISO/IEC Moving
Picture Experts Group formed a Joint Collaborative Team

on Video Coding in 2010, and the next generation coding stan-
dard, High Efficiency Video Coding (HEVC), is now being
developed. HEVC aims to reduce 50% bit rate in comparison
with the existing H.264/AVC high profile, under the same visual
quality [1].

As the previous video coding standard H.264/AVC, HEVC
adopts the block based hybrid coding framework [2], [3]. A
quadtree based coding structure is an important feature of the
HEVC standard.

Manuscript received February 11, 2014; revised May 20, 2014, October 30,
2014, February 01, 2015, May 08, 2015, and August 24, 2015; accepted February
06, 2016. Date of publication February 19, 2016; date of current version May
13, 2016. This work was supported in part by the National Natural Science
Foundation of China under Grant 61306023. The associate editor coordinating
the review of this manuscript and approving it for publication was Dr. Shahram
Shirani.

The authors are with the State Key Laboratory of ASIC and System, Fu-
dan University, Shanghai 201203, China (e-mail: 10110720024@fudan.edu.cn;
fanyibo@fudan.edu.cn; 12212020001@fudan.edu.cn; 10300720005@fudan.
edu.cn; 11212020039@fudan.edu.cn; 11212020033@fudan.edu.cn; xyzeng@
fudan.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2016.2532606

Fig. 1. Block diagram of the HM9.0 encoder.

Several new coding structures have been introduced in
HEVC: coding unit (CU), prediction unit (PU) and transform
unit (TU). CU is the basic unit of region splitting used for in-
tra/inter coding [4]. It can be split from the largest coding unit
(LCU, can be as large as 64 × 64 pixels) into the smallest cod-
ing unit (SCU, 8 × 8 pixels). Coupled with CU, PU carries the
information related to the prediction processes. TU is used for
transform and quantization, and it depends on PU partitioning
modes.

Blocking effect is known as one of the most visual and ob-
jectionable artifacts of block-based compression methods [5].
Artifacts that are commonly seen in prior video coding standards
at medium and low bitrates, such as blocking artifacts, ringing
artifacts, color biases and blurring artifacts [6], may still exist
in HEVC. Also HEVC adopts in-loop filters in order to reduce
these artifacts. The HEVC defines two in-loop filters, shown in
Fig. 1. In addition to the DF similar to the one in H.264/AVC,
HEVC further introduces a completely new tool: sample adap-
tive offset (SAO). Meanwhile, the DF leads to 1.3-3.3% BD-rate
reduction [7] on average, and the SAO achieves 3.5% BD-rate
reduction [8] at the same quality. And the BD-rate calculation
is introduced in [15].

The coding efficiency of HEVC comes with a cost. The
computational complexity of HEVC is very high. From an en-
coder perspective, an encoder fully exploiting the capabilities
of HEVC is expected to be several times more complex than
an H.264/AVC encoder. To understand the computational com-
plexity of the HEVC, a study mapped the HEVC codec into
existing systems. In [9], authors mapped the HM (HEVC Test
Model) encoder into a cluster containing Xeon-based servers
(E5670 clocked at 2.93 GHz) and using gcc 4.4.5. Even for
intra-only case, the encoding time at least exceeds 1000 times
real-time (sequences’ resolution is 832 × 480 at 30 f/s).

1520-9210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

SHEN et al.: COMBINED DF AND SAO HARDWARE ARCHITECTURE FOR HEVC 1023

Due to an increasing diversity of services, the growing pop-
ularity of HD video, and the emergence of beyond-HD formats
(e.g., 4 K × 2 K or 8 K × 4 K resolution) are creating even
stronger needs for high throughput in hardware implementa-
tion superior to H.264/AVC. Hence, hardware realization of the
HEVC standard for real-time applications is an essential and
challenging task.

There are some previous works on the topic of in-loop filters.
In [18], a five-stage pipelined and hybrid edge filtering sequence
are applied; in [19], a five-stage pipelined and re-source-shared
dual-edge filter to generate two filtering results every cycle is
proposed; in [23], a parallelized scheme of processing the lu-
minance and chrominance samples simultaneously is proposed.
But all these works do not support HEVC in-loop filters. In [10],
an HEVC in-loop filters architecture composed of fully utilized
DF and SAO is proposed. But it does not support HEVC en-
coder. In [24], a hybrid pipeline with two processing levels is
proposed for HEVC DF, which uses one 1-D filter and single-
port on-chip SRAM. In [25], two parallel datapaths are used for
the design of HEVC DF in order to increase its performance.
Here, a combined DF and SAO hardware architecture for HEVC
encoder is proposed.

A. Motivation

Among many algorithms adopted by HEVC, two in-loop fil-
ters’ algorithm (DF and SAO) requires significant CPU times.
According to Bossen et al. [9], the DF and SAO cost about
one-fifth CPU times of the whole HEVC codec, which are two
complicated modules in HEVC.

Moreover, beyond-HD format’s applications become more
and more popular, which are at the expense of large external
traffic. For example, the DF and SAO require the demand of
0.93, 0.58 Gb/s I/O bandwidth respectively at an application of
2 K × 1 K at 30 f/s (2560 × 1600), without any data-reuse
scheme. Thus a high throughput hardware architecture for DF
and SAO becomes a critical issue in HEVC codec design.

B. Design Approach

Due to an increasing demand of high resolution applications,
the high data access between on-chip memory and external
memory becomes even more critical. Considering the trade-
offs between on-chip memory area and external memory traffic,
we present an interlaced pipeline to combine the DF with SAO
on a quarter-LCU basis; the quarter-LCU is defined as a 32 ×
32 pixels’ block. In the process of DF, a novel filter is suggested
in order to keep the same result on a picture basis based on the
quarter-LCU structure. Meanwhile, we also propose an inter-
lacing memory scheme to arrange the data in on-chip memory,
and access the data in the process of both vertical and horizontal
filtering efficiently in the DF phase.

In the process of statistics collection in SAO, the overall
number of comparators is reduced by 83% with our proposed
configurable comparator array. We also present a fragmentation
adder scheme to balance the computational burden between
pipeline stages of SAO. Meanwhile, a simplified bitrate esti-
mation method of rate-distortion cost calculation is adopted to

Fig. 2. Overall processing flow of deblocking filter.

reduce the computational complexity in the mode decision of
SAO.

With these design approaches, a LCU can be filtered in 558
cycles, and our design can support UHD (7680 × 4320) at 40 f/s
applications at merely 182 MHz working frequency.

C. Organization of the Paper

The rest of this paper is organized as follows. Section II in-
troduces the DF and SAO algorithm in HEVC. In Section III,
our proposed hardware architecture is described. Section IV
formulates the simplified bitrate estimation method of rate-
distortion cost calculation in the mode decision of SAO. The
hardware implementation result and comparison are provided
in Section V, followed by a conclusion in Section VI.

II. DEBLOCKING FILTER AND SAO ALGORITHM IN HEVC

In HEVC, two in-loop filters, the DF followed by SAO are
applied to the reconstructed samples. The DF is intended to
reduce the artifacts caused by block-based coding. While the DF
is only applied to the samples located at PU or TU boundaries,
the SAO is applied adaptively to all samples satisfying certain
conditions, (e.g., based on gradient) [11], in order to reduce the
mean sample distortion of a region.

A. Deblocking Filter Algorithm

The DF is applied to all samples adjacent to a PU or TU
boundaries except the picture boundary. Unlike H.264/AVC,
where the DF is applied on a 4 × 4 sample grid, HEVC only
applies the DF to the PU or TU boundaries which are also
aligned on an 8 × 8 sample grid.

Fig. 2 illustrates the overall processing flow of the DF [3].
Firstly, the decision is made that whether the current boundary
is a boundary of PU or TU. If not, the filter isn’t applied to
the current boundary. Given that P block and Q block are two
adjacent 4 × 4 blocks with the boundary involved in filtering,

1024 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 6, JUNE 2016

Fig. 3. Two adjacent 4 × 4 blocks.

TABLE I
DEFINITION OF BS VALUES

Conditions BS value

At least one of the P or Q blocks is intra 2
At least one of the P or Q blocks has non-zero coded
residual coefficient and the boundary is a TU boundary

1

Absolute differences between MVs between the P and Q
blocks are >= 1 in units of integer pixels

1

Motion-compensated prediction for the P and Q blocks
refers to different pictures or the number of MVs is different
for the two blocks

1

Otherwise 0

shown in Fig. 3. The boundary strength (BS) reflects how strong
the filter is needed for the boundary, which is controlled by
several syntax elements. The BS value can take one of three
possible values: 0, 1 and 2. The definition of the BS value is
clearly shown in Table I. If the BS value is greater than zero,
additional conditions are checked in order to determine whether
the DF should be applied to the block boundary, and also make
a selection on strong/weak filter.

According to the BS value and the quantization parameter
(QP) of P and Q blocks, two thresholds, β and tc, are determined
from pre-defined tables. Together with β and tc, the value d is
used for filter on/off decision and strong/weak filter selection,
which is derived from the value of twelve pixels in the first and
the fourth line. These 12 pixels are labeled as red circles shown
in Fig. 3. Note that this decision is shared across four lines
(four rows for vertical boundary filtering, while four columns
for horizontal boundary filtering). Meanwhile, each line has its
respective values, such as dE, dEp and dEq, which are used for
the decision of filter on/off, strong and weak filter for its own
line

dE �= 0, BS �= 0 (1)

BS > 1. (2)

For example, the values of eight pixels across the boundary are
denoted as p3,0 , p2,0 , p1,0 , p0,0 , q0,0 , q1,0 , q2,0 , q3,0 , which are
labeled as the first line in Fig. 3. For the luminance component,
the first line is filtered only when the condition of (1) is satisfied.
For the chrominance component, the first line is filtered only
when the condition of (2) is satisfied. The decisions of strong
and weak filter are detailed in [3].

Fig. 4. Four 1-D directional patterns for EO classification.

TABLE II
SAMPLE CATEGORIES IN EO

Category Condition

1 c < a && c < b
2 (c < a && c == b) || (c < a && c == b)
3 (c < a && c == b) || (c < a && c == b)
4 c > a && c > b
0 None of the above

B. SAO Algorithm

SAO is located after the DF and also belongs to in-loop fil-
ters, which modifies the samples after the DF. The concept of
SAO is to classify reconstructed pixels into different categories,
obtaining an offset for each category, and the adding to each
sample of the category [7]. It is performed on LCU basis in HM
9.0 (reference software for HEVC).

Two SAO types are adopted in HEVC: Edge offset (EO) and
band offset (BO). For EO, the sample classification is based on
comparison between current samples and neighboring pixels.
For BO, the sample classification is based on sample values [7].
Note that, each color component (Y, Cb and Cr) has its own SAO
parameters. To reduce the information to be coded by entropy
coding, the current LCU can reuse the SAO parameters from
left LCU or upper LCU by SAO merging mode.

EO: EO uses four 1-D direction patterns for pixel classifica-
tion including EO_0 class (horizontal), EO_1 class (vertical),
EO_2 class (135° diagonal) and EO_3 class (45° diagonal),
shown in Fig. 4. Sample labeled as “c” indicates a current sam-
ple to be considered. Two samples labeled as “a” and “b” specify
two neighboring pixels. According to these patterns, four EO
classes are specified, each class corresponds to one pattern.
Please note that, only one EO class would be selected for each
LCU that enables EO.

For a given EO class, each sample is classified into one of
the five categories by comparing its own value with the two
neighboring samples’ value as shown in Table II. If the current
sample does not belong to any of the category 1–4, then SAO
would be not applied to it.

BO: BO performs the sample classification based on the sam-
ple’s own value. The BO classifies all pixels of a LCU into
multiple bands where each band contains the pixels in the same
intensity interval in HM 9.0. The concept of band in BO is sim-
ilar to the category in EO. The pixel intensity range is equally
divided into 32 uniform bands from zero to the maximum value
(e.g., 255 for 8-bit pixels), and each band has its offset, shown
in Fig. 5.

SHEN et al.: COMBINED DF AND SAO HARDWARE ARCHITECTURE FOR HEVC 1025

Fig. 5. Four bands are grouped together and signal from the starting band.

Fig. 6. SAO merging mode.

Only four offsets of four consecutive bands and the starting
band position would be coded by entropy coding to be trans-
mitted to the decoder. The possible choice number of starting
band is 29. The reason of selecting only four bands is that the
sample range in a region can be quite limited after the regions
are reduced from picture quadtree partitions to CTBs [9].

SAO merging: The current LCU can reuse the SAO param-
eters (SAO type and four offsets) from left LCU (merge-left)
or upper LCU (merge-up) as shown in Fig. 6. Please note that
the SAO information (SAO type and offsets) are shared by Y,
Cb and Cr components. If current LCU selects the merge-left or
merge-up, all SAO information of current LCU are reused from
the left or upper LCU. The SAO merging mode can reduce side
information to be coded by entropy coding effectively.

Fast distortion estimation: The selection of SAO type and
offsets is performed on fast distortion estimation method based
on a region of LCU in HM 9.0. The fast distortion estimation
method [8] implementation for SAO would need to add offsets
to pre-SAO samples (post-DF samples) to generate post-SAO
samples and then calculate distortion between original samples
and post-SAO samples, which can be implemented as follows.

Let k, p(k) and d(k) be the pixel positions, original pixels
and pre-SAO pixels, where k belongs to C and C is a set of
pixels which belong to specified SAO type (EO, BO), a specified
category of an EO class or a starting band in BO. The distortion
between original pixels and pre-SAO pixels can be calculated
in the following equation:

Dpre =
∑

k∈C
(p (k) − d(k))2 . (3)

The distortion between the original pixels and the post-SAO
pixels can be described in the following equation. In (4), O is
the offset of a given pixel set

Dpost =
∑

k∈C
(p (k) − (d (k) + O))2 . (4)

The delta distortion is defined in the following equation:

ΔD = Dpost − Dpre = NO2 − 2OE (5)

E =
∑

k∈C
(p (k) − d(k)). (6)

In (5), N is the number of pixels of a given set, and E is the
sum of differences between original pixels and pre-SAO pixels
as defined in (6). Next, the delta rate-distortion cost is defined
in the following equation:

ΔJ = ΔD + λR. (7)

In (7), λ is the Lagrange multiplier, and R represents the
estimated bits of side information for a specified SAO type.
The calculation of λ is performed by entropy coding which is a
time-consuming process in HM 9.0. A simplified bitrate estima-
tion method is proposed to reduce the computation complexity,
which is elaborated in Section IV.

III. PROPOSED HARDWARE ARCHITECTURE

Fig. 7 shows an overall proposed hardware architecture of
combined DF and SAO. We adopt an interlaced pipeline ar-
chitecture to speed up the combined DF and SAO. The whole
process is partitioned into three phases: DF, SAO statistics col-
lection and SAO mode decision.

The whole design is based on quarter-LCU (32 × 32 pixels
for Y, 16 × 16 pixels for Cb and Cr) scheme which has the
benefit of on-chip SRAM (which stores the reconstructed and
original pixels) area reduction by about 75% compared to the
LCU basis, without throughput loss. Owing to that the SAO is
performed on a LCU basis in HM 9.0, a z-scan order (shown
in Fig. 8) is proposed to keep the same results in picture level
(from quarter-LCU_0 to quarter-LCU_3 in an LCU).

In DF phase, a four-stage pipeline is adopted to enhance
the throughput on the basis of a four-line unit, while a two-
stage pipeline is also adopted in SAO statistics collection phase.
During the DF process, the statistics information for deriving
offset and fast distortion estimation of SAO is collected after
horizontal edges filtering. Consequently, an interlaced pipeline
scheme for DF and SAO is proposed to avoid fetching any post-
DF pixels from SRAM and improve the throughput significantly.

A. Analysis of Data-Reuse for the Combined DF and SAO

In order to clarify the advantage of the combined DF and
SAO hardware architecture, an external memory access factor
Em is defined to evaluate the efficiency of the external memory
access for DF and SAO, the Em is expressed as (8) as shown at
the bottom of the next page. where Emr and Emw represent
the average number of memory accesses from and to the bus per
4 × 4 block, respectively. Em stands for the average number of
external memory accesses per 4 × 4 block for DF and SAO. It
is well known that the smaller Em has the greater reduction of
the external memory bandwidth.

In the general hardware design, the DF and SAO are based
on an LCU level, so the block size is set as a LCU size
(64 × 64 pixels) according to (8). Because of the
sixteen vertical boundaries and sixteen horizontal
boundaries should be filtered by DF, the number of
4 × 4 block memory reading accesses is 867 (=16 × 17
+ 2 × 8 × 9 + 17 × 17 + 2 × 9 × 9), and the number of
4 × 4 block memory writing accesses is 867 without data-reuse
scheme. Moreover, the SAO requires both the post-DF and

1026 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 6, JUNE 2016

Fig. 7. Proposed hardware architecture of the combined deblocking filter and SAO.

Fig. 8. Proposed z-scan order of quarter-LCU in a picture level.

original pixels, the number of 4 × 4 block memory reading
accesses is 1048 (=2 × (17 × 17 + 2 × 9 × 9 + 73)), while the
number of 4 × 4 block memory writing accesses is 0 (the SAO
just send the selected type and offsets to the system) without
data-reuse scheme. Em can be calculated as the following
equation:

Em =
(867 + 1048) + (867 + 0)
16 × 16 + 8 × 8 + 8 × 8

= 7.2. (9)

It is observed that each pixel would be access about eight
times to complete the DF and SAO, which causes a huge
overhead of the external memory. In order to reduce the ex-
ternal memory bandwidth, the on-chip memory scheme is a

well-known method to store the reuse data in chip. Here, a novel
filter order scheme is proposed to reuse the temporary data af-
ter vertical boundary filtering for further horizontal boundary
filtering in DF phase, cooperating with the proposed on-chip
memory organization. Moreover, the combined DF and SAO
hardware architecture can reuse the post-DF pixels for SAO
statistics collection phase.

With the above methods, the block size is set as a
quarter-LCU size (32 × 32 pixels) according to (8), at
the bottom of the page. The number of 4 × 4 block
memory reading accesses is 112 (=8 × 9 + 2 ×
4 × 5), and the number of 4 × 4 block memory writing accesses
is 16 (=8 + 2 × 4) of DF. Meanwhile, the SAO just reads the
original pixels from the external memory, and the number of
4 × 4 block memory reading accesses is 112 (= 8 × 9 + 2
× 4 × 5). And Em for the above data-reuse methods can be
expressed as

Em =
(112 + 112) + (16 + 0)
8 × 8 + 4 × 4 + 4 × 4

= 2.5. (10)

It means that the total number of 4 × 4 block external mem-
ory accesses dramatically reduces to 35%, which greatly eases
the external memory traffic. Moreover, the combined DF and
SAO hardware architecture can eliminate the SRAMs of storing

Em = Emr + Emw

=
the number of memory reading accesses from the bus of a block

the number of 4 × 4 blocks of a block

+
the number of memory writing accesses to the bus of a block

the number of 4 × 4 blocks of a block

=
total number of memory accesses of a block

the number of 4 × 4 blocks of a block
(8)

SHEN et al.: COMBINED DF AND SAO HARDWARE ARCHITECTURE FOR HEVC 1027

Fig. 9. Memory organization of reconstructed pixels.

post-DF pixels for SAO. The SAO can utilize the post-DF pixels
directly without using SRAMs for storing the post-DF pixels.

B. Bandwidth Utilization Discussion

The external memory access factor Em is a theoretical num-
ber to evaluate the efficiency of the external memory access.
Furthermore, the bandwidth utilization of external memory is
an extremely important issue in a real video encoder design,
especially for DRAM.

DRAM, such as SDRAM or DDR1/2/3, is widely used as
external memory, which prefers block-based access. In other
words, if the desired data is tiny and fractional distributed in
external memory, then the pre-fetched data mechanism of DDR
would be wasted, resulting in a very low utilization of external
memory bandwidth. The improvements of the DRAM band-
width utilization should be a serious concern in a real video
encoder design. Thus, great efforts should be put on how to
join fractional data into continuous data chain stored in external
memory.

In our external memory system, we use DDR2 (data width is
32 bits, burst length is 4 equal to a 4 × 4 block one access time),
and the pixels in DDR2 are ordered as a quarter-LCU as a big
chain, in which the pixels are ordered as 4 × 4 blocks. With our
proposed data-reuse scheme, we only access the whole current
quarter-LCU and a row of 4× 4 blocks from the neighboring top
quarter-LCU. And the data in on-chip SRAMs are stored with
4 × 4 blocks as a basic unit. So we always access consecutive
integral multiple of 4 × 4 blocks’ data, and there is no overhead
in external memory access.

C. Novel Filter Order Scheme

In this section, three filter order levels, named picture level,
boundary level and four-line unit level, are defined to describe
our proposed filter order.

1) Picture level filter order: The vertical edges in a recon-
structed picture are filtered first, and then the horizontal edges
are filtered with samples modified by DF of vertical edges as
input. The vertical edges are filtered starting with the edge on
the left-hand through the edges towards the right-hand in their
geometrical order. The horizontal edges are filtered starting with
the edge on the top-hand through the edges towards the bottom-
hand in their geometrical order. This is the basic filter order
principle of DF in HEVC [3].

2) Boundary level filter order: The boundaries involved in
filtering on a quarter-LCU basis are labeled as red lines in
Fig. 9. The vertical boundaries including {v1, v2, v3, v4} are
filtered from left to right (if any), and the horizontal boundaries
including {h1, h2, h3, h4} are filtered from top to bottom (if
any) for component Y. And the filter order of component Cb and
Cr are similar to the one of component Y.

3) Four-line unit level filter order: Given that the four-line
unit is composed of two adjacent 4 × 4 blocks in Fig. 3. Each
boundary consists of several four-line units. The vertical bound-
aries are filtered from top four-line unit to the bottom four-line
unit (e.g., from four-line unit 1 to four-line unit 8 in vertical
boundary v1). The horizontal boundaries are filtered from left
four-line unit to the right four-line unit (e.g., from four-line unit
9 to four-line unit 15 in horizontal boundary h1).

For our quarter-LCU structure, we adopt the filter order
scheme combining the boundary level filter order with the four

1028 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 6, JUNE 2016

Fig. 10. Proposed timing diagram of an LCU.

line level filter order in a quarter-LCU. Firstly, vertical bound-
aries are filtered from v1 to v4, then from h1 to h4 for component
Y (the process for Cb, Cr is similar to Y). And each boundary
obeys the four-line unit level filter order. Note that, four-line
unit {N1, N2, N3, N4, N5, N6, N7, N8} would not be filtered
in current quarter-LCU by explicitly setting the BS value to
0, it is expected that the current quarter-LCU is on the right
boundary of the entire picture. These lines would be filtered in
right quarter-LCU which is on the right of current quarter-LCU,
corresponding to {P1, P2, P3, P4, P5, P6, P7, P8} in the right
quarter-LCU to keep the same result in HM 9.0.

Owing to that the SAO is performed on LCU basis in HM 9.0,
a z-scan order (shown in Fig. 8) is proposed to keep the same
results in picture level (from quarter-LCU_0 to quarter-LCU_3
in a LCU). Once the DF and SAO statistics collection phase is
completed of quarter-LCU_0, quarter-LCU_1, quarter-LCU_2
and quarter-LCU_3 (shown in Fig. 10), the SAO mode decision
phase for a LCU would be invoked.

D. Proposed Memory Organization

An on-chip memory is used to reduce the I/O bandwidth
between the chip and the system. The main challenge is to
properly arrange the data in memory modules in order to access
the data smoothly from the memory modules to the in-loop filter
core, on both vertical and horizontal boundaries. We present an
interlacing memory organization to access the data effectively
in the processing of both vertical and horizontal filtering for
the DF.

Our approach is to divide the on-chip memory of recon-
structed pixels (used for the DF) into five modules (SRAM_C1,
SRAM_C2, SRAM_L1, SRAM_L2, and SRAM_T), shown in
Fig. 9. SRAM_C1 and SRAM_C2 store the pixels of the cur-
rent quarter-LCU; those in SRAM_L1 and SRAM_L2 are from
the left neighboring quarter-LCU. Meanwhile, the pixels in
SRAM_T come from the top neighboring quarter-LCU and left-
top neighboring quarter-LCU. Each square in Fig. 9 stands for a
4 × 4 pixels of luminance or chrominance component. For ex-
ample, the grey squares from C0 to C95 belong to SRAM_C1,
while the white squares from C1 to C94 belong to SRAM_C2.
With our proposed interlacing memory organization, two 4 ×
4 pixel blocks on both sides of every boundary always come
from different memory modules. As a result, all pixels can be
easily accessed from the SRAMs on the vertical and horizontal
filtering operations.

Fig. 11. Four-stage pipeline for DF.

A two-port SRAM can support one read and one write at
the same clock cycle. In our proposed design, we utilize five
two-port SRAMs for reconstructed pixels. These SRAMs can
also be used to store the immediate pixels for horizontal edges
filtering after vertical edges filtering. Therefore, no more on-
chip memories are needed for the DF.

Due to the directional patterns of EO in SAO statistics col-
lection phase, another V and H line buffers are needed to
store some post-DF pixels for the category selection (shown in
Fig. 9, each yellow and green circle stand for a pixel). Another
two SRAMs (SRAM_O1, SRAM_O2) and V, H line buffers
are also adopted to store the original pixels for SAO statistics
collection. The organization of these memories is similar to the
memory scheme of the reconstructed pixels in DF.

With the proposed memory organization based on quarter-
LCU structure, the on-chip memory area would be reduced to
about 25% compared to the basis of LCU.

E. Pipeline Schedule

Fig. 10 shows the timing diagram of our design. We employ
a four-stage pipeline which can filter four lines simultaneously
in DF phase (shown in Fig. 7). The function of each stage is
illustrated as follows, depicted in Fig. 11.

Stage 0 (DF_0): Calculate the BS value according to the
information such as the prediction mode, motion vector

SHEN et al.: COMBINED DF AND SAO HARDWARE ARCHITECTURE FOR HEVC 1029

Fig. 12. Proposed pixels’ selection of the combined deblocking filter and
SAO.

and so on. Reading the pixels to be filtered from on-chip
SRAM (SRAM_C1, SRAM_C2, SRAM_L1, SRAM_L2,
and SRAM_T) is also accomplished in this stage.

Stage 1(DF_1): Calculate the threshold value β, tc, the condition
dE, dEp, dEq used for the decision of filter on/off, strong and
weak filter.

Stage 2(DF_2): According to the BS, tc, dE, dEp, dEq obtained
from the above stage, different taps are applied to filter the
pixels across the current boundary. And the detailed filtering
process of both the strong filter and the weak filter can be
found in HEVC [3].

Stage 3(DF_3): Write the filtered data back to on-chip SRAM to
be further filtered, or to the external memory to be referenced
for the other modules of the video encoder.

The pre-DF pixels would be accessed and modified both in
filtering on vertical edges and horizontal edges in DF phase.
These pixels after filtering on horizontal edges would be fetched
by SAO statistics collection phase.

As shown in Fig. 12, because of that EO should refer its
neighboring pixels to obtain category selection; only 32 pixels’
information is collected inside the region marked with solid-
line. These pixels inside the dash-line region are filtered by DF.
The pixels of yellow circles come from H line buffer of post-DF,
while the pixels of green circles come from V line buffer.

Owing to that all these 32 pixels’ information would be col-
lected by EO_0, EO_1, EO_2, EO_3 and BO, an interlaced
pipeline scheme, coupled with a configurable two-stage SAO
pipeline, is proposed to reduce the chip area of SAO statis-
tics collection phase to about 25%. As shown in Fig. 10, each
pipeline stage of DF and SAO takes one cycle. The pipeline of
DF would be invoked at the interval of four cycles in order to
wait until all 32 pixels’ information statistics are collected by

Fig. 13. Proposed configurable comparator array.

SAO. The function of each stage of SAO statistics collection
phase is illustrated as follows (using the notations in Fig. 10).

Stage 0 (SAO_0): Obtain 32 pixels’ category and band selec-
tion information of EO_0, EO_1, EO_2, EO_3 and BO, and
perform some adder calculation of (6) at the same time.

Stage 1 (SAO_1): Complete the rest adder calculation
of (6).

SAO takes four cycles to collect statistics information for
a four-line unit. For example, EO_0 and BO’ 0–7 bands are
processed in cycle 35; EO_1 and BO’ 8–15 bands are processed
in cycle 36; EO_2 and BO’ 16–23 bands are processed in cycle
37; EO_3 and BO’ 24–31 bands are processed in cycle 38 shown
in Fig. 10. The interlaced pipeline scheme achieves a good
tradeoff between high-throughput and chip area.

Configurable comparator array and fragmentation adder
scheme are proposed to cooperate with the SAO pipeline. Fig. 13
shows the proposed configurable comparator array employed to
category classification in EO. In Fig. 4, “c” is the current pixel,
and “a” and “b” are the two neighboring pixels. As shown in
Table II, the current pixel “c” would be compared to “a” and
“b”. Data reuse between pixels can be further applied for the
next samples’ category classification. For example, assuming
the SAO type is EO_0, the current pixel’s comparison value of
“c” and “b” can be derived from the its right pixel’s comparison
value of “c” and “a.” In Fig. 13, besides 32 fixed comparators, 12
configurable comparators are also applied when the pixels could
not reuse the data from its neighboring pixel at the boundary
of these 32 pixels. With the proposed configurable compara-
tor array and data reuse, the number of comparator is reduced
to 17% (32 fixed comparators + 12 configurable comparators
with proposed method, versus 32 comparators × 2 (one pixel
needs two comparators) × 4 (four EO classes) without proposed
method).

Five right column lines and four bottom lines for Y compo-
nent, meanwhile three right column lines and two bottom lines
for Cb&Cr component should not be collected the statistics in-
formation in an LCU, detailed in [13]. Owing to the irregularity
in a 32 × 32 pixels’ region statistics collection, we summa-
rize eight structures in Fig. 14. The statistics information of

1030 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 6, JUNE 2016

Fig. 14. Proposed fragmentation adder scheme.

the pixels in red should be collected in a specified category
or band in Fig. 14, according to (6). Meanwhile, 32 pixels’
difference between its original value and post-DF value will
be added to further fast distortion estimation. If the addition
process of these 32 pixels’ difference is done in one cycle,
this cycle should be very time-consuming, which restricts the
highest working frequency capability of the chip. The proposed
fragmentation adder scheme divides these 32 pixels into 12 re-
gions, as shown in Fig. 14. The pixels’ difference of each region
would be added in stage 0 of SAO pipeline. Then these 12 re-
gions are added selectively in stage 1 of SAO. The proposed
fragmentation adder scheme accomplishes a good tradeoff be-
tween high-throughput and maximum working frequency capa-
bility of the chip.

With the proposed scheme, the DF phase and SAO statistics
collection phase take 518 cycles in an LCU, shown in Fig. 10.
The rest of the fast distortion estimation would be described in
Section IV.

IV. SIMPLIFIED FAST RATE ESTIMATION

In HM9.0, λ for Y and Cb&Cr are two floating-point num-
bers according to (7), which are derived from two exponential
function of the QP. And floating-point number multiplication is
a both time and area consuming in hardware design. In order
to simplify the multiplication, two look-up tables are utilized to
generate the λ for Y and Cb&Cr respectively where QP is the
integer index ranging from 0 to 51, and the values of λ are all
integers in the tables (floating to integer method, FTI).

Besides, we also propose a simplified bitrate (R) estimation
method (SBE) of rate-distortion cost calculation, according to
(7). The value of R is derived from entropy coding (coding a
specified SAO type and the four offsets of this type) in HM9.0.
The calculation of R takes at least eight cycles according to the
hardware architecture of CABAC proposed in [12] and [13],
which is a time-consuming process. Here, we propose a simpli-
fied bitrate estimation method, which employs a linear model to
derive the value of R in a cycle.

N randomly generated data x1 , x2 , . . . xN are used as the input
to the simplified bitrate estimation function with the correspond-
ing output y1 , y2 . . . yN . In our problem, xi(i = 1, 2, . . . , N) is

TABLE III
COMPARISON WITH PREVIOUS DESIGNS

FTI + SBE method

BD-rate(%)

Class Sequence AI LD RA

Class A [2560 × 1600] Traffic 0.1 0.1 0.0
PeopleOnStreet 0.2 0.2 0.2

Nebuta 0.0 0.2 0.1
SteamLocomotive 0.1 1.1 0.5

Class B [1920 × 1080] Kimono 0.1 0.2 0.1
ParkScene 0.1 0.2 0.2

Cactus 0.0 0.2 0.1
BasketballDrive 0.1 0.1 0.3

BQTerrace 0.0 0.2 0.2
Class C [832 × 480] BasketballDrill 0.1 0.5 0.0

BQMall 0.0 0.1 0.0
PartyScene 0.0 0.0 0.1
RaceHorses 0.0 0.1 0.2

Class D [416 × 240] BasketballPass 0.1 0.1 0.1
BQSquare 0.1 0.3 0.4

BlowingBubbles 0.0 0.1 0.0
RaceHorses 0.0 0.2 0.0

Class E [1280 × 720] FourPeople 0.1 0.3 0.0
Johnny 0.1 0.0 0.1

KristenAndSara 0.0 0.4 0.2
Average 0.1 0.2 0.1

TABLE IV
HARDWARE IMPLEMENTATION RESULT

Purpose Gate count (NAND2)

Deblocking filter 30.3 K
SAO statistics collection 55.9 K
SAO mode decision 17.1 K
Total 103.3 K

TABLE V
HARDWARE IMPLEMENTATION RESULT

Technology TSMC 65 nm CMOS

Gate count 103.3 K
On-chip SRAM 4.2 kB
On-chip buffer 0.6 kB
Working frequency 200 MHz

the sum of absolute values of several offsets in a specified SAO
type, and yi(i = 1, 2, . . . , N) is the estimated bits of side in-
formation of the corresponding SAO type. We assume a linear
model on this I/O relationship to reduce the cost of hardware
design and improve the throughput significantly, where

⎡

⎢⎢⎢⎢⎢⎣

y1

y2

...

yN

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

x1

x2

...

xN

⎤

⎥⎥⎥⎥⎥⎦
a + b (11)

SHEN et al.: COMBINED DF AND SAO HARDWARE ARCHITECTURE FOR HEVC 1031

TABLE VI
COMPARISON WITH PREVIOUS DESIGNS

Design Standard Implementation
Style

DF SAO Processing time
(cycle counts/LCU)1
LCU=16 MB

Process Gate count
(NAND2)

On-chip
SRAM

Supporting video
format

Frequency (MHz) DE
(×103)

[17] H.264 Gate-level � × 260∗16 0.13 μm 36.9 K 672 16VGA at 30 f/s
(2560 × 1920)

225 4.0

[18] H.264 Real-chip � × 204∗16 0.18 μm 21.4 K 512 + 64N 1080p at 30 f/s (1920
× 1088)

200 2.9

[19] H.264 Real-chip � × 100∗16 0.13 μm 22.9 K 416 QFHD at 30 f/s
(3840 × 2160)

98 10.9

[20] H.264 Gate-level � × 243∗16 0.18 μm 21.1 K 864 + 8N 1080p at 30 f/s
(1920 × 1088)

238 3.0

[21] H.264 Gate-level � × 192∗16 0.18 μm 26.0 K 512 + 8N QFHD at 30 f/s
(3840 × 2160)

187 9.6

[22] H.264 Gate-level � × 112∗16 0.18 μm 12.1 K 256 QFHD at 30 f/s
(3840 × 2160)

109 20.6

[23] H.264 Gate-level � × 136∗16 90 nm 17.9 K 1056 QFHD at 30 f/s
(3840 × 2160)

133 14.0

[24] HEVC Gate-level � × 2043 0.13 μm 17.6 K 384 QFHD at 60 f/s
(3840 × 2160)

250 28.3

[25] HEVC FPGA � × 2560 40 nm 36.8 K 832 1080p at 86 f/s
(1920 × 1088)

108 4.8

Proposed HEVC Gate-level � � 558 65 nm DF: (30.3 +
0.148) K
SAO: 73 K

4200 UHD at 40 f/s
(7680 × 4320)

182 DF: 43.6
SAO: 18.2

∗N represents the frame width in pixels.

which can be represented concisely as follows:

y = [x 1N ×1] θ (12)

where y =[y1y2 . . . yN]T , x =[x1x2 . . . xN]T , 1N ×1 is an all
one vector of size N × 1 , and θ − (a b)T , which denotes the
parameters of the linear model.

Least square technique [14] is applied to estimate θ

θ =
(
[x 1N ×1]

H [x 1N ×1]
)−1

[x 1N ×1]
H y (13)

which could be solved easily by a linear equation in standard
manner. With the above method, we obtain the following equa-
tion for R estimation:

RY EO =
3∑

i=0

|offseti | + 13 (14)

RY BO =
3∑

i=0

|offseti | + 16 (15)

RC b&C r BO =
7∑

i=0

|offseti | + 25 (16)

RC b&C r BO =
7∑

i=0

|offseti | + 25 (17)

RY &C b&C r = 3
11∑

i=0

|offseti | + 1 (18)

Rmerging = 4. (19)

The performance of the proposed FTI + SBE method is eval-
uated in terms of the change of average Bjontegaard Delta rate
(BD-rate) [15]. The performance gain or loss is measured with
the respect to the HEVC reference software platform (HM9.0).

The experiments are carried for “All Intra-Main (AI),” “Low
Delay-Main (LD)” and “Random Access-Main (RA)” settings
as stipulated by the common condition proposed in [16]. The
configuration files are provided in the common software pack-
age of HM9.0. QP values of 22, 27, 32 and 37 cover a broad
range of qualities and bit rates.

Table III shows the experimental results of the proposed FTI
+ SBE scheme as compared to HM9.0 tested on 20 sequences.
It is observed that BD-rate increment is less than 0.2% for all
sequences of “AI” setting which is negligible, with best case
of 0.0% increment and worst case of 0.2% increment. And the
average BD-rate increment for all sequences of “LD” and “RA”
settings is 0.2% and 0.1% respectively, which shows that the FTI
+ SBE method can also be applied to inter coding. Meanwhile,
the cycles for SAO mode decision are reduced by 87.5% in
hardware design. The SAO mode decision phase takes only
40 cycles for an LCU with the proposed FTI + SBE scheme
according to Fig. 10.

V. IMPLEMENTATION RESULT AND COMPARISON

We have implemented the proposed architecture in Verilog
HDL and synthesized it targeted towards a TSMC 65 nm CMOS
cell library under a timing constraint of 200 MHz. Tables IV and
V show the hardware implementation result. Our design requires
103.3 K gate count and 4.2 kB on-chip SRAM, and 0.6 kB
on-chip buffer. It is observed that the SAO collection phase
consumes more than 50% area of the whole design, owing to the
large usage of addition, subtraction and comparator calculations
according to (6).

The hardware performance comparison between our pro-
posed design and other designs is presented in Table VI. Our
design is the only one can support UHD applications, which also
works at a lower working frequency, compared with other de-

1032 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 6, JUNE 2016

signs. In order to store not only the reconstructed pixels but also
the original pixels for SAO collection phase module, our design
needs more on-chip SRAM sizes than other designs. Moreover,
a quarter-LCU based hardware architecture is proposed, while
the DF is based on a MB in H.264 standard design. The above
two reasons causes to a huge consumption of on-chip SRAM
sizes. Our design consumes a larger SRAM sizes than the other
designs [24] and [25], because that the designs of HEVC DF of
Ye et al. [24] and Ozcan et al. [25] are based on 16 × 16 CU.
According to the processing time, the throughput is faster about
3–7 times than other designs [17]–[25]. Our proposed hardware
architecture of combined DF and SAO is designed for HEVC
intra encoder, neverthless the difference of DF between intra
and inter coding is only the caclulation of BS value. The area of
BS caculation supporting inter coding is 148 gate count larger
than intra one. To give a fair comparsion, we add this part to the
area cost of our design.

In order to perform a fair comparison, we introduce a
normalized criterion called Design Efficiency (DE). It is
defined as

DE =
Format × Fps
Gate Count

(20)

where Format is the multiplication of width and height of the
supporting video format in Table VI. Fps is the fps of the sup-
porting video format. Gate count is the number of equivalent
NAND2 of the design. It is well known that the bigger DE has
the greater DE.

The normalized result in Table VI shows that our design of
DF is at least 54% more efficient than any previous works about
DF. And our proposed SAO has a DE value of 18.2, which
is designed for HEVC intra encoder. The difference of SAO
between intra and inter coding is that the SAO of inter coding
need one more operation. The SAO should add the offset to the
output samples of DF according to the best SAO type.

VI. CONCLUSION

This paper proposes a hardware implementation on the com-
bined DF and SAO for HEVC intra encoder, which features a
high throughput. With the featured balanced pipeline scheme,
the maximum speed can reach 200 MHz as shown in Table V.
As a result, our design can support UHD at 40 f/s with merely
182 MHz working frequency, and it is also capable for higher
resolution or low power applications. Meanwhile, such an im-
plementation of DF and SAO benefits the capability of working
frequency of the whole HEVC intra encoder.

REFERENCES

[1] C.-M. Fu, C.-Y. Chen, Y.-W. Huang, and S. Lei, “Sample adaptive offset
for HEVC,” in Proc. IEEE 13th Int. Workshop Multimedia Signal Process.,
Oct. 2011, pp.1–5.

[2] Draft ITU-T Recommendation and Final Draft International Standard
of Joint Video Specification, ITU-T Rec. H.264/AVC/ISO/IEC 14496-10
AVC, JCT-G050, 2003.

[3] High Efficiency Video Coding (HEVC) Text Specification Draft 9 (SoDIS),
JCTVC-K1003, Oct. 2012.

[4] High Efficiency Video Coding (HEVC) Test Model 7 (HM 7) Encoder
Description, JCTVC-I1002, May 2012.

[5] M. T. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos, “HEVC: The
new gold standard for video compression: How does HEVC compare with
H.264/AVC?” IEEE Consum. Electron. Mag., vol. 1, no. 3, pp. 36–46,
Jul. 2012.

[6] M. Yuen and H. R. Wu, “A survey of hybrid MC/DPCM/DCT video
coding distortions,” J. Signal Process., vol. 70, no. 3, pp. 247–278, Nov.
1998.

[7] A. Norkin et al., “HEVC deblocking filter,” IEEE Trans. Circuits Syst.
Video Technol., vol.22, no. 12, pp. 1746–1754, Dec. 2012.

[8] C.-M. Fu et al., “Sample adaptive offset in the HEVC standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1755–1764, Dec.
2012.

[9] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity
and implementation analysis,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 12, pp. 1685–1696, Dec. 2012.

[10] J. Zhu, D. Zhou, G. He, and S. Goto, “A combined SAO and de-blocking
filter architecture for HEVC video decoder,” in Proc. IEEE 20th Int. Conf.
Image Process., Sep. 2013, pp. 1967–1971.

[11] Description of Core Experiment 1 (CE1): Sample Adaptive Offset Filter-
ing, JCTVC-H1101, Feb. 2012.

[12] R. Song, H. Cui, Y. Li, and X. Song, “A five-stage pipeline design of
binary arithmetic encoder in H.264/AVC,” in Proc. Asia-Pacific Signal
Inform. Process. Assoc. Annu. Summit Conf., Dec. 2012, pp. 1–4.

[13] V. Rosa, L. Max, and S. Bampi, “High performance architectures for the
arithmetic encoder of the H.264/AVC CABAC entropy coder,” in Proc.
IEEE 17th Int. Conf. Electron., Circuits, Syst., Dec. 2010, pp. 383–386.

[14] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I:
Estimation Theory, 1st ed. Englewood Cliffs, NJ, USA: Prentice-Hall,
1993.

[15] Calculation of Average PSNR Differences Between RD Curves, ITU-T
SC16/Q6, VCEG-M33, 2001.

[16] HM Reference Software. (2013). [Online]. Available: svn://hevc.kw.
bbc.co.uk/svn/jctvc-hm/tags/ HM-9.0. Accessed on: Jan. 2014.

[17] C.-A. Chien, H.-C. Chang, and J.-I. Guo, “A high throughput in-loop de-
blocking filter supporting H.264/AVC BP/MP/HP video coding,” in Proc.
IEEE Asia Pacific Conf. Circuits Syst., Nov.-Dec. 2008, pp. 312–315.

[18] K. Xu and C.-S. Choy, “A five-stage pipeline, 204 Cycles/MB, single-
port SRAM-based deblocking filter for H.264/AVC,” IEEE Trans. Circuits
Syst. Video Technol., vol. 18, no. 3, pp. 363–374, Mar. 2008.

[19] Y.-C. Lin and Y.-L. Lin, “A two-result-per-cycle deblocking filter archi-
tecture for QFHD H.264/AVC decoder,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 17, no. 6, pp. 838–843, Jun. 2009.

[20] T.-M. Liu, W.-P. Lee, and C.-Y. Lee, “An in/post-loop deblocking filter
with hybrid filtering schedule,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 17, no. 7, pp. 937–943, Jul. 2007.

[21] N. T. Ta, J. S. Youn, H. G. Kim, J. R. Choi, and S.-S. Han, “Low-power
high-throughput deblocking filter architecture for H.264/AVC,” in Proc.
Int. Conf. Electron. Comput. Technol., Feb. 2009, pp. 627–631.

[22] M. Nadeem, S. Wong, G. Kuzmanov, and A. Shabbir, “A high-throughput,
area-efficient hardware accelerator for adaptive deblocking filter in
H.264/AVC,” in Proc. IEEE/ACM/IFIP 7th Workshop Embedded Syst.
Real-Time Multimedia, Oct. 2009, pp. 18–27.

[23] J. Zhou et al., “A 136 cycles/MB, luma-chroma parallelized H.264/AVC
deblocking filter for QFHD applications,” in Proc. IEEE Int. Conf. Multi-
media Expo, Jun.-Jul., 2009, pp. 1134–1137.

[24] X. Ye, D. Ding, and L. Yu, “A cost-efficient hardware architecture of
deblocking filter in HEVC,” in Proc. IEEE Vis. Commun. Image Process.
Conf., Dec. 2014, pp. 209–212.

[25] E. Ozcan, Y. Adibelli, and I. Hamzaoglu, “A high performance deblocking
filter hardware for high efficiency video coding,” IEEE Trans. Consum.
Electron., vol. 59, no. 3, pp. 714–720, Aug. 2013.

Weiwei Shen received the B.S. and Ph.D. degrees
in microelectronics and solid electronics from Fu-
dan University, Shanghai, China, in 2010 and 2015,
respectively.

His research interests include VLSI design, al-
gorithms, and the VLSI architectures for multimedia
signal processing.

SHEN et al.: COMBINED DF AND SAO HARDWARE ARCHITECTURE FOR HEVC 1033

Yibo Fan received the B.E. degree in electronics and
engineering from Zhejiang University, Hangzhou,
China, in 2003, the M.S. degree in microelectron-
ics from Fudan University, Shanghai, China, in 2006,
and the Ph.D. degree in engineering from Waseda
University, Tokyo, Japan, in 2009.

He was an Assistant Professor with Shanghai
Jiao Tong University, Shanghai, China, from 2009 to
2010, and is currently an Associate Professor with the
College of Microelectronics, Fudan University. His
research interests include image processing, video

coding, and associated VLSI architecture.

Yufeng Bai received the B.S. degree in electronics en-
gineering from Sun Yat-Sen University, Guanghzhou,
China, in 2008, and is currently working toward the
M.S. degree in microelectronics at Fudan University,
Shanghai, China.

His research interests include video coding and its
VLSI architecture design.

Leilei Huang received the B.S. degree in microelec-
tronics and solid electronics from Fudan University,
Shanghai, China, in 2014, where he is currently work-
ing toward the M.S. degree in microelectronics and
solid electronics.

His research interests include VLSI design, al-
gorithms, and corresponding VLSI architectures for
multimedia signal processing.

Qing Shang received the B.S. and M.S. degrees
in microelectronics and solid electronics from Fu-
dan University, Shanghai, China, in 2011 and 2014,
respectively.

His research interests include VLSI design, algo-
rithms, and VLSI architectures for multimedia signal
processing and design for test.

Cong Liu received the B.S. and M.S. degrees in
microelectronics and solid electronics from Fudan
University, Shanghai, China, in 2011 and 2014,
respectively.

His research interests include VLSI design, al-
gorithms, and the VLSI architectures for multimedia
signal processing and design for test.

Xiaoyang Zeng (M’07) received the B.S. degree
from Xiangtan University, Xiangtan, China, in 1992,
and the Ph.D. degree from the Changchun Institute
of Optics, Fine Mechanics, and Physics, Chinese
Academy of Sciences, Changchun, China, in 2001.

From 2001 to 2003, he was a Postdoctoral Re-
searcher with Fudan University, Shanghai, China.
Then, he became an Associate Professor with the
State Key Lab of ASIC and System, Fudan Univer-
sity, where he is currently a Full Professor and the
Director. His research interests include information

security chip design, system-on-chip platforms, and VLSI implementation of
digital signal processing and communication systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

