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PAPER

A High-Throughput and Compact Hardware Implementation for
the Reconstruction Loop in HEVC Intra Encoding

Yibo FAN†a), Member, Leilei HUANG†, Zheng XIE†, and Xiaoyang ZENG†, Nonmembers

SUMMARY In the newly finalized video coding standard, namely high
efficiency video coding (HEVC), new notations like coding unit (CU), pre-
diction unit (PU) and transformation unit (TU) are introduced to improve
the coding performance. As a result, the reconstruction loop in intra en-
coding is heavily burdened to choose the best partitions or modes for them.
In order to solve the bottleneck problems in cycle and hardware cost, this
paper proposed a high-throughput and compact implementation for such a
reconstruction loop. By “high-throughput”, it refers to that it has a fixed
throughput of 32 pixel/cycle independent of the TU/PU size (except for
4×4 TUs). By “compact”, it refers to that it fully explores the reusability
between discrete cosine transform (DCT) and inverse discrete cosine trans-
form (IDCT) as well as that between quantization (Q) and de-quantization
(IQ). Besides the contributions made in designing related hardware, this
paper also provides a universal formula to analyze the cycle cost of the re-
construction loop and proposed a parallel-process scheme to further reduce
the cycle cost. This design is verified on the Stratix IV FPGA. The basic
structure achieved a maximum frequency of 150MHz and a hardware cost
of 64K ALUTs, which could support the real time TU/PU partition decision
for 4K×2K@20fps videos.
key words: reconstruction loop, discrete cosine transform (DCT), inverse
discrete cosine transform (IDCT), quantization (Q), de-quantization (IQ),
high efficiency video coding (HEVC)

1. Introduction

HEVC standard is the successor of H.264/AVC standard,
which continues to adopt the hybrid coding technology
based on blocks, but as a new coding standard, it achieves
an average gain of 39.3% in terms of BD-BR savings
compared with H.264/AVC. It is also summarized that
HEVC was designed to be applicable for almost all existing
H.264/MPEG-AVC applications, while putting emphasis on
high-resolution video coding [1].

With this emphasis, a complicated quad-tree coding
structure is adopted by HEVC. To be more specific, the ba-
sic processing unit in HEVC is called coding tree unit (CTU)
which contains one luma coding tree block (CTB) and two
chroma CTB. The size of luma one can be set to 16×16,
32×32 or 64×64. In general situation, it always takes 64×64
to fully explore the performance of HEVC. CTU plays the
role of root node of the CU quad-tree while CU plays the
role of root node of the TU quad-tree and PU. When the
luma CTB is set to a 64×64 block, which is a normal case
as mentioned, the size of TU can vary among 4×4, 8×8,
16×16 and 32×32; while the size of PU can vary among
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4×4, 8×8, 16×16, 32×32 and 64×64 with 35 possible pre-
diction modes in intra prediction. Although several fast
mode decision designs have been proposed, still a consid-
erable amount of candidate PU modes, PU partitions or TU
partitions are needed to be traversed by the reconstruction
loop.

It can be inferred that the reconstruction loop in intra
prediction has become a bottleneck in cycle and hardware
cost. Cycle cost origins from the data dependency and the
traverse process mentioned above. The former one makes
the pipelining operation between TU/PU meaningless and
the latter one greatly increases the total amount of data to
be processed. Hardware cost origins from 4 different TU
sizes and a maximum TU size of 32×32. The former one
makes the support to multiple sizes necessary and the latter
one directly leads to a high cost in calculation logics and
transpose memories.

In order to solve these two problems, this paper pro-
posed a high-throughput and compact hardware implemen-
tation for the reconstruction loop in HEVC intra encoding.
By the word “high-throughput”, it refers to that it has a fixed
throughput of 32 pixels per cycle independent of the TU/PU
size (except for 4×4 TUs). By the word “compact”, it refers
to that it fully explores the reusability between DCT and
IDCT as well as that between Q and IQ. This design is ver-
ified on Stratix IV FPGA. The basic structure achieved a
maximum frequency of 150MHz with 64K ALUTs.

This section mainly gives a brief introduction and the
rest of this paper is organized as follows. In Sect. 2, motiva-
tions, challenges and main contributions are provided with
related background and previous works. In Sect. 3, both the
top-level architecture and detailed implementations of re-
lated modules are illustrated with pictures, equations and
necessary explanations. As to the integration of this design,
it is discussed in Sect. 4, which includes the calculation of
overall cycle cost and practical scenarios to use it. Section 5
gives some comparison data between the proposed design
and other implementations. Finally, Sect. 6 concludes this
paper.

2. Reconstruction Loop in HEVC Intra Encoding

Related background and previous works would be provided
in this section, followed by motivations, challenges and
main contributions.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Reconstruction loop in HEVC

Fig. 2 (a) Space-time diagram for the regular reconstruction loop. (b)
The traverse operation in HEVC

2.1 Related Background

Reconstruction loop here refers to four modules, discrete
cosine transform (DCT), inverse discrete cosine transform
(IDCT), quantization (Q) and de-quantization (IQ). In fact,
a prediction module would be needed to form such a loop,
but design of this module is not covered in this paper.

As shown in Fig. 1, the residual data calculated from
original pixels and predicted pixels are sent to DCT and Q to
generate coefficients needed by CABAC. Meanwhile, these
coefficients are sent to IQ and IDCT to generate the recon-
structed data. The reason to call this process as a loop is
that in order to keep the consistence between encoding and
decoding, the predicted data should be generated based on
the reconstructed data. In other words, there is a data de-
pendency between the predicted data and the reconstructed
data.

For intra prediction, this data dependency would affect
the coding speed to a great extent, because the reconstructed
data needed is from neighboring TUs. Only after the recon-
struction towards the former TU is done, the reconstruction
towards the current TU could be started, and only after the
reconstruction towards the current TU is done, the recon-
struction process towards the next TU could be started. This
situation is shown in a more visual way by the space-time
diagram in Fig. 2. It shows that the prediction operation to-
wards TU 1 is launched after the finish of IDCT towards TU
0 because the reconstructed data located in the last column
of TU 0 is needed to do prediction to TU 1. In the same

way, prediction to TU 2 needs the last row of both TU 0 and
TU 1, while the prediction to TU 3 needs the last column
of TU 2. Namely, all the reconstruction process for these
TUs need to wait for the finish of their former one. To make
things worse, the traverse operation shown in Fig. 2 (b) leads
to a great data amount to be processed, which makes the re-
construction loop become a bottleneck in cycle cost.

Of course, cycle cost can be reduced by doing predic-
tions based on original pixels, but it will greatly increase the
BD-bitrate, which leads to a poor encoding performance.

As to other existing methods of fast PU mode decision,
PU partition decision or TU partition decision, they [2]–[4]
can only give a coarse range for possible candidates. A nar-
rower scope can reduce the cycle cost to some extent but the
data amount to be processed is still too huge.

Besides the cycle cost, the hardware cost is also a bot-
tleneck problem to be solved. As mentioned before, the
maximum TU size in HEVC is up to 32×32, which directly
leads to a high cost in calculation logics and transpose mem-
ories, not mention that a total of 4 different TU sizes need to
be supported.

2.2 Previous Works

Regarding to these difficulties, several papers have focused
on related modules and put forward many valuable ideas or
implementations.

For DCT/IDCT, Conceicao et al. [5] and Jeske et al. [6]
designed a one-dimension (1-D) DCT design for 16×16 TUs
and a two-dimension (2-D) IDCT design for 32×32 TUs
separately, however they are somehow unpractical to use
because they do not support other TU sizes. Later, Park
et al. [7] proposed three 2-D DCT structures suitable for all
TU sizes, but the reusability between structures for differ-
ent sizes is not considered, which makes the overall gate
count too large. Shen et al. [8] put forward a unified 2-D
IDCT design for all sizes and realized the reuse between
these sizes, while the throughput is only 4 pixel/cycle, which
is not enough for HD applications. Base on the previous
works, Meher et al. [9] came up with a new solution, which
explored the reusability in DCT for different sizes and suc-
ceeded in raising the throughput to 32 pixels per cycle. Un-
fortunately, the IDCT function is not supported and the max-
imum frequency is too low.

For transpose memory, Zhao et al. [10] and Lange-
meyer et al. [11] put forward two SDRAM-based architec-
tures, which, of course, is not suitable for HD applica-
tions, considering the access latency from the on-chip pro-
cessor to the off-chip memory. Later, Bojnordi et al. [12]
and Jang et al. [13] designed two SRAM-based architectures
which managed to realize the transpose function by dividing
SRAMs into several banks, but, either the depth or the width
of these banks is not appropriate, which makes the area ef-
ficiency and throughput unsatisfying. Based on these work,
Shang et al. [14] and Zhu et al.’s [21] proposed a new ar-
chitecture, which could provide a maximum throughput of
32 pixels each cycle and succeeded in optimizing the depth



FAN et al.: A HIGH-THROUGHPUT AND COMPACT HARDWARE IMPLEMENTATION FOR THE RECONSTRUCTION LOOP IN HEVC INTRA ENCODING
645

and width of banks by adopting a diagonal data mapping
method. However, their throughput would decrease with
TUs sizes. Thus, when it works with the 2-D DCT design
proposed by Meher et al. [9], some throughput of DCT mod-
ule will be wasted for small TUs. Unfortunately, Meher et
al. [9] did not give satisfying suggestions about how to fully
utilize his design as well.

For Q/IQ, almost no paper explicitly gave detailed de-
signs, not mention the reuse architecture of them. But the
lack of related papers may just come from the simplicity of
Q/IQ.

2.3 Motivations and Challenges

As listed above, several papers have proposed many valu-
able designs but almost none of them has put their design
into a practical situation, which leads to a result that these
designs may seem good individually but become somehow
meaningless when combined together. On the contrary, this
paper not only focuses on the module itself but also pays
close attention to the interaction between them as well as
the practical scenarios to use them. To better embody this
attention, detailed motivations and challenges are provided
in the following part.

Firstly, it can be concluded from the previous introduc-
tion that the reconstruction loop in HEVC intra encoding is
a bottleneck in cycle cost and hardware cost.

Secondly, the cycle cost would be much more urgent
because it directly determines whether this HEVC encoder
can support processing HD videos in real time or not. As
mentioned before, the cycle cost origins from the data de-
pendency and the traverse process. The data dependency can
be broken by doing traverse based on original pixels, but the
BD-bitrate would increase a lot; while the traverse can be re-
duced by adopting some fast algorithms, but the candidates
left are still considerable. As a result, it becomes natural
to solve the cycle problems by raising the processing abil-
ity towards a single TU/PU. To achieve this, the proposed
implementation studies not only the data process speed of
each module but also the data exchange between them. In
this manner, the high throughput of each individual module
would be truly meaningful.

Thirdly, the hardware cost of the reconstruction loop
is also a big problem because the processing unit of HEVC
is no longer as small as that in H.264. Also as mentioned
above, the hardware cost origins from a maximum process-
ing size of 32×32 and 4 different sizes adopted. To solve this
problem, the proposed design fully explored the reusabil-
ity not only in but also between each module. The former
reusability is very obvious and already adopted by many de-
signs while the latter one may need some explanations.

As shown in Fig. 2 (a), DCT, Q, IQ and IDCT could not
work simultaneously because of the data dependency, thus
it is feasible to reuse DCT as IDCT and reuse Q as IQ. As
shown in Fig. 3, in time slice 1, DCT/IDCT module plays
the role of DCT, and in time slice 2, Q/IQ module acts as Q,
while in time slice 3, it acts as IQ, and finally DCT/IDCT

Fig. 3 Space-time diagram for the proposed reconstruction loop

module plays the role of IDCT in time slice 4.
Of course, for PU mode decisions, the situation is dif-

ferent, because the prediction, transform and quantization
towards different modes of the same PU can be pipelined,
or even be paralleled. But since mode decision can be made
based on coefficients, these modules could still be reused as
shown in Figs. 17-18. Detailed discussions will be given in
Sect. 4.4.

2.4 Application Context and Main Contributions

The application contexts of this design include

i. reconstruction only
ii. TU partition decision

iii. PU partition decision
iv. PU partition decision + PU mode decision

Contributions of this paper include

i. proposing a DCT/IDCT architecture, throughput of
which is 32 pixel/cycle independent of the TU/PU size
(except for 4×4 TUs)

ii. proposing an SRAM-based transpose memory to coop-
erate with the above throughput

iii. proposing a DCT/IDCT-reused, Q/IQ-reused architec-
ture based on the application context

iv. analyzing the practical scenarios to present an universal
formula to calculate cycle cost of such a reconstruction
loop with data dependency and communication cost
considered

v. proposing two architecture with different throughput
and hardware reuse rate: a basic one and a pipelined
one

vi. proposing a dedicated data path for 4×4 TUs to provide
a throughput of “32+” pixel/cycle based on the above
formula

3. Detailed Implementation

In this section, detailed implementations would be given in
the order of top-level architecture, 1-D DCT/IDCT, trans-
pose memory, Q/IQ and design integration.

3.1 Top-Level Architecture: The Basic Structure

This design is composed of three modules, 1-D DCT/IDCT,
transpose memory and Q/IQ, which is described in Fig. 4.
The basic structure could fulfill the same task as the one in
Fig. 1 by adding two more MUXes.
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Fig. 4 Brief architecture of the proposed reconstruction loop

MUX0 is used to select data source between Q/IQ and
inputs, which determines the current behavior of DCT/IDCT
and Q/IQ is forward or backward. MUX1 is used to select
data source between MUX0 and transpose memory, which
determines the current behavior of 1-D DCT/IDCT is a row
transformation or a column one. It may need to be clari-
fied that the DCT/IDCT in this design refers to MUX1, 1-D
DCT/IDCT and the transpose memory together.

3.2 1-D DCT/IDCT Design

To explain the detailed implementation of 1-D DCT/IDCT
design, some basic features of the DCT in HEVC standard
are analyzed here, which can be inferred from Eq. (1)∼(2).

AN = PN ×
[
AN/2 0

0 RN/2

]
× BN (1)

AT
N = BT

N ×
[
AT

N/2 0
0 RT

N/2

]
× PT

N (2)

where, AN denotes for the N×N transformation matrix, PN

and BN denote for the permutation matrix and butterfly op-
eration matrix as described in Eq. (3)∼(4).

PN (i, j) =

{
1 , i = 2 × j or i = ( j − N/2) × 2 + 1
0 , else

(3)

BN =

⎡⎢⎢⎢⎢⎢⎣ IN/2 ĨN/2

ĨN/2 −IN/2

⎤⎥⎥⎥⎥⎥⎦ (4)

where, IN/2 and ĨN/2 denote for the identity matrix and the
opposite diagonal identity matrix respectively. As to RN/2,
it is made up of the left-half part of the odd rows in AN,
while AT

N, RT
N, BT

N and PT
N denote for the transposed matrix

of AN, RN, BN and PN respectively. It is easy to find that
AN/2 is contained in AN after decomposition. By taking ad-
vantage of this, 1-D DCT can be implemented in a simple
way shown in Fig. 5. In this figure, modules marked with
BE 32, BE 16 and BE 8 play the role of butterfly operation
matrixes B32, B16 and B8, namely, BN in Eq. (1). Similarly,
AE 4, RE 4, RE 8 and RE 16, PE 8, PE 16 and PE 32 play
the role of AN/2, RN/2, PN part.

To complete the DCT transformation, modules marked

Fig. 5 Structure of 1-D DCT with a fixed-throughput of 32 pixel/cycle

Fig. 6 Structure of 1-D DCT/IDCT

with white color alone would be enough. Detailed structure
could also be referred from Zhu et al.’s paper [21].

In this paper, in order to keep a fixed throughput of 32
pixel/cycle independent of TU sizes, some extra modules
are added, which are marked with gray color.

To integrate 1-D IDCT, two possible solutions could
be adopted. One is to reuse all the AN, PN, BN and RN part,
the other is to reuse AN and RN part only. The former one
would lead to a more compact structure, however, too many
MUXes would be needed to rearrange the calculation order,
because BN is executed firstly in 1-D DCT process while PN

is executed firstly in 1-D IDCT process, which may lead to a
sticky timing problem. On the other hand, the latter solution
could not only avoid the potential timing issue but also save
almost the same hardware cost, considering most of the cost
is occupied by AN and RN. A simple schematic diagram for
such a structure is shown in Fig. 6.

BT
N and PT

N are designed in the same manner as BN and
PN described in Fig. 5. As to the reuse of AN/AT

N and RN/RT
N,

it utilized the feature of corresponding matrixes. For exam-
ple, values of matrixes R4 and RT

4 are listed in Eq. (5)∼(6).

R4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
18 50 75 89
−50 −89 −18 75
75 18 −89 50
−89 75 −50 18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

RT
4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
18 −50 75 −89
50 −89 18 75
75 −18 −89 −50
89 75 50 18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

The absolute value in the corresponding position is equal
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Fig. 7 (a) Design of the corresponding MCM. (b) Structure of R4/RT
4

and the only difference between R4 and RT
4 is just the sign.

It is natural to implement them by multi-constant multipliers
(MCM) which shares hardware resources between different
constant multipliers (CM). As shown in Fig. 7, one MCM
with four constant multiplier of 18, 50, 75 and 89 are de-
signed because any row or any column is always made up
of these four values. As to the sign, it is calculated later to
reduce more hardware cost. Equation (7) shows the trans-
forming result y of R4x and the transforming results yt of
RT

4 x. Here, x refers to a 4×1 column vector; x0, x1, x2 and
x3 denote for the zeroth, first, second and the third element
of vector x respectively; y0 . . . y3 and yt

0 . . . y
t
3 have similar

meanings.

y0 = + (+18x0 + 75x2) + (+50x1 + 89x3)
yt

0 = + (+18x0 + 75x2) − (+50x1 + 89x3)
y1 = − (+50x0 + 18x2) + (−89x1 + 75x3)
yt

1 = + (+50x0 + 18x2) + (−89x1 + 75x3)
y2 = + (+75x0 − 89x2) + (+18x1 + 50x3)
yt

2 = + (+75x0 − 89x2) − (+18x1 + 50x3)
y3 = − (+89x0 + 50x2) + (+75x1 + 18x3)
yt

3 = + (+89x0 + 50x2) + (+75x1 + 18x3)

(7)

Base on Eq. (7), R4/RT
4 can be unified into one simple struc-

ture as shown in Fig. 7 (b). It can be seen from the same
figure, reuse is achieved at a very low cost, which is the
same for R8/RT

8 and R16/RT
16.

Fig. 8 Shang et al.’s mapping method [14]

3.3 Transpose Memory

Not like the one under H.264 standard, the maximum size
of the transformation block in HEVC is as large as 32×32,
which is too costly to be stored with registers. But, simply
storing the intermediate data with SRAMs in a normal way
would lead to an unbearably low throughput because of the
read and write features of SRAMs.

As mentioned, an SRAM-based high-throughput so-
lution is already proposed by Shang et al. [14]. However,
when it deals with TUs of other sizes, Shang’s mapping
method would lead to access conflicts. An example of
16×16 TUs is shown in Fig. 8, which uses the horizontal
and vertical position to number the pixels, for example, the
pixel positioned in row 2 column 5 is marked with 2-5. Col-
umn access is marked with lighter gray, while row access
is marked with darker gray. Thus, it is obvious to see that
both write and read towards 2 lines of a 16×16 TU would
cause conflicts, like pixel 1-0 and 0-1 when a column ac-
cess is launched towards column 0 and 1, or pixel 1-2 and
0-3 when a row access is launched towards row 0 and 1.
In another word, this mapping method could not provide a
throughput of 32 pixel/cycle when it deals with 16×16 (or
other smaller) TUs.

To fully utilize the throughput, a new mapping method
is proposed in this paper. Similar to Shang et al.’s method,
this method still uses 32 banks, but it could provide a
throughput of 32 pixel/cycle for all PU sizes.

To fulfill this target, pixels need to be divided into dif-
ferent groups depending on the TU sizes. To be more spe-
cific, when it deals with 32×32 TUs, the proposed method
regards pixels in a 1×1 square as one group. When it deals
with 16×16 TUs, the proposed method regards pixels in a
2×2 square as one group, for example, pixel 0-0, 0-1, 1-0
and 1-1 would belong to one group in this case. When it
deals with 8×8 TUs, it regards pixels in a 4×4 square as one
group in a similar way. In a mathematical description, the
group of pixel i-j is determined by �j/(32/N)� and �i/(32/N)�,
where N still denotes the TU size. Groups with the same
�i/(32/N)� or the same �j/(32/N)� value would belong to the
same access, thus they must be arranged in different banks to
avoid access conflicts. One of the feasible mapping method
is given here. Groups with the same �j/(32/N)� are arranged
to the same address, and each group occupies (32/N)2 con-
tinuous banks with an offset of((⌊

i/

(
32
N

)⌋
+

⌊
j/

(
32
N

)⌋)
%

(
N2

32

))
×

(
32
N

)2
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Fig. 9 Proposed mapping method for 16×16 TUs

Fig. 10 Proposed mapping method for 8×8 TUs

In this way, both the groups with the same �i/(32/N)� value
and the groups with the same �j/(32/N)� value would be al-
located to different banks in a similar way like Shang’s map-
ping method.

As to the pixels in each group, they are arranged from
the offset given above according to(

i%

(
32
N

))
×

(
32
N

)
+

(
j%

(
32
N

))

In this way, all the (32/N)2 pixels in one group can be easily
mapped to the (32/N)2 continuous banks without conflicts.
Based the above derivation, the mathematic relationship be-
tween the pixel position and the mapping position is con-
cluded by Eq. (8), where, Addri, j and Banki, j denotes for the
address and bank to access pixel i-j.

Addri, j =

⌊
j/

(
32
N

)⌋

Banki, j =

((⌊
i/

(
32
N

)⌋
+

⌊
j/

(
32
N

)⌋)
%

(
N2

32

))
×

(
32
N

)2

+

(
i%

(
32
N

))
×

(
32
N

)
+

(
j%

(
32
N

))
(8)

The corresponding mapping for 16×16 TUs is illustrated
with Fig. 9. Taking pixel 14-5 in a 16×16 TU as an ex-
ample, Addri, j should equal to 2 (= floor(5/(32/16))), and
Banki, j would equal to 5 (= (7 + 2)%8 × 4 + 0 × 2 + 1 × 1).

The corresponding mapping for 8×8 TUs is illustrated
with Fig. 10. Taking pixel 6-4 in a 8×8 TU, Addri, j should
equal to 1 (= floor(4/(32/8))), and Banki, j would equal to
8 (= (1 + 1)%2 × 16 + 2 × 4 + 0 × 1), The one of 32×32
TUs are not illustrated here, because for 32×32 TUs, the
proposed mapping method is in fact identical with Shang
et al.’s [14]. Or more precisely, Shang et al.’s mapping way
can be considered as a special circumstances of the proposed
method.

3.4 Q and IQ Design

Either Q or IQ could be concluded into the same equation as
expressed by Eq. (9), which makes the reuse quite easy.

Qout = (Qin × Qcoe + Offset) � Shift (9)

For quantization,

Fig. 11 Simplified structure of Q/IQ with a bandwidth of 32 pixel/cycle

Qcoe = F (QP%6)

offset = 171 � (12 + QP/6 −M− (B − 8)) (10)

Shift = 21 + QP/6 −M − (B − 8)

For de-quantization,

Qcoe = G(QP%6) � (QP/6)

Offset = 1 � (M − 2 + (B − 8)) (11)

Shift = 1 � (M − 1 + (B − 8))

where, Qin and Qout denote the input and output data of
Q/IQ; Qcoe denotes for the quantization or de-quantization
coefficient, which is generated by look-up table F and G;
Offset denotes for the compensation part; M equals to
log 2(N); N refers to the TU size; B refers to the internal
bit depth. The detailed mapping relation of table F and
G can be referred from HEVC standard, so they are not
listed here. Besides, the final truncation process towards
de-quantization results is excluded from Eq. (9) as well.

For the same TU, these parameters are shared, namely,
Qcoe, Offset and Shift. A module called parameter calcu-
lation unit (PCU) is designed to generate these parameters
as shown in Fig. 11, where signal inv ctrl is used to deter-
mine whether the current behavior is quantization or de-
quantization. With this reused PCU, a unified module called
data calculation units (DCU) is designed to calculate Qout

from these parameter and Qin. In another word, it plays the
role of Eq. (9). This reduction is considerable, noticing 64
DCUs would be needed, if Q and IQ were not reused.

4. Integration Considerations

As mentioned above, the proposed design not only focuses
on the inner structure of the sub-modules but also pays close
attention to the interaction between them and, most impor-
tantly, the practical scenarios to use them.

4.1 Interaction between Modules and Data Mapping

For interaction part, problems about data exchange are
mainly discussed here.

In this paper, problems about data exchange are divided
to two different types. One type is data exchange inside
the proposed design, namely, the interaction between 1-D
DCT/IDCT and Q/IQ. The other type is data exchanges out-
side the proposed design, namely, the interaction between
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the proposed design and other modules.
The former one is solved by the mapping method intro-

duced in Sect. 3.3, otherwise the throughput will be reduced
with TU sizes.

The latter one is also solved by a different mapping
method proposed by us [15], otherwise the throughput will
be dragged by the data exchange outside the proposed de-
sign.

Besides, an easily-neglected conflict should be men-
tioned here, which occurs between Q and IQ. In traditional
way, Q and IQ are separate from each other, which means
once the quantized coefficient is figured out, they could be
immediately sent to IQ. However, in the proposed structure,
Q and IQ are reused, thus Q/IQ module is still executing
quantization and will not be able to do de-quantization at
the same time. Due to this reason, these coefficients needs
to be buffered like the intermediate data in DCT/IDCT. For-
tunately, these coefficients are needed by CABAC, so they
are already buffered.

4.2 Practical Scenarios

For practical scenarios, problems about pipeline stages are
mainly discussed here.

Pipeline stages directly influence two key parameters,
the cycle cost and the maximum frequency, which, however,
are conflicted with each other. If the cycle cost is fewer,
then more cycle margin would be left for other modules,
but the maximum frequency will drop, which may decrease
the cycle margin in return. Advanced HEVC designs usu-
ally achieve a relatively high maximum frequency, like Liu
et al.’s [16], Jayakrishnan et al.’s [17], Zhou et al.’s [18] and
other related works. Then, as a part of encoder, reconstruc-
tion loop naturally works under the same frequency with
other modules. To better reach the balance between cycle
cost and working frequency, the relationship of cycle cost
and pipeline stages is calculated and given here. Where LX

denotes for the cycle cost between the first input and the first
output of module X; module X can be 1-D

Fig. 12 Space-time diagram to process one TU/PU (PU modes decided)

Fig. 13 Cycle cost without parallel process (solution A)

L1D IDCT = L1D DCT

LIQ = LQ

LT M = LCM = N2/T − 1
C = L1D DCT + LTM + L1D DCT + LQ + LCM + LIQ

+ L1D IDCT + LTM + L1D IDCT + N2/T − 1
= 4 × L1D DCT + 2 × LQ + 4 × N2/T − 4

(12)

DCT/IDCT, Q/IQ, transpose memory (TM) and coefficient
memory (CM); C denotes for the total cycle cost for the re-
construction loop to process one TU/PU; N denotes for the
TU/PU size; T denotes for the throughput. The correspond-
ing space-time diagram is given in Fig. 12.

For PU partition decision, two assumptions are an-
nounced here.

i. PU mode decision is already done.
ii. 64×64 PUs are not considered (For 64×64 PU, the dia-

gram is different from others because the largest TU
size is only 32×32. As suggested by Pastuszak et.
al. [28], 64×64 PU is not discussed in this paper as
well.

In this way, situation is almost the same for PU partition
decision and TU partition decision.

4.3 TU/PU Partition Decision and Parallel Process

According to Eq. (12), the corresponding cycle cost to do
TU/PU partition decision is illustrated in Fig. 13 and listed
in Table 1. Attention should be paid on the fact that most
of the cycle is spent on the traverse towards 4×4 TU/PUs,
for example, 5120 in 8000 for Solution A or 6144 in 9360
for solution A’. However, the hardware cost of a 4×4 2-D
DCT/IDCT occupies just a small proportion in the overall
cost.

Based on the above analysis, an individual channel for
4×4 TU/PUs is adopted. In another word, it parallels the
process to 4×4 TU/PUs with other TU/PUs. This trick is
feasible because there is no data dependency between the
current 4×4 TU/PU and the bigger TU/PUs it belongs to.
Thus, the reconstruction process can be rearranged like the
one shown in Fig. 14. The corresponding cycle cost is also
listed in Table 1, which achieves a speedup of 29%. How-
ever, it is obvious to see that there are so many pipeline bub-
bles during the traverse process, which makes the hardware
utilization ratio not satisfying.

The reason why this solution has a low utilization ra-
tio can be inferred from Eq. (12). According to Eq. (12),
for larger TU/PUs, most of the cycle cost is occupied by
4 × N2/T, which is determined by the TU/PU size and
throughput, while for smaller TU/PUs, 4× L1D DCT + 2× LQ
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Fig. 14 Cycle cost with parallel process before optimization (solution B)

Fig. 15 Cycle cost with parallel process after optimization (solution C)

Table 1 Cycle cost in reconstruction loop

is dominant, which is determined by pipeline stages. As
a result, the cycle costs to process one 4×4 TU/PU and
one 8×8 TU/PU is almost the same. However, the calcu-
lation complexity of 4×4 transform is far low than the other
transforms, which makes a pipeline stage of 4 or 5 unneces-
sary. In order to balance the cycle cost, the dedicated data
path for 4×4 TUs is redesigned to the one shown in Fig. 16,
where the dotted line indicates the pipeline stages. In other
words, L1D DCT and LQ are reduced to 1 cycle according

Fig. 16 Redesigned dedicated 4×4 TU/PU data path

to the calculation complexity. The cycle cost diagram is
shown in Fig. 15, which achieves a speedup of about 65%
as listed in Table 1. Several points may need to be discussed
here. Firstly, DST is also integrated in this data path. Sec-
ondly, these modules are also highly reused, thus only one
1-D DCT/IDCT/DST/IDST and one Q/IQ module is used.
Thirdly, it is no use integrating transpose memory because
all of the data needed is generated in one cycle and can be
directly sent to the next stage.

4.4 PU Mode Decision and the Pipelined Structure

If PU modes are considered, the space-time diagram in
Fig. 12 would change into the one shown in Fig. 17, where,
TM and CM can be omitted, because they do not occupy ex-
tra cycles thanks to the mapping method given in Sect. 3.3;
PRED denotes for prediction module; MD denotes for mode
decision module; Nmd denotes for the amount of candidate
modes. The corresponding cycle cost formula is given in
Fig. 17 as well, according to which, 5 modes can be sup-
ported @ 398MHz as listed in Table 2 solution D.

To support more prediction modes, a pipelined struc-
ture is proposed here, which takes advantages of the fact
that no data dependency exists when PRED does predictions
to the same PU with different PU modes. In this structure,
one extra 1-D DCT and transpose memory module is added
to realize the pipeline. The corresponding space-time dia-
gram and cycle cost formula are given in Fig. 18, according
to which, 13 modes could be supported @ 409MHz as listed
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Fig. 17 Space-time diagram to process one PU (PU candidate modes considered) (solution D)

Fig. 18 Space-time diagram to process one PU (the second structure) (PU candidate modes consid-
ered) (solution E)

Table 2 Cycle cost in reconstruction loop

in Table 2 solution E.
It is obvious to see that the 4×4 data path for solution E

is not well balanced because 21×4=84, which is far bigger
than 63. However, because of the low calculation complex-
ity of 4×4 transforms, 1-D row DCT, 1-D column DCT and
Q could be put into one pipeline stage, which is the same for
IQ, 1-D row IDCT and 1-D column IDCT. If the cycle cost
is still not balanced, an extra dedicated 4×4 data path could
be added to help the balance. The cycle cost of a balanced

Table 3 Synthesis results of the proposed reconstruction loop

solution is listed in Table 2 solution F, according to which,
16 modes can be supported @ 401MHz.

For solution D-F, both LPRED and LMD are assumed to
be 1 cycle for 4×4 PUs and 5 cycles for other PUs.

5. Comparison

This design is verified on the Stratix IV FPGA, results of
which are listed in Table 3.

Both DCT/IDCT, Q/IQ engines with reuse and engines
without reuse are implemented to get the corresponding
maximum frequency and ALUTs.

Basic structure (Sol.D) occupies 64K ALUTs @
150MHz, containing a reused DCT/IDCT, a reused Q/IQ, a
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transpose memory, a dedicated 4×4 PU path and some glue
logics, while the pipelined structure (Sol.F) occupies 97K
ALUTs @ 154MHz, containing an extra 1-D row DCT and
transpose memory.

5.1 Comparisons in Data Buffering

As mentioned previously, most papers only focus on their
designs alone and rarely pay attention to the data exchange
between modules, thus the high-throughput feature of their
designs may be easily dragged by the data exchange. Based
on the above situation, this paper proposed an SRAM-based
data mapping method to buffer the intermediate data inside
DCT or IDCT. Combined with our previously-proposed data
mapping method to buffer the data around DCT/IDCT [15],
this solution can provide a throughput of 32 pixel/cycle
based on just several SRAMs. On the contrary, although
Meher et al.’s design [9] has the same throughput, it is im-
plemented by registers which would occupy too much area;
while other designs [10]–[14] could not provide the same
throughput, though their designs are based on SRAMs too.
It should be pointed out that it is not totally negative for
register-based designs. According to Zhu et al.’s work [21],
a register-based design with clock gating technique can save
more power. However, clock gating in such a low granular-
ity may be disfavored by FPGA designs because the clock

Table 4 Comparisons in data buffering

Table 5 Comparisons in DCT/IDCT

resources are relatively precious.

5.2 Comparisons in DCT/IDCT

Several papers have proposed brilliant DCT/IDCT designs
as listed in Table 5. Since the proposed design is im-
plemented on FPGA, comparison would be made between
FPGA designs.

Conceicao et al. [5] realized a 2-D IDCT design,
throughput of which is 32 pixels per cycle, however only
size 32×32 is supported. A maximum frequency of
43.62MHz is also too low, which, of course, would lead to a
low cost. In a similar way, Jeske et al.’s [6] and Martuza et
al.’s [20] designs only support size 16×16 or size 8×8.

Darji et al.’s [26] design supports all TU sizes, but
they are not integrated together. Most importantly, for size
32×32, the maximum frequency of this design is 23.73MHz
only.

Arayacheeppreecha et al.’s [27] design integrates all
TU sizes, but a throughput of 8 pixel/cycle is not satisfying
as well.

Kalali et al.’s [23] design has a higher maximum fre-
quency and throughput, as a result of which, it consumes
34K (LUTs).

Finally, the proposed DCT/IDCT part in the proposed
design occupies 48K ALUTs, but it could support both 1-D
DCT and 1-D IDCT, all TU sizes, a throughput of 32 pixels/
cycle and a maximum frequency of 161.2MHz using the
same Stratix IV technology with Conceicao et al.’s [5].

Hardware cost of the reused part in DCT modules is
listed in Table 6, including module AE 4, RE 4, RE 8 and
RE 16 as mentioned in Sect. 3.2. It can be seen from this
table that the hardware cost of 4×4 TU/PU data path is very
low.

6. Conclusion

In HEVC encoder, the reconstruction loop in intra encoding
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Table 6 ALUTs cost of reused part in DCT modules

is heavily burdened to choose the best partitions or modes
for them. In order to solve the bottleneck problems in cy-
cle and hardware cost, this paper not only focuses on the
module itself but also pays close attention to the interaction
between them as well as the practical scenarios to use them.
Based on the above studies, a high-throughput and compact
implementation is proposed for application contexts includ-
ing reconstruction only; TU partition decision; PU partition
decision; PU partition decision + PU mode decision. Sev-
eral contributions at module, interaction and system level
are made to achieve the throughput of “32+” pixel/cycle and
a satisfying hardware cost. This design is verified on the
Stratix IV FPGA. The basic structure achieved a maximum
frequency of 150MHz and a hardware cost of 64K ALUTs,
which could support the real time TU/PU partition decision
for 4K×2K@20fps videos.
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