
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Content Adaptive Tiling Method Based on User
Access Preference for Streaming Panoramic Video

Zhengzhong Tu
State Key Lab of ASIC and

System
Fudan University
Shanghai, China

16210720199@fudan.edu.cn

Tongyu Zong
State Key Lab of ASIC and

System
Fudan University
Shanghai, China

16210720212@fudan.edu.cn

Xueliang Xi
China North Industries Group

Corporation
Beijing, China

xlxi_cnigc@163.com

Li Ai
China North Industries Group

Corporation
Beijing, China

liai_cnigc@163.com

Yize Jin
State Key Lab of ASIC and

System
Fudan University
Shanghai, China

14210720072@fudan.edu.cn

Xiaoyang Zeng
State Key Lab of ASIC and

System
Fudan University
Shanghai, China

xyzeng@fudan.edu.cn

Yibo Fan
State Key Lab of ASIC and

System
Fudan University
Shanghai, China

fanyibo@fudan.edu.cn

Abstract—Tiled streaming has been proposed for delivering
ultra-high resolution videos such as zoomable online lectures or
panoramas. In tiled streaming, the source video is first partitioned
into grid of small rectangular tile groups. Each tile group is
independently encoded and compressed. When an user asks for a
certain viewport at a time, the server only streams the viewed tiles
to save up bandwidth. However, not much work has been done on
finding the best tiling method for streaming panoramic video. This
paper proposes an effective tiling algorithm for tiled streaming by
using both video content and user access preference history.
Experimental results show that the proposed tiling method can
save up to 32.4% and 69.8% of average streamed bitrate
compared to conventional uniform tiling scheme and simply
streaming the entire panorama respectively on equi-rectangular
panoramic video.

Keywords—Tiled streaming; panoramic video; tiling; streaming

I. INTRODUCTION

Recently, an increasing interest in study on Virtual Reality
(VR) has emerged since many VR applications and techniques
have been prevalent all over the world both in academia and
industry. Virtual Reality (VR) involves a large range of fields
including computer vision, computer graphics, video encoding,
video streaming, human-machine interaction and so on.
Generally, an interactive VR streaming system often contains
the following four parts: Video capturing, Projective encoding,
Interactive streaming and Stereo rendering.

This paper focuses on the streaming aspect of an interactive
panoramic streaming system. Actually, some advanced online
social multimedia service providers such as YouTube [1] and
Facebook [2] are currently supporting VR video streaming for
VR headsets. The main character of streaming VR video is the
user only asks for some part of the whole video to display on
screen at a time. Therefore, tiled streaming is introduced [5] to
save the bandwidth for streaming ultra-high resolution video

such as panoramas. As shown in Fig. 1, the source video is firstly
divided into grid of video segments such as 32 tiles (4 8).
Given the user’s required viewport, the server delivers streams
overlapped with the user’s viewable region. The client side then
retrieves partial view with the received bit stream.

However, there is a trade-off in tiled streaming. The streams
delivered usually cannot exactly cover a certain viewport, so
redundant data outside the viewport exists. Streaming these
redundant parts definitely cause a large waste of bandwidth. If
the video is partitioned into smaller tiles, less redundancy can be
achieved whereas the compression efficiency drops. On the
contrary, larger tile size results in better compression efficiency
but more redundant data.

source
panorama

encoded
tiles

network

viewport

received
tiles

retrieved
viewport

Client-sideServer-side

viewport

redundant data

Fig. 1. Tiled streaming in an interactive VR streaming system.

Not much work has been done on optimizing streaming
panoramic videos. However, there already existed some works
studying on issues about delivering online pan-tilt-zoom (PTZ)
video lectures. Some works utilize the concept of region-of-
interest (ROI) which denotes the user access frequency to the
video [3], [4]. In [3], Ngo et al. proposed two methods
supporting zoomable video streaming called tiled streaming and
monolithic streaming respectively. Their later work [4]
exploited user access patterns and encode different regions of
the video with different encoding parameters based on the

This work was supported in part by the National Natural Science Foundation
of China under Grant 61674041, in part by the STCSM under Grant
16XD1400300, in part by the State Key Lab of ASIC & System under Grant
2015MS006.

popularity of the region. They show that their adaptive tiling
method can reduce the expected bandwidth by up to 27%.

 As for panoramic videos, article [5] addressed different tiling
method in a real-time interactive panoramic video system based
on different predictive models of movement of users’ viewport.
As for optimizing on tile size, [7] proposed a method to find the
most efficient tile size for cylinder panoramic video coding
subject to the target bandwidth. Yu et al. [11] proposed a content
adaptive tiling method for cinematic virtual reality. Experiments
showed average bitrate savings of over 18% relative to the
baseline equal-area representation on an image dataset. But Yu’s
tiling method is not good enough to be used in tiled streaming
because they only considered tiling in latitude. Zare et al. [6]
proposed to store two versions of the same video content at
different resolutions in order to solve the latency problem. The
results indicated bitrate saving from 30% to 40% when
compared to streaming the entire video content.

 This paper points at how to find the best tiling method to
reduce the streamed bitrate. In this paper, we propose a new
tiling method for tiled streaming using both video content and
user access preference. Experiments show that our scheme can
save up to 32.4% of the average bitrate compared to uniform
tiling method on equi-rectangular videos. To begin with, we
would like to present the tiling problem to be solved in this paper
in the following section.

 The rest of this paper is organized as follows. Section II
addresses the tiling problem we would like to solve in this paper.
Section III presents the proposed tiling algorithm. Experimental
results are shown in section V and finally the conclusion is given
in section VI.

II. TILING PROBLEM

 In this section, we will formulate the tiling problem studied
in this paper as well as some background knowledge and
notations related to the problem.

 Suppose a web-based panoramic video delivering system
providing video-on-demand (VoD) service for large quantities
of users. Given a panoramic source video, e.g. one in equi-
rectangular format, we recorded all the user historical viewpoint
(center of a user’s view) access frequency for every frame. Then
we got frame-level user viewpoint access distribution which was
called access probability map.

 Consider the simplest case, for example, one frame instead
of a video. We denote the frame we are interested in tiling as �.
The probability map � has been obtained previously according
to the overall historical access records of all the users. A tile map
� of � consists of a set of non-overlapping rectangles, called tiles
��, ��, … �� . Each tile �� is contained in � and all the tiles
collectively cover exactly �. The probability of every viewpoint
�� or the view window of viewpoint �� in probability map � can
be directly calculated through function �(��) with the
probability map �. A set of tiles in tile map � overlapped with
the field-of-view (FOV), i.e. view-window/viewport, of
viewpoint �� will be streamed when a user chooses viewpoint ��.
The cost function �(�) is assigned to get the bitrate of a tile.
Streamed bitrate to user � who chooses viewpoint �� can be
computed by adding the bitrate of all the overlapped tiles.

Assume an ideal case that the client chooses some viewport and
instantly receives the overlapped tiles to retrieve the viewport.
So for every viewpoint in the probability map, we can compute
the total bitrate of required tiles as streamed bitrate. The tiling
problem is to minimize the average streamed bitrate of all the
possible viewpoints in probability map �, i. e. to minimize:

� ��(��) � �(��)

���(��)∩���∅

�

����

 (1)

It can be easily proofed that this expression is equivalent to :

� ��(��) � �(��)

���(��)∩���∅

�

����

 Where �� denotes each tile contained in the tile map �, and
�(��) indicates its bitrate. ∑ �(��)���(��)∩���∅ adds the
probability of all the viewpoints whose view window overlaps
with tile �� to calculate the access probability of a tile ��
according to viewpoint access probability map �.

Adaptive tiling is proposed by Ngo et al. [4] to solve the
similar kind of problem but for zoomable online video lectures.
They used a greedy heuristic to find a tile map to reduce the
expected bandwidth. However, their method has several
drawbacks. Firstly, they subjectively chose a traversing order
(from top-left to bottom-right) to conduct their merging method,
which is improper since the user’s viewpoints tend to cluster
around the central area of access probability map but exist
sparsely near the edges of the map. Secondly, their merging
method basically considered the cases of merging with right,
bottom and diagonal neighbors. The one-sided growing
direction cannot generate the optimal growing case of a tile.
Furthermore, it is somewhat impractical to encode such small
tiles on the fly by existing commercial encoders to obtain the
bitrate of a tile. If they used an encoder that can truly encode a
tile on the fly, the runtime of their algorithm was intolerably long.

III. PROPOSED TILING METHOD

 In order to get a more optimized solution, this paper proposes
a new tiling method. We start with breaking the tile map into
uniform tiles as small as possible and conduct a Bottom-Up
growing procedure. The key idea of this algorithm is that the
optimal growing case is always allowed to grow prior. To get
the global optimum, the optimal growing case of each tile is
defined by merging the tile with its omnidirectional neighbors.
In order to enhance the processing efficiency of the program, we
propose a function to estimate the bitrate of a tile. In order to
elaborate the proposed tiling scheme more concretely, this
section is divided into subsections A, B, C and D. Subsection A
illustrates the bitrate-estimating function and B explains the
probability-calculating function. Section C explains the nearest
growing method of one tile. Finally, subsection D presents the
whole tiling algorithm based on A, B and C.

A. Bitrate-estimating function

 The proposed tiling method requires calculating the bitrate
of various blocks of different size contained in the source frame.

We regard the blocks as intra-frame and use intra-frame
encoding by HEVC Test Model (HM) to get the real bitrate of
the blocks. Inspired by [8], the average gradient of a block is
used to measure its complexity. We consider the relationship
among bitrate and (block-size & block-complexity) as:

�(�) = �(��)�(��) (2)

Where � is the function between bitrate and image area (��),
and � denotes the relationship between bitrate and image
complexity (��) which is measured by gradient. Large quantities
of experiments were carried to fit the function � and � by
decoupling fitting method. That is, we first find the relationship
� and then utilize � to fit function �.

B. Probability-calculating function

 To get the viewed probability of tile �, we use a probability
function �(�) to compute the access probability. With the user
viewpoint probability map, access probability of tile � can be
obtained by computing the sum of viewpoint probability whose
view-window/field-of-view (���) overlaps with tile � . Note
that if the probability map is in equi-rectangular format, the
viewpoint should be projected on a sphere first and then the
field-of-view (���) of the viewpoint is back-projected to planar
��� to judge if it overlaps with tile � . Fig. 2 shows the
projecting as well as the back-projecting procedure. By adding
all probabilities of viewpoint �� whose ��� overlaps with tile
�, the viewed probability of tile � is acquired.

Y
O

Z

X

O’

D

A

B

C

O’

FOV

O’
A’ B’

C’D’

Y
O

Z

X

O’

D

A

B

C

O’

FOV

O’

A’

B’

C’

D’

back-projected FOV

A’
B’

C’
D’

A’ B’ C’ D’

viewpoint

viewpoint

back-project FOV

tile

tile

Probability Map

Probability Map

Fig. 2. Definition of Viewport/FOV/view window of viewpoint in equi-
rectangular map

 The top diagram in Fig. 2 presents a non-overlapping case
while the bottom shows an overlapping case. It should be noted
that ���� tangential to the sphere at points of different location
could have disparate shapes of back-projected area in equi-
rectangular map, which is obviously shown in Fig. 2. This
projecting procedure is also adaptive to cube-map [11] if the
probability-calculating function �(�) is substituted with new
one.

C. Nearest growing choice

 The nearest growing neighbors should be defined first to
illustrate the growing method. Given a tile �������� , we

designate its feature coordinate as {����, ����, ����, ����} .
According to the above defined coordinates, we can find all the
possible growing neighbors of tile ��������. Given any other tile
������ with its analogously defined feature coordinate {����

� ,
����

� , ����
� , ����

� }, if the coordinates of the above mentioned
two tiles satisfy any one of the following four restrictions, ������
is said to belong to nearest growing neighbors of ��������:

���� − � ≤ ����
� ≤ ���� + �

���� − � ≤ ����
� ≤ ���� + �

���� − � ≤ ����
� ≤ ���� + �

���� − � ≤ ����
� ≤ ���� + �

 (3)

 Where d denotes the width of nearest neighboring area. Fig.
3(a) shows the definition of {����, ����, ����, ����} and �.
The gray area represents neighboring area of �������� .
Intuitively, if ������ overlaps with neighboring area of ��������,
������ is said to be one of nearest growing neighbors of ��������.
Fig. 3(b) shows the neighboring and non-neighboring examples
of ��������. �� and �� are members of nearest growing neighbors
of ��������, whereas �� is not. If ��������� belongs to neighbors
of �������� , ��������� as well as �������� is able to constitute a
big merged tile ������� . The potential merged tile ������� ’s
feature coordinate {����

�� , ����
�� , ����

�� , ����
�� } can be computed

by coordinates of ������ and �������� as shown in expression (4).

⎩
⎨

⎧
����

�� = min{����, ����
� }

����
�� = max {����, ����

� }

 ����
�� = min{����, ����

� }

����
�� = ��� {����, ����

� }

 (4)

current
tile

x_max

x_min

y_min y_maxd

d
neighboring

area

tile map

(a) Definition of neighboring area of current tile

current
tile

x_max

x_min

y_min y_maxd

d

tile map

t1

t2 t3

(b) Examples of neighboring and non-neighboring tiles of current tile. �� and
�� are neighboring tiles, while �� is not.

Fig. 3. Definition and relationship of neighboring tiles

We use function �(�) and �(�) introduced in section A and
B respectively to compute the bitrate and probability of tile
��������, ��������� and �������. Then the product of bitrate and
probability of a tile is calculated as its expected bandwidth. After
finding out all nearest neighbors of ��������, we can compute the
Normalized Growing Speed (NGS) of each ��������� by the
following formula:

 ��� =
�∑ �(��)∙�(��)��∈�������

�����������∙�����������

�������������
 (5)

Where �� ∈ ������� denotes any tile that is totally contained
in �������. After seeking out all the growing cases, we choose
the case of largest NGS as the optimal one-step nearest growing
choice of tile ��������. If the largest NGS of �������� is negative,
this kind of case is abandoned.

D. Proposed tile-growing method

Based on the above explanations and notations, we are now
to present the proposed tiling algorithm. The pseudocode of the
proposed method is shown in Fig. 4. We begin with a tile map
divided uniformly into grid of small tiles such as 10 20 tiles.
In the first loop, each of the 200 tiles will be traversed to find the
optimal growing choice of each tile. Then the NGS of every tile
is compared to find the global optimal NGS as the consequential
growing choice of the first solution, according to which we
update the whole tile map. Afterwards, the big merged tile as
well as other unmerged tiles is again traversed. The globally
largest NGS is once again selected as the second growing
solution. This iterative process will continue until no more
possible growing cases can be found. The resulting tile map
acquired is the optimized tile partition method for this sequence.
This step-by-step growing algorithm guarantee that more
optimized merging situations will always have priority to
emerge than less optimized ones, which will result in a solution
tile map closed to the optimal.

Algorithm: Proposed Tile-Growing Method

1. Input: probability map P and image frame I
2. Initialize tile map T with m n tiles
3. Do
4. Find all tiles including grown tiles in tile map T
5. For every tile �� do
6. Find all the nearest growing neighbors of tile ��
7. Calculating NGS of each neighbor by Eq. (5)
8. Find the largest NGS as the best growing case
9. Judge if the largest NGS is positive
10. End for

11.
Compare NGS of all the tiles in tile map T and
select the largest NGS globally to update the tile
map T

12. Until: tile map T remains unchanged
13. Output: resulting tile map T

Fig. 4. The pseudocode of proposed tiling algorithm.

IV. EXPERIMENTAL RESULTS

A. Experimental environment

The proposed tiling algorithm was estimated using 6 high
resolution 4K images from SUN360 database [9]. The 6
sequences used in our experiments in 3840x1920 equi-
rectangular format are respectively called Building, GoldenHall,
RollerCoaster, SnowField, Street, Indoors as shown in Fig. 8(a).
We recorded over 100 users’ viewpoint access distribution of
each sequence and generated 6 different viewpoint access
probability maps. Fig. 5 shows one example of the probability
map. We conducted the proposed algorithm on the sequences
accompanied with probability maps using MATLAB R2015b.
The tile maps were initialized into 10x20 evenly divided tiles
and then processed by the proposed tile-growing method.

L
at

it
u

d
e

in
 d

eg
re

es

-180 +1800

-90

0

+90

Longitude in degrees

Fig. 5. The access probability map of RollerCoaster

B. Resulting tile maps

 The resulting tile map are presented in Fig. 8(b). There are
some observations from the tile maps that should be noted here.
First, more popular regions tend to merge into bigger tiles, while
less popular fields usually remain unchanged. Secondly, The
frame content also influences tiled growing. Regions with
convoluted textures are usually hard to form large tiles because
that area is often not encoding-friendly. On the contrary, tiles
with low image activity are more likely to merge with their
neighbors.

C. Average streamed bitrate

 In section IV(A), we utilize a bitrate-estimating function Eq.
(2) for consideration of practical and run-time aspects. But
actually, the accuracy of the function does not have any effect
on estimating the performance of the proposed tiling method.
Therefore, we can assume the proposed bitrate-estimating
function is accurate and then assess the streamed bitrate using
the same function. Since the goal of this paper is to minimize the
expression shown in Eq. (1), the metric adopted for estimating
tile maps can be directly computing the average streamed bitrate
of a tile map by Eq. (1). Fig. 6 compares the proposed tiling
method with adaptive tiling [4] and naive 10x20 tiling. Fig. 7
compares the proposed tiling method with Yu’s [11] as well as
streaming the entire video. Only the resampling method in [11]
is adopted here for simplicity. Yu’s tiling only considered tiling
at vertical direction, so it did not improve much compared to
equi-rectangular map in terms of tiling streaming. Experimental
results show that the proposed tiling method achieves: 1) up to
69.8% and average 66.2% streamed bitrate saving relative to
streaming the entire panorama; 2) up to 32.4% and average 16.5%

bitrate saving compared to 10x20 uniform tile map; 3) up to 17.4%
and average 8.5% bitrate saving compared to adaptive tiling [4].

V. CONCLUSION

 In this paper, we propose a content adaptive tiling algorithm
based on user view preference for server-client panoramic video
streaming systems. Experimental results show that the proposed
tiling method can save up to 32.4% and average 69.8% of
average streamed bitrate when compared to naïve uniform tiling
scheme and streaming the entire panorama respectively.

 Future work targets on optimization of bitrate-estimating
function for Group-of-Pictures and adaptive tiling method for
panoramic video streaming. The effects of omnidirectional
video on different formats are to be studied in further works.

REFERENCES

[1] YouTube. [Online]. Available: https://www.youtube.com

[2] Facebook. [Online]. Available: https://www.facebook.com

[3] K. Q. M. Ngo, R. Guntur, A. Carlier, and W. T. Ooi, “Supporting
zoomable video streams with dynamic region-of-interest cropping,” in
Proceedings of the first annual ACM conference on Multimedia systems.
ACM, 2010, pp. 259–270.

[4] K. Q. M. Ngo, R. Guntur, and W. T. Ooi, “Adaptive encoding of
zoomable video streams based on user access pattern,” in Proceedings of

the second annual ACM conference on Multimedia systems. ACM, 2011,
pp. 211–222.

[5] V. R. Gaddam, M. Riegler, R. Eg, C. Griwodz and P. Halvorsen, “Tiling
in Interactive Panoramic Video: Approaches and Evaluation,” in IEEE
Transactions on Multimedia, 2016, 18(9), pp. 1819-1831.

[6] A. Zare, A. Aminlou, M. Hannuksela, and M. Gabbouj, “HEVC-
compliant Tile-based Streaming of Panoramic Video for Virtual Reality
Applications,” In Proceedings of the 2016 ACM on Multimedia
Conference. ACM, 2016, October, pp. 601-605.

[7] F. Dai, Y. Shen, Y. Zhang, and S. Lin, “The most efficient tile size in tile-
based cylinder panoramic video coding and its selection under restriction
of bandwidth,” In International Conference on Multimedia and Expo.
IEEE, 2007, pp. 1355-1358.

[8] W. J. Kim, J. W. Yi, and S. D. Kim, “A bit allocation method based on
picture activity for still image coding,” In IEEE transactions on image
processing. IEEE, 1999, 8(7), pp. 974-977.

[9] J. X. Xiao, K. A. Ehinger, A. Oliva and A. Torralba, “Recognizing scene
viewpoint using panoramic place representation,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp.
2695-2702.

[10] K.-T. Ng, S.-C. Chan and H.-Y. Shum, “Data compression and
transmission aspects of panoramic videos”, in IEEE Transactions on
Circuits and Systems for Video Technology. IEEE, 2005, vol. 15, no. 1,
pp. 82-95.

[11] M. Yu, H. Lakshman and B. Girod, “Content adaptive representations of
omnidirectional videos for cinematic virtual reality,” in Proceedings of
the 3rd International Workshop on Immersive Media Experiences. ACM,
2015, pp. 1-6.

Fig. 7. Comparison of average streamed bitrate among: 1) Streaming entire
panorama; 2) Yu’s tiling method [11]; 3) The proposed tiling method.

Fig. 6. Comparison of average streamed bitrate among: 1) Uniformly divided
in 10x20 tiles; 2) Adaptive tiling in [4]; 3) The proposed tiling method.

Fig. 8. (a) Test sequences. Top row: Building, GoldenHall, RollerCoaster. Bottom row: SnowField, Street, Indoors.

Fig. 8. (b) Resulting tile maps. Top row: Building, GoldenHall, RollerCoaster. Bottom row: SnowField, Street, Indoors.

