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Abstract—Virtual Reality (VR) is on the rise nowadays. To 
save bandwidth and ensure high quality at the same time, it is 
recommended that only the tiles within field of view (FOV) of the 
user is transmitted in high quality while other tiles in low quality 
or even not transmitted. However, if a user’s viewpoint moves fast 
while watching a panoramic video, low-quality content will always 
appear in his or her FOV because of the round-trip time (RTT) 
delay during which the client sends its viewpoint information to 
the server then the server sends back corresponding streams. 
Therefore, prediction of users’ viewpoints is useful to reduce low-
quality area in the FOV. In this paper, we propose methods based 
on Laplace compensation and Sphere-Markov probability model 
to effectively increase high-quality area in the FOV while watching 
panoramic videos. And a strategy is also proposed that the former 
should be exploited over a low-RTT network while the latter over 
a high-RTT network. Quality value could be increased at most 
60.6% and 137% respectively by the two methods. 

Keywords—panoramic, Laplace compensation, Sphere-Markov 
probability, tile reordering, RTT 

I. INTRODUCTION 

Independent production of VR images and videos have 
increased due to the development of omnidirectional cameras, 
multi-surface projection, network transmission and many other 
kinds of technology [1]. Due to the prospect of VR, many of 
major players in computer industry introduced their own 
headsets such as Google Cardboard and Daydream, HTC VIVE, 
Sony PlayStation VR and Samsung GearVR [2]. Users can 
interactively change their viewpoints and dynamically view any 
part of the captured scene they desire [13]. 

However, transmitting the entire panoramic video over 
networks with limited bandwidth is challenging. Furthermore, 
due to the fact that there exists RTT [3] between the time a client 
starts to send its viewport information to the server and the time 
it receives the corresponding streams covering the FOV of that 

viewport, there may be a discrepancy between the receiving 
high-quality content and the actually needed content. Therefore, 
some low-quality contents may be seen within the FOV of the 
user. Consequently, predictive approaches should be exploited 
to ensure quality of experience (QoE). 

Traditionally, people predict users’ viewpoint after a fixed 
RTT using the model of constant angular velocity or 
acceleration under the assumption that position, velocity and 
acceleration could be perfectly obtained [4]. The method 
performs passably under low RTT delay, but QoE decreases 
sharply when RTT gets larger. 

In this paper, we first provide an effective method based on 
Laplace compensation to mainly improve QoE under low RTT 
delay, and then we also propose another way based on Sphere-
Markov probability aiming to keep a high QoE under high RTT 
delay. 

Specifically, we use spherical projection in this paper 
because it will be convenient for us to calculate predicted results 
if spherical projection instead of cubic projection is used. 
References [5] and [6] have introduced more kinds of projection 
which we will adopt in our future research. Furthermore, tiling 
method is adopted so that only the related tiles will be 
transmitted to the client by the server, which ensures low bit rate 
(BR) [7]. 

In section II, we briefly introduce our panoramic system 
adopting the tile-reordering method to reduce RTT to some 
degree. In section III, we explain the traditional method based 
on information about the user’s real-time viewpoint vector, 
angular velocity and angular acceleration. In section IV, we 
focus on the two predictive approaches proposed by us. One of 
them adopts Laplace compensation and another is based on  
Sphere-Markov probability model. In section V, we will show 
the results of our experiments and discuss them. In the last 
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section, we summarize the conclusions and our future work will 
be prospected. 

II. TILE REORDERING 

We tile the content into a regular grid to enable random 
access to regions of interest (ROI) [8]. In this way the server 
does not have to transmit the entire content, or it will waste too 
much bandwidth. 

The simplest system without reordering the tiles is described 
as below: first, two streams are encoded from the same sequence 
in constant bit rate (CBR) mode. They are of different quality 
levels: one of the streams is of high quality, which means its 
CBR is large, and another is of low quality. During the time 
when a user is watching the panoramic video, the client will 
continually send its viewpoint vector to the server. After half of 
the RTT, the server will receive the information and 
immediately transmit to the client high-quality streams of the 
tiles overlapped with the FOV and low-quality streams of tiles 
completely outside the FOV. Then after another half of the RTT, 
the client will receive the streams. It will decode them using Fast 
Forward mpeg (FFmpeg) and render these received streams 
using Open Graphics Library (OpenGL) and finally the user 
could see the content of the stream. Traditionally, HEVC Test 
Model (HM) could be used, which supports tile encoding mode, 
to encode a sequence. Fig. 1 shows an example of a frame 
consisted of 18 tiles. Suppose that red tiles are overlapped with 
the current FOV and should be transmitted in high quality. Then 
like Fig. 2 shows, the server will package each of the tiles into a 
Real-time Transport Protocol (RTP) packet then transmit them 
one by one in a constant order. The client could decode a frame 
only when it has received all of the tiles making up the whole 
frame, which definitely leads to a larger RTT delay. When 
relating to the accuracy of our prediction of the user’s 
viewpoints, even a- millisecond-shorter RTT could bring a more 
exact prediction, so we should reduce RTT as possible as we 
could to improve this system. 

 

Fig. 1. Example: a frame consisted of 6x3 tiles. Red tiles are overlapped with 
the current FOV and should be transmitted in high quality. 

 

Fig. 2. Server transmits the tiles in a constant order. Client could decode a 
frame only when it has received all of the tiles making up the whole frame, 
which leads to a larger RTT. 

Instead of encoding the whole sequence in tile-encoding 
mode, we treat each tile as a frame, which means we separate an 
original frame into a number of rectangles of the same size, and 
each rectangle is a frame to be encoded independently. For 

convenience, we still call the small rectangular frames “tiles”. 
So, the point is that the needed tiles could be first transmitted by 
the server, others subsequently, which is depicted by Fig. 3. In 
other words, we reorder the tiles. Then the client could 
immediately decode and render received tiles one by one. In this 
way, we reduce the transmitting delay. 

 

Fig. 3. Tile Reordering: the needed tiles could be first transmitted by the server, 
others subsequently. Client could immediately decode and render received tiles 
one by one. 

III. TRADITIONAL PREDICTIVE METHOD 

A. Constant Angular Velocity 

If the network delay is small, within the delay we can assume 
that the angular velocity of the user is constant, both its value 
and direction. Under this assumption, the server could predict 
the viewpoint of the user after a RTT delay using the information 
of the user’s current viewpoint and angular velocity. Suppose 
that the current viewpoint is �������� = (���, ���, ���), angular 
velocity is ω, whose direction is ����� = (��, ��, ��) and RTT 
is known. Then we could figure out the angle that the user has 
swept during RTT: 

 θ = ω ∙ RTT (1) 

The predicted viewpoint ���������� = ����, ���, ���� could 
be figured out as below: 

 ��� = ������� + ������� ∙ �� + ������� ∙ �� (2) 

 ��� = ������� + ������� ∙ �� + ������� ∙ �� (3) 

 ��� = ������� + ������� ∙ �� + ������� ∙ �� (4) 

If a tile is overlapped with the FOV of the predicted 
viewpoint, the server will package the tile of the highest quality 
and send it out. Otherwise, if the tile is located outside the FOV, 
the lowest quality of this tile will be chosen.  

The result of our experiment shows that this simple model 
could provide obviously better QoE than the nonoptimized 
system even when RTT is very small. And when RTT gets larger, 
the improvement will become more obvious. However, it also 
shows that when RTT is large, QoE based on this model cannot 
make users satisfied.  

B. Constant Angular Acceleration 

The only difference between the model in this part and the 
one introduced above is that angular acceleration �  is 
considered, whose direction vector is assumed in the same 
straight line with ω. Therefore, the sweeping angle during the 
RTT should be changed as below: 

 θ = ω ∙ RTT + 0.5a ∙ ���� (5) 

The formula of ���������� is the same as (2) to (4). 



IV. PROPOSED METHODS 

In this section, we will explain our proposed methods in 
detail. The two approaches below respectively apply to networks 
of different RTT. The reasons will be discussed later. 

A. Laplace Compensation 

Although the trajectory of users’ movement could be 
predicted in some way, we have to admit that any prediction 
causes dynamical error and side effects [9], which means 
prediction is always not accurate enough. That is reasonable 
because at any instant time a user could move at any velocity, 
any acceleration and toward any direction. And QoE  decreases 
dramatically when RTT gets only a little larger. Therefore, it is 
not tenable enough to only deal with one predicted viewpoint, in 
other words, we should deal with a region. Consequently, we 
propose a compensative method which can be depicted in the 
figures below. 

Fig. 4(a) depicts that the current viewpoint is ��������, the 
instant angular velocity is �  and acceleration is � . The red 
arrow indicates the direction of velocity and acceleration. It is 
tenable that the direction of acceleration is either the same as 
velocity or opposite to it when RTT is small. And in Fig. 4 they 
are in the same direction as an example. The light blue circular 
area is FOV of the current viewpoint. Fig. 4(b) depicts the 
predicted viewpoint as well as the actual viewpoint after one 
RTT delay. They are almost the same especially when RTT is 
small, but in the most cases, predicted viewpoints deviate more 
or less from actual ones. 

The bright red tiles are of the highest quality according to 
���������� , which is obtained using (1) to (4). Traditional 
approaches only transmit these tiles. Although they cover most 
area of the actual FOV, there is always an error field not being 
covered, which may lead to bad QoE. We also notice that the 
error field always appears along the direction of acceleration, 
which indicates tiles in the extending path should also be 
transmitted in an acceptable quality. That’s exactly what 
compensation means. 

 

      (a)                                            (b) 

Fig. 4. (a) depicts current viewpoint ��������  at time t. The direction of 
acceleration is the same as angular velocity. The light blue circular area is FOV 
of the current viewpoint. (b) depicts the predicted viewpoint and the actual 
viewpoint at time � + RTT . The bright red tiles are of the highest quality 
according to ���������� , and the light red and lighter red region are 

compensative tiles. The lighter the color is, the lower quality the tiles are in. 

The tiles overlapped with the extending path could be called 
compensative tiles. Obviously quality level of a compensative 
tile should be related to the extending angular distance � 
between the predicted viewpoint and this tile. We need to 
emphasize that the distance must be the projection distance 
along the direction of the acceleration. Compensative tiles closer 
to the predicted FOV should be in higher quality, which is 
depicted by the light red region and the lighter red one in Fig. 
4(b). The quality is related to acceleration, too. The larger 
acceleration the viewer has, the higher quality compensative 
tiles should be in. Therefore, we exploit Laplace distribution: 

 ������� ��������� = exp(−|�����|/�) (6) 

 tile ∈ {������������ �����} (7) 

 � = �� + � ∙ |�| (8) 

 ������� ��������� indicates a tile’s quality level, which lies 
in [0,1]. Due to the fact that we adopt CBR encoding mode, 
quality of a tile could be represented by its encoding BR. And a 
maximal value �����  will be designated for each sequence. 
Accordingly, BR of a tile can be written as: 

 ������ = ������� ��������� ∙ ����� (9) 

�����  in (6) is the projection distance between a 
compensative tile and the predicted FOV. �  is called scale 
parameter. The larger the scale parameter, the more spread out 
the distribution [10], in other words,  the higher quality 
compensative tiles are in. Consequently, � should be positively 
correlated with acceleration �. We simply let � be in proportion 
to �, which works well enough in our experiment. Note that if 
acceleration or velocity equals to 0, there will not be any 
compensation, which ensures the total BR of the stream will not 
be increased too much due to compensation. It is worth 
emphasizing that we have also adopted Gaussian distribution 
instead of Laplace, but it performs worse than Laplace 
distribution. Furthermore, a compensation boundary is 
necessary and we should define a compensative range between 
the predicted FOV and compensation boundary. The larger RTT 
and acceleration are, the larger the range is. 

 ����� = 0.5 ∙ � ∙ ���� (10) 

Fig. 5 shows another case when the direction of acceleration 
is opposite to that of velocity. Except compensative tiles lie in 
the opposite direction, the compensative method is all the same. 

 

                   (a)                                                  (b) 



Fig. 5. (a) depicts that the direction of angular acceleration is opposite to 
angular velocity. (b) depicts the predicted viewpoint and the actual viewpoint 
at time � + RTT. The bright red tiles are of the highest quality according to 
����������, and the light red tiles are compensative tiles. 

B. Sphere-Markov Probability Model 

The second proposed model for prediction is called Sphere-
Markov probability model. Firstly, “Sphere” means the model is 
based on a spherical projection space and we use “Markov” 
because the process in which a viewer switches perspective can 
be reasonably supposed to be a Markov Process. There are some 
work utilizing Markov process in mobility prediction such as  
[11], but till now no work uses this model in the prediction of 
viewpoints in spherical panoramic videos. 

The motivation of this approach is that when RTT gets larger, 
modeling trajectory does not make sense and not work well, 
which is shown in our experimental results. Instead, relying on 
prior probability is a better solution. 

For each viewpoint, we need to know the probability 
distribution of the next viewpoint a time interval (∆) later. To 
achieve this object, we should first define finite discrete 
viewpoints which approximate actually infinite viewpoints on 
the spherical surface. We divide the entire spherical surface 
according to longitude and latitude. Rotation angle between 
neighboring longitudes is  � degrees and azimuth angle between 
neighboring latitudes is also �  degrees. We regard those 
intersection points of latitudes and longitudes as well as the 
north pole and south pole, totally � points, as viewpoints: 

 � = 360 ∙ ���×(180 ∙ ��� − 1) + 2 (11) 

In the experiment, we set u = 15°. Then we let 100 people 
to watch our panoramic videos and recorded viewpoints every ∆ 
ms. Finally, we obtained the Markov probability matrix P ∈
��×�. 

 P = (��, ��, … , ��)� (12) 

If an observer’s viewpoint at time � is x[�] = �, then the  
probability of his or her looking at x[� + ∆] = � (at time � + ∆) 
is ��,�. We use matrix Q to represent probability distribution 
after one RTT delay: 

 Q = ����/∆ (13) 

 Q = (��, ��, … , ��)� (14) 

Then, �� is exactly the probability distribution of the after-
delay viewpoint of this observer. For any after-delay viewpoint  
�∈ {1,2, … , n}, quality level of the tiles which are overlapped 
with FOV of � should be in proportion to ��,� . If a tile is 
overlapped with both j’s and k’s FOVs, its quality level should 
be decided by the larger one between ��,� and ��,�. If ��,� is the 
largest, the quality level of this tile at time � + ∆ will be: 

 ������� ��������� =
��,�

��� ������� ������� �� ��
 (15) 

C. Evaluation of QoE 

In the experiment, for each sequence, every 33ms we 
calculate Weighted Area Ratio (WAR) of FOV. 

 WAR � =
∑ ����������������×�����

����
 (16) 

 Subscript t means current time. ����� is a tile’s area within the 
current-time FOV, and the area is weighted by the tile’s quality 
level according to a particular algorithm mentioned above. The 
quality level is between 0 and 1. All the tiles’ weighted area 
should be summed up and then divided by area of the whole 
FOV. For each sequence, we could obtain a sequence of WARs 
and then their average value is what we call quality value: 

 quality value =
∑ �����

��� ������ �� ����
 (17) 

V. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

The sequences we have used for testing our models could be 
obtained from [12]. They are prepared for spherical projection 
and resolution of most of them is 3840x1920. Few of them need 
to be interpolated to this resolution during the experiment. 

 Firstly, we used HM to encode each sequence into 10 
different quality levels in CBR mode.  We set the maximal bit 
rate per tile up to 280kbps and each frame is consisted of 72 tiles, 
which are of the same size: 320x320. Therefore, the maximal bit 
rate of the whole sequence is 280×72 = 20160 kbps. The ��� 
quality level of a tile is (280 − 28×(n − 1))kbps, in which n =
{1,2, … ,10}. We set frame rate (FR) to 30fps. In the experiment, 
as soon as the server receives information about viewpoints, 
angular velocity as well as acceleration of the client, it will 
transmit streams of tiles, whose quality level will be decided 
according to the models introduced above. The client will 
decode and render the received streams using FFmpeg and 
OpenGL. The circular FOV of the client is set to 90 degrees. 

We monitored the moving trails of 100 different users while 
they were watching the video. Specifically, every 33ms the 
client sends its information to the server, and after a RTT delay, 
the client would receive corresponding streams, and also arrive 
at a new viewpoint. Then we could calculate the WAR of its 
FOV. Finally, we average all the WARs to obtain quality value. 

We set RTT to different values from 33ms to around 1000ms 
and compare the quality value and bit rate of each method.  

B. Experimental Results 

Fig. 6 demonstrates that for the sequence rollercoaster, the 
model of Laplace compensation is always the best way to predict 
the users’ motion when RTT is below 430ms, which is true in 
most cases. If RTT is larger than 430ms, Sphere-Markov model 
should be exploited to keep high-quality performance. We use 
������������ = 430ms to represent the intersection point of the 
two models. To supply high-quality experience to users, a server 
should adopt this strategy: RTT between the server and a client 
should be measured first. If RTT is below ������������ , the 
server should take the model of Laplace compensation, and 
quality value can be increased at least 3.33%, at most 60.6% 
compared to the model without prediction; otherwise, the  server 
ought to use Sphere-Markov probability model to estimate users’ 
motion and then transmit corresponding streams, and the quality 
value could be increased at least 49.8%, at most 137% compared 



to the model without prediction. Of course, different sequences 
have different ������������, which will be demonstrated in our 
experiments. Furthermore, for the sequence rollercoaster, the 
model of constant angular velocity increases the quality value 
only 37.7% at most and the model of constant acceleration 
always performs even  worse than it. We also notice that quality 
value of the naïve model (with no prediction) picks up at around 
500ms, which is due to the fact that most of users of 
rollercoaster are inclined to reciprocate during their watching 
the video. Probably Every � = 500~700ms, they move back 
to a viewpoint which is close to the one they reached T (ms) 
before, which causes the naïve model and Sphere-Markov 
probability model to rise again at around T (ms). 

 

Fig. 6. Sequence rollercoaster. Quality values of the models of Laplace 
Compensation, Sphere-Markov Probability, constant velocity, no prediction, 
constant acceleration. By Laplace Compensation, quality value can be 
increased at least 3.33%, at most 60.6% compared to the model without 
prediction; above 430ms, by Sphere-Markov, the quality value could be 
increased at least 49.8%, at most 137% compared to the model without 
prediction. 

Fig. 7 shows the bit rate performance of the models. As 
mentioned in Part A of this section, transmitting the whole frame 
consumes a bandwidth of 20Mbps, which will cause too much 
burden. From Fig. 7 we can see that bit rate of the Laplace-
compensating model is at least 4.3Mbps (save 78.7%) and 
converges to around 5.6Mbps (save 72.2%); bit rate of Sphere-
Markov probability model is nearly in proportion to RTT, which 
indicates that if we would like to obtain high-quality QoE when 
RTT is large, more bandwidth must be consumed, which is 
reasonable because larger area of the panoramic video should be 
transmitted in high-quality mode to ensure users’ experience. 

 

Fig. 7. Sequence rollercoaster. Bit rate of the models of Laplace 
Compensation, Sphere-Markov Probability. Transmitting the whole frame 
consumes a bandwidth of 20Mbps. Bit rate of the Laplace-compensating model 
is at least 4.3Mbps (save 78.7%) and converges to around 5.6Mbps (save 
72.2%); bit rate of Sphere-Markov probability model is nearly in proportion to 
RTT. 

 Results of other sequences are similar to rollercoaster. For 
example, Fig. 8 shows results of Dance1. The model of constant 
acceleration always works no better than the model of constant 
velocity, so its results will not be shown. We could see that 
������������ = 400ms. Below 400ms, Laplace Compensation 
could increase quality value by at least 2%, at most 49.6%; 
above 400ms, Sphere-Markov model could increase quality 
value by at least 23.3%, at most 61.3%. Results of bit rate in Fig. 
9 are similar to Fig. 7. 

 

Fig. 8. Sequence Dance1. Different models’ quality values. 

 

Fig. 9. Sequence Dance1. Different models’ bit rate. 

 Another example, Fig. 10 and Fig. 11 are results of sequence 
Green Island. ������������ = 220ms. Below 220ms, Laplace 
Compensation could increase quality value by at least 3%, at 
most 7.4%; above 220ms, Sphere-Markov model could increase 
quality value by at least 4.3%, at most 66.2%. 



 

Fig. 10. Sequence Green Island. Different models’ quality values. 

 

Fig. 11. Sequence Green Island. Different models’ bit rate. 

VI. DISCUSSIONS AND CONCLUSIONS 

In this paper, we first introduce our server-client system 
based on tile reordering. We have also described traditional 
methods aiming to model the motion of viewers. Then we 
propose a Laplacian compensative method to improve QoE, 
comprehensively considering angular velocity, acceleration and 
RTT, which can ensure bit rate will not be increased a lot by 
compensation. In most cases, improvement of quality values 
compared to the naïve model (no prediction) gets more 
remarkable when RTT gets larger. In our experiments, quality 
value can be increased at most 60.6%. Bit rate of this method is 
no more than 5.6Mbps which saves at least 72.2% compared to 
transmitting the whole frame (20Mbps). 

However, if RTT gets too large, QoE will drop a lot. 
Therefore, we propose an alternative approach based on Sphere-
Markov probability model. Instead of modeling the motion of 
users, this method adopts prior probability, which ensures it will 
be less affected by RTT. From the results, we could see that 
performance of this approach may be not better than other 
models when RTT delay is low, but it works more stable than 
others when RTT gets larger. By adopting this method, the 

average increase of quality value can reach 57.0%. But when 
RTT becomes larger, bit rate inevitably increases. 

To sum up, to achieve the best QoE, we should first obtain 
������������  of each sequence from enough records of many 
viewers’ watching viewpoints. Then, RTT between the server 
and a particular client should be measured. If RTT is below 
������������, the server should adopt Laplacian Compensative 
method to decide quality level of each tile at each instant time; 
otherwise the Sphere-Markov Probability model. 

Spherical projection is adopted by us in this paper. Our 
future research will consider more kinds of mapping methods. 
And we will also do research about the influence of tiles’ size 
and number to QoE and BR in the near future. 
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