
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283042820

Lossless Frame Memory Compression Using Pixel-Grain Prediction and Dynamic

Order Entropy Coding

Article  in  IEEE Transactions on Circuits and Systems for Video Technology · January 2015

DOI: 10.1109/TCSVT.2015.2469572

CITATIONS

5

READS

95

4 authors, including:

Some of the authors of this publication are also working on these related projects:

HEVC low power hardwired encoder View project

Zhenyu Liu

Tsinghua University

91 PUBLICATIONS   610 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Zhenyu Liu on 09 March 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/283042820_Lossless_Frame_Memory_Compression_Using_Pixel-Grain_Prediction_and_Dynamic_Order_Entropy_Coding?enrichId=rgreq-78ca0e3453c469150385be17b05d3118-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA0MjgyMDtBUzozMzc1MzI4NjU3OTQwNDhAMTQ1NzQ4NTUxNDQ5Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/283042820_Lossless_Frame_Memory_Compression_Using_Pixel-Grain_Prediction_and_Dynamic_Order_Entropy_Coding?enrichId=rgreq-78ca0e3453c469150385be17b05d3118-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA0MjgyMDtBUzozMzc1MzI4NjU3OTQwNDhAMTQ1NzQ4NTUxNDQ5Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/HEVC-low-power-hardwired-encoder?enrichId=rgreq-78ca0e3453c469150385be17b05d3118-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA0MjgyMDtBUzozMzc1MzI4NjU3OTQwNDhAMTQ1NzQ4NTUxNDQ5Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-78ca0e3453c469150385be17b05d3118-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA0MjgyMDtBUzozMzc1MzI4NjU3OTQwNDhAMTQ1NzQ4NTUxNDQ5Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenyu_Liu12?enrichId=rgreq-78ca0e3453c469150385be17b05d3118-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA0MjgyMDtBUzozMzc1MzI4NjU3OTQwNDhAMTQ1NzQ4NTUxNDQ5Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenyu_Liu12?enrichId=rgreq-78ca0e3453c469150385be17b05d3118-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA0MjgyMDtBUzozMzc1MzI4NjU3OTQwNDhAMTQ1NzQ4NTUxNDQ5Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tsinghua_University?enrichId=rgreq-78ca0e3453c469150385be17b05d3118-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA0MjgyMDtBUzozMzc1MzI4NjU3OTQwNDhAMTQ1NzQ4NTUxNDQ5Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenyu_Liu12?enrichId=rgreq-78ca0e3453c469150385be17b05d3118-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA0MjgyMDtBUzozMzc1MzI4NjU3OTQwNDhAMTQ1NzQ4NTUxNDQ5Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenyu_Liu12?enrichId=rgreq-78ca0e3453c469150385be17b05d3118-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA0MjgyMDtBUzozMzc1MzI4NjU3OTQwNDhAMTQ1NzQ4NTUxNDQ5Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 1, JANUARY 2016 223

Lossless Frame Memory Compression Using
Pixel-Grain Prediction and Dynamic

Order Entropy Coding
Xiaocong Lian, Student Member, IEEE, Zhenyu Liu, Member, IEEE,

Wei Zhou, Member, IEEE, and Zhemin Duan

Abstract— Power constraints constitute a critical design issue
for the portable video codec system, in which the external
dynamic random access memory (DRAM) accounts for more
than half of the overall system power requirements. With the
ultrahigh-definition video specifications, the power consumed by
accessing reference frames in the external DRAM has become
the bottleneck for the portable video encoding system design.
To relieve the dynamic power stresses introduced by the DRAM,
a lossless compression algorithm is devised to reduce the external
traffic and the memory requirements of reference frames. First,
pixel-granularity directional prediction is adopted to decrease
the prediction residual energy by 54.1% over the previous
horizontal prediction. Second, the dynamic kth-order unary/
Exp-Golomb rice coding is applied to accommodate the large-
valued prediction residues. With the aforementioned techniques,
an average data traffic reduction of 68.5% for the off-chip
reference frames is obtained, which consequently reduces the
dynamic power requirements of the DRAM by 42.3%. Based
on the high data reduction ratio of the proposed compression
algorithm, a partition group table-based storage space reduction
scheme is provided to improve the utilization of row buffers in
the DRAM. Consequently, an additional 14.5% of the DRAM
dynamic power can be saved by reducing the number of row
buffer activations. In total, a 56.8% decrease in the dynamic
power requirements of the external reference frame access can
be obtained using our strategies. With TSMC 65-nm CMOS logic
technology, our algorithm was implemented in a parallel VLSI
architecture based on a compressor and decompressor at the
cost of 36.5k and 34.7k, respectively, in terms of gate count.
The throughputs of the proposed compressor and decompressor
are 1.54 and 0.78 Gpixels/s, which are suitable for quad full high
definition (4K) @ 94 frames/s real-time encoding with the level-D
reference data reuse scheme.

Manuscript received October 29, 2014; revised March 14, 2015,
April 27, 2015, July 8, 2015, and July 23, 2015; accepted August 5, 2015. Date
of publication August 18, 2015; date of current version January 6, 2015.
This work was supported in part by the National Natural Science Foundation
of China under Grant 60902101 and in part by the Fundamental Research
Funds through the Central Universities under Grant 3102014JCQ01057. This
paper was recommended by Associate Editor V. Sze. (Corresponding author:
Wei Zhou.)

X. Lian, W. Zhou, and Z. Duan are with the School of Electronics
and Information, Northwestern Polytechnical University, X’ian 710129,
China (e-mail: lianxiaocong123@mail.nwpu.edu.cn; zhouwei@nwpu.edu.cn;
zhemind@nwpu.edu.cn).

Z. Liu is with Tsinghua National Laboratory for Information
Science and Technology, Research Institute of Information Technology,
Tsinghua University, Beijing 100084, China (e-mail: liuzhenyu73@
mail.tsinghua.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2015.2469572

Index Terms— Frame memory compression, High Efficiency
Video Coding (HEVC), lossless compression, low power.

I. INTRODUCTION

S INCE the draft of H.264/Advanced Video Coding (AVC)
[1] was released in 2003, people have witnessed the explo-

sive growth of video in workplaces and entertainments [2].
To meet the high-quality requirements of human percep-
tion, video resolution has dramatically increased. Standard-
definition and high-definition (720p HD) broadcasts are being
replaced by Full HD (1080p), while quad full HD (4K) and
super hi-vision (8K) applications are beginning to increase in
popularity [3], [4]. These factors have led to the development
of the video-coding standards toward higher compression effi-
ciency to support HD and ultrahigh definition (UHD) videos.
In this context, High Efficiency Video Coding (HEVC) was
developed as an advanced successor of H.264/AVC [5]. The
major goal of HEVC is to achieve higher coding efficiency
compared with previous standards, especially when operating
on high-resolution specifications. The first version of HEVC
was ratified in January 2013, and its main objective is to
double the compression efficiency at the cost of a complexity
increase of 2–4 times compared with H.264/AVC.

Considering the high image resolution, the off-chip dynamic
random access memory (DRAM) is applied as the frame mem-
ory to obtain the best system cost/performance tradeoff [6].
The obstacles of off-chip reference frame storage originate
from two aspects, i.e., bandwidth and power limitations. The
bandwidth limitation can be ameliorated by an efficient search
region data reuse scheme. For example, 32-bit DDR3-1600
can meet the bandwidth requirements of one-reference-frame
motion estimation for videos with 8K @ 60 frames/s specifica-
tions by applying the level-D search window [7]. For mobile
applications, the power requirements of DRAM are a more
serious bottleneck compared with the bandwidth limitation.
From the analysis in [8], more than 20% of the system
power, which is almost equal to the power of the video codec
engine, is consumed by DRAM in smartphone devices [9]. The
dynamic power of DRAM consists of three main components:

1) the power required to activate the row buffer (PACT);
2) the internal power consumed by data transitions between

the row buffer and IO drivers (PRW);
3) the power of IO terminal drivers (PIO) [10].

1051-8215 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



224 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 1, JANUARY 2016

The reference frame applies the block-based storage.
Compressing the data in every data block contributes to
reductions in not only the bandwidth requirements but also
the signal transitions, and subsequently reduces the power
requirements of PRW and PIO. In addition, if the reference
frame storage space is compressed, the utilization of the row
buffer can be improved; the power requirements of PACT
decrease accordingly.

To reduce the memory bandwidth, many memory
compression algorithms have been proposed [11]–[25].
Previous methods can be divided into two categories:
1) lossy compressions and 2) lossless compressions.
In general, lossy algorithms [11]–[17] can achieve higher data
reduction ratios (DRRs) than lossless algorithms by sacrificing
video-coding performance. For example, using the level-C
data reuse scheme, trailing-bit truncation, encoder-oriented in-
block prediction, and small value optimized variable length
coding, the mixed lossy and lossless (MLL) algorithm [17] can
reduce the external bandwidth by 74.5% at a cost of 0.01 dB
coding quality loss. In addition, the lossy compression can
reduce memory requirements. For instance, Lee et al. [12]
introduced adaptive quantization to guarantee a no less
than 50% DRR. Consequently, the memory requirements were
reduced by 50%, and the picture quality was degraded by
0.11–1.78 dB. It can be observed that the main drawback of
the lossy compression algorithm originates from the drifting
problem. Specifically, the mismatch of the reference pictures
between the decoder and the encoder, which is generated
by the lossy compression, will introduce errors during the
prediction procedure, and these errors will be accumulated in
consecutive frames. Therefore, the reconstructed video quality
is greatly deteriorated.

Lossless algorithms [18]–[26] can circumvent the aforemen-
tioned drifting problem. Joint Photographic Experts Group C
Lossless Standard [26] is a widely used standard for the loss-
less and near-lossless compression of images, achieving up to
70.9% DRR. However, the intensive computational complexity
and, especially, the high processing latency hinder the standard
algorithms as the frame memory compressor. Many algorithms
have been proposed to achieve a good balance among the com-
putational complexity, the processing latency and the compres-
sion performance [21]–[23]. For example, a lossless embedded
compression achieving a DRR of 57.3% was proposed in [22]
and consists of a hierarchical prediction method based on pixel
averaging and pixel copying and a significant bit truncation
(SBT). Multimode differential pulse code modulation (DPCM)
and averaging prediction and semifixed length (MDA and SFL)
entropy coding were proposed in [27], of which the averaged
achieved DRR was as high as 61.9%.

Although previous lossless algorithms can achieve an
average of 24%–61.9% DRR, they have the following
disadvantages.

1) Because of the variable DRR, the previous works merely
decrease the off-chip data traffics but cannot contribute
to reducing memory requirements.

2) The VLC algorithms in previous works mainly focused
on the compression performance for small values.
For higher bit depths, for example, 10 or 12 bits/sample,

the amplitudes of the residues increase from the inher-
ent noises. Accordingly, the performances of previous
entropy coding methods are seriously degraded.

3) To increase accuracy, the prediction algorithm in [17]
adopted auxiliary information from the intra-coding
component in the encoder. However, to speed up the
encoding procedure, not all 8×8 CUs undergo the intra-
mode coding exploration [28], [29]. From the decoder
aspect, the auxiliary information is unavailable if the
8 × 8 Coding Unit (CU) is not coded in intra mode.
Therefore, such a prediction method cannot be seam-
lessly integrated with any encoder, especially for the
decoder.

To overcome the above obstacles, we first develop a pixel-grain
directional prediction method to further reduce the power of
the prediction residuals. Next, we adopt a dynamic kth-order
unary/Exp-Golomb rice coding to improve the compression
rate when addressing large residue values. Finally, we propose
a partition group table (PGT)-based storage scheme. The
contributions of this paper are summarized as follows.

1) A self-contained directional intra-prediction algorithm
is provided. This algorithm possesses two primary
features: first, the energy of the prediction residues
is reduced by 54.1% compared with the original
vertical/horizontal prediction. Second, the prediction
angle is deduced using the texture correlations, which
discards the dependency on the encoder or decoder
auxiliary information to improve the applicability.

2) Dynamic kth-order unary/Exp-Golomb rice coding
is adopted to achieve comprehensive adaptability,
especially when processing large-valued prediction
residues in high-bit-depth videos, such as the 30 bpp
sequences NebutaFestival and SteamLocomotiveTrain.

3) Based on the high compression rate of the proposed
compression algorithm, the PGT-based storage scheme is
used to reduce not only the memory space requirements
but also the dynamic power requirements of the DRAM.

4) Finally, the corresponding VLSI architectures are
developed to implement the compressor and the decom-
pressor. In the prediction engine design, the algorithm
and circuit co-optimization reduces the hardware
costs by 61% while improving the speed by 11%.
For the compressor VLSI design, the parallel architec-
ture is introduced to enhance the throughput. In the
decompressor design, the luminance and chrominance
alternate processing can effectively avoid the bubbles
in pipelining.

The remainder of this paper is organized as follows.
In Section II, we introduce the 16 × 16 partition-based
compression algorithm. The PGT-based storage scheme is
explained in Section III. The related hardware implementations
of the compression and decompression modules are described
in Section IV. Section V illustrates the experimental results.
Finally, the conclusion is given in Section VI.

II. 16 × 16 PARTITION COMPRESSION ALGORITHM

Thoroughly considering the data dependency induced by
deblocking filtering and the DRAM burst access properties,



LIAN et al.: LOSSLESS FRAME MEMORY COMPRESSION USING PIXEL-GRAIN PREDICTION AND DYNAMIC ORDER ENTROPY CODING 225

Fig. 1. Block diagram of the compression and decompression algorithms.

we define the basic luma partition size as 16 × 16
(16-pixel column by 16-pixel row), and the corresponding
chroma partition as 8 × 8 with a 4:2:0 sampling format.

Fig. 1 shows the block diagram of the compression and
decompression algorithms. The improvement of the compres-
sion rate originates from the signal prediction accuracy and
entropy coding efficiency. Section II-A describes the proposed
directional prediction method. Sections II-B and II-C explain
the dynamic kth-order unary/Exp-Golomb rice coding algo-
rithm and the significant flag in the chroma block, respectively.
Finally, the algorithm optimizations for VLSI implementation
are provided in Section II-D.

A. Self-Contained Directional Intra Prediction

Intra prediction is a conventional method used in memory
compression algorithms that can reduce the entropy of the
coded symbols. The studies in [12], [27], and [30] all applied
such an approach. However, the previous works directly cal-
culated the prediction signals from the vertical or horizontal
neighboring pixels, which forfeits the compression perfor-
mance with the low prediction accuracy. The study in [17]
proposed eight types of 8 × 8-block-based intra-predictions
modes, and the candidate type was determined using the
rate distortion optimization result of the HEVC intra encoder.
Although the method can increase the prediction efficiency,
the reference information can only be obtained from CUs,
which has been tested with intra-coding modes. Hereafter,
it is difficult to apply this algorithm to compress the CUs,
which skip the intra-coding exploration. Especially for the
decoder side, for the P and B mode CUs, the required auxiliary
prediction information is not available.

To overcome the above hindrances, this paper proposes a
self-contained directional intra prediction to obtain increased
accuracy [31]. As shown in Fig. 2, the pixels in the black
rectilinear block all apply the directional prediction. During
the decompression stage, the pixels on the right and bottom
boundaries of the current pixel ( pi, j ) are unavailable.
Therefore, we estimate the edge direction of the current pixel

Fig. 2. Pixel locations in one 16×16 partition and corresponding prediction
modes with (a) both reference blocks, (b) only the left reference block, and
(c) merely top reference block.

from its left and top 2 × 2 blocks, as shown in Fig. 2(a). For
the current pixel pi, j , we define the corresponding left and
top neighboring edge vectors as �Dl

i, j = {dxl
i, j , dyl

i, j } and
�Dt

i, j = {dxt
i, j , dyt

i, j }, respectively, which are derived from
the neighboring pixels as

dxl
i, j = pi−2, j + pi−1, j − pi−2, j−1 − pi−1, j−1

dyl
i, j = pi−1, j−1 + pi−1, j − pi−2, j−1 − pi−2, j (1a)

dxt
i, j = pi−1, j−1 + pi, j−1 − pi−1, j−2 − pi, j−2

dyt
i, j = pi, j−2 + pi, j−1 − pi−1, j−2 − pi−1, j−1. (1b)

Therefore, the strength of the edge vectors can be roughly
estimated by

Amp
( �Dl

i, j

) = ∣
∣dxl

i, j

∣
∣ + ∣

∣dyl
i, j

∣
∣

Amp
( �Dt

i, j

) = ∣
∣dxt

i, j

∣
∣ + ∣

∣dyt
i, j

∣
∣. (2)

The block with the larger strength value is used to define the
prediction angle. Specifically, the corresponding prediction
angle �Di, j = {dxi, j , dyi, j } is defined as follows:

�Di, j = (
Amp

( �Dl
i, j

)
> Amp

( �Dt
i, j

))
? �Dl

i, j : �Dt
i, j (3)

in which dxi, j and dyi, j represent the edge strength in the
vertical and horizontal directions, respectively. From �Di, j ,
the edge direction of the current pixel can be estimated
using the ratio between dyi, j and dxi, j . We first define the
variable η( �Di, j ) as

η( �Di, j ) = dyi, j

dxi, j
. (4)



226 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 1, JANUARY 2016

Fig. 3. Seven calculated directions of the residuals.

Then, the value of η is divided into seven bands, as shown
in Fig. 3, and the corresponding edge directions are derived as

θ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

45°, if 0.414 < η( �Di, j ) ≤ 1.500

67.5°, if 1.500 < η( �Di, j ) ≤ 5.027

90°, if |η( �Di, j )| > 5.027

112.5°, if − 5.027 ≤ η( �Di, j ) ≤ −1.500

135°, if − 1.500 < η( �Di, j ) ≤ −0.668

157.5°, if − 0.668 < η( �Di, j ) ≤ −0.199

180°, if − 0.199 < η( �Di, j ) ≤ 0.414.

(5)

Then, the prediction pixel ( p̃i, j ) is given as

p̃i, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi+1, j−1, θ = 45°

pi, j−1, θ = 90°

pi−1, j−1, θ = 135°

pi−1, j , θ = 180°

round((pi, j−1 + pi+1, j−1) ÷ 2), θ = 67.5°

round((pi−1, j−1 + pi, j−1) ÷ 2), θ = 112.5°

round((pi−1, j + pi−1, j−1) ÷ 2), θ = 157.5°.

(6)

The first four directions use copies of the pixels, whereas the
others obtain the prediction by averaging two neighboring
pixels. For the pixels in the last column, because the top-right
reference pixel does not exist, the directions 45° and 67.5°
are skipped.

In certain special cases, only one reference block may
be available. For example, the first row pixels in the black
rectilinear area have no top references, and the pixels in the
first column in this area have no left ones. In these cases, we
use the unique remaining block as the reference information
to predict the edge direction, as shown in Fig. 2(b) and (c).
Ten typical sequences (200 frames for each sequence) were
adopted to verify the performance of our directional prediction
algorithm. The statistics of the prediction error power in
one 16 × 16 Luma partition are shown in Tables I and II.
Compared with the original vertical/horizontal prediction, the
prediction error energy is reduced by 54.1% on average.
The performance gap between our directional prediction and
the original horizontal prediction increases with increasing
edge strength. When ES ≥ 10, the prediction accuracy can be
improved by 20% with our proposed method. From Table III,
we observed that the algorithm with directional intra prediction
can achieve a 6.4% DRR increase on average.

TABLE I

PREDICTION PERFORMANCE ANALYSIS IN TERMS OF SUM

OF SQUARED ERROR OF ONE 16 × 16 LUMA BLOCK

TABLE II

PREDICTION PERFORMANCE ANALYSIS IN TERMS OF PREDICTION

ACCURACY OF ONE 16 × 16 LUMA BLOCK

B. Dynamic kth-Order Unary/Exp-Golomb Rice Coding

Our entropy coding algorithm is based on adaptive-order
unary/Exp-Golomb rice coding. Specifically, with the provided
order k, we define the quantization step as 2k . Given the input
value x , we have the quotient q = x/2k and the remainder
r = x%2k . For the quotient part, we use the unary/
Exp-Golomb coding with a cutoff value of 3. Specifically,
when q < 3, unary coding [32] is applied; otherwise, we
select Exp-Golomb coding [33], [34]. The remainder r is
transmitted following the coded quotient. The coded exam-
ples with input values in the range of [0, 15] and the
orders k ∈ {0, 1, 2} are illustrated in Table IV. The
underline separates the quotient part and the remainder part.



LIAN et al.: LOSSLESS FRAME MEMORY COMPRESSION USING PIXEL-GRAIN PREDICTION AND DYNAMIC ORDER ENTROPY CODING 227

TABLE III

COMPRESSION PERFORMANCE (DRR) ANALYSIS OF DIRECTIONAL

INTRA-PREDICTION SCHEME (LUMA ONLY, QP = 32)

TABLE IV

UNARY/EXP-GOLOMB RICE CODING WITH ORDER k ∈ {0, 1, 2}

When x �= 0, the sign bit is stored after the coded quotient
part and the remainder part.

The high-order k possesses an advantage in coding the large
value input. Given the input value x , the optimal order ko,
with which we can derive the maximum compression rate, is
defined as (7). However, for the decoder side, the value of
the current decode symbol x is unknown. Therefore, realizing
the efficient pixel-grain k-order update is essential to our
technique

log2(x/3) < ko ≤ log2(x/3) + 1. (7)

Similar to the pixel value prediction method, we also use the
correlations of order k among neighboring pixels. According
to (4), we define four directions, and the order value ki, j

of the current pixel is deduced from the previous decoded

TABLE V

COMPRESSION PERFORMANCE (DRR) ANALYSIS OF THE

DYNAMIC ORDER SCHEME (LUMA ONLY, QP = 32)

pixels as

ki, j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k ′
i−1, j , if − 0.414 < η( �Di, j ) ≤ 0.414

k ′
i−1, j−1, if − 2.414 < η( �Di, j ) ≤ −0.414

k ′
i, j−1, if |η( �Di, j )| > 2.414

k ′
i+1, j−1, if 0.414 < η( �Di, j ) ≤ 2.414.

(8)

In (8), the variable k ′ is derived using a fine adjustment
to k. For the current position (i, j ), we use ki, j to encode or
decode the prediction residual xi, j . Once the value of xi, j is
obtained, we have the adjusted version of ki, j , namely, k ′

i, j ,
as described by (9). In this way, we realize the pixel-gain
adaptive k-order. Because the maximum value of the order k
is defined as 3, we need 2×16 = 32 bits to buffer the k ′ values
in the upper row. Although we can use the previous decoder
or encoder prediction residuals to adjust the current order,
the buffer size is increased to 8 × 16 = 128 bits, which is
four times that of our proposed order update scheme because
the amplitudes of the residuals are in the range of [0, 255]. The
value of k0,0 is fixed and defined as 1, which outperforms other
counterparts and provides an increase in the DRR of 0.2%.
Table V shows the compression performance comparison of
the dynamic order scheme, which achieved 4.2%–6.2% DRR
increases compared with the fixed order

k ′
i, j =

⎧
⎪⎪⎨

⎪⎪⎩

ki, j + 1, x ≥ 3 × 2ki, j (ki, j < 3)

ki, j , 2ki, j −1 ≤ x < 3 × 2ki, j

ki, j − 1, x < 2ki, j −1(ki, j > 0).

(9)

C. Compression Skip Flag for Chroma Partition

It was observed that there were many continuous zeros in
the chroma partitions with the proposed directional prediction
method. Leveraging this property, we propose two compres-
sion skip flags (CSFs), i.e., the block CSF (BCSF) and the
partition CSF (PCSF).

Specifically, one 8 × 8 chroma partition is evenly divided
into eight 4 × 2 blocks. Each chroma block is assigned



228 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 1, JANUARY 2016

TABLE VI

COMPRESSION PERFORMANCE (DRR) ANALYSIS OF THE

CSF SCHEME (CHROMA ONLY, QP = 32)

a 1-bit dedicated CSF. When the BSCF is set, it indicates
that the associated 4 × 2 chroma block is a zero-block. When
all residuals in the 8 × 8 chroma partition are zeros, the
1-bit PCSF is set. With the quantization parameter (QP) being
equal to 32, ten typical sequences in five different categories
are tested to verify the performance of the CSF scheme. The
compression results are shown in Table VI. The CSF scheme
can enhance the DRR by 4.2%–9.3% for the chroma partitions.
On average, the DRR increase originated from the use of
CSF is 6.0%.

D. Hardware-Oriented Algorithm Simplification

Although the proposed algorithm achieves a high DRR,
the associated hardware complexity is also increased. The
directional intra-prediction module requires the great amount
of hardware resources. Therefore, we optimize the edge
strength calculation to simplify its implementation. For
the dxi, j in (1a), the formula used to calculate the value is
shown in the following equation and takes advantage of the
carry save adder (CSA) architecture, as will be described
in Section IV:

dxi, j = pi−2, j + pi−1, j + p̄i−2, j−1 + p̄i−1, j−1 + 2. (10)

When calculating the amplitude of the edge strength
as (2), we need to compute |dxi, j |. The rigorous formula of
|dxi, j | is expressed as (11). In our design, we simplify
(11) to (12), which saves one adder by sacrificing
precision

|dxi, j | =
{

dxi, j , dxi, j ≥ 0

d̄x i, j + 1, dxi, j < 0
(11)

|dxi, j | =
{

dxi, j , dxi, j ≥ 0

d̄x i, j , dxi, j < 0.
(12)

In addition, because the original parameter values in (5)
are floating-point numbers, the primitive implementation will
require a nontrivial chip area. Therefore, we transform the

TABLE VII

COMPRESSION PERFORMANCE (DRR) ANALYSIS OF

THE VLSI-FRIENDLY EDGE STRENGTH AND

EDGE DIRECTION CALCULATIONS

Fig. 4. Memory mapping for compression partition. (PGO used to record
the beginning address of the PG. CSF consists of the PCSF and BCSF of
the chroma components in a PG. Length: indicates the lengths of compressed
luma and chroma components in the partition of the IO bitwidth, which help
the decoder to optimize the burst read operation. MF used to indicate whether
to use the compression storage scheme.)

edge direction judgment from (5) to (13)

θ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

45°, if 0.5|dxi, j | < |dyi, j | ≤ 2|dxi, j | & s = 0

67.5°, if 2|dxi, j | < |dyi, j | ≤ 4|dxi, j | & s = 0

90°, if |dyi, j | > 4|dxi, j |
112.5°, if 2|dxi, j | ≤ |dyi, j | ≤ 4|dxi, j | & s = 1

135°, if |dxi, j | ≤ |dyi, j | < 2|dxi, j | & s = 1

157.5°, if 0.25|dxi, j | ≤ |dyi, j | < |dxi, j | & s = 1

180°, if (|dyi, j | < 0.25|dxi, j | & s = 1)

or (|dyi, j | ≤ 0.5|dxi, j | & s = 0)

(13)

in which, the parameter s indicates the sign of η and is
calculated as

s = sign(dxi, j ) ⊕ sign(dyi, j ). (14)



LIAN et al.: LOSSLESS FRAME MEMORY COMPRESSION USING PIXEL-GRAIN PREDICTION AND DYNAMIC ORDER ENTROPY CODING 229

Fig. 5. Architecture of the proposed compressor (the locations of E0, E1, and reference pixels are shown in Fig. 6).

Fig. 6. Location of current and reference pixels.

We observe that all operations in (13) can be implemented
with shifters and comparators.

Ten typical sequences in five different categories are
tested to verify the performance of the hardware-friendly
optimizations. The experiment results in Table VII show that
the DRR degradation introduced by the hardware-friendly
optimizations is only 0.08%–0.09% compared with the
original counterpart.

III. PARTITION GROUP TABLE-BASED

COMPRESSION STORAGE

The over 60% average DRR of our algorithm makes it an
efficient approach to reducing memory requirements and not
simply reducing IO bandwidth requirements. However, the
unfixed DRR of lossless compression cannot guarantee that
the compressed partitions can be linearly addressed. In this
paper, we use the PGT to handle the address mapping issues.

Specifically, every two horizontally adjacent 16 × 16 parti-
tions constitute one partition group (PG), as shown in Fig. 4.
Assuming that there are N partitions and that N is even, the
PG number is N /2. Each PG possesses one dedicated PGT
item to describe the properties of two leaf-node partitions.

We can use one-partition space to store the content of one
PG when the DRRs of the luma and chroma components
of the two partitions are all no less than 50%; otherwise,
the compressed PG will continue to consume two-partition
storage spaces. In Fig. 4, PG0 represents the normal case
and PG1 indicates the compression storage counterpart. In the
compression storage, the second compressed partition data are
always located in the lower half part. When the compression
storage is adopted, the merge flag (MF) is set. If δ number
of PGs can be stored in the compression mode, the memory
space is reduced by δ/N . The experiments in Section V reveal
that, on average, a memory savings of 38% is obtained.

The partition group offset (PGO) indicates the starting
address of the PG in the partition length grain. Considering
8K resolution requirements, the bitwidth of PGO is defined as
18 bits. To help the decoder side determine the optimal burst
length, we also provide the length information in the PGT.
As will be explained in Section IV, although the luma pixels
in odd and even rows are encoded and decoded in parallel,
the coded data of the odd and even rows are merged to be
alternately stored. Therefore, only one luma length is required.
It should be noted that our algorithm cannot guarantee that the
compressed data length is less than the source one. When the
compression ratio is no greater than 1, we store that original
data. When the length value is equal to the original one, the
decoder indicates that the stored data should use the normal
pixel format.

By adopting the storage compression method, our work not
only reduces the storage size but also decreases the frequency
of precharge and activate operations during external DRAM
accessing. According to [10], the power consumed by row
buffer activation accounts for 38% of the total dynamic power
of the DRAM. Therefore, improving the utilization of row
buffer data by our compression method is an efficient approach
to reducing the external DRAM power requirements. The
detailed power saving analysis of the external DRAM will
be described in Section V.



230 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 1, JANUARY 2016

TABLE VIII

COMPARISON RESULTS OF THE THREE ARCHITECTURES

OF THE INTRA-PREDICTION OPERATOR

IV. HARDWARE IMPLEMENTATION

A. Compressor Implementation

Fig. 5 provides the top block diagram of the proposed com-
pressor with the directional intra prediction and the k-order
UEG-Rice coding. The input signals are 16 × 16 partitions of
reconstructed pictures, input from the encoder or the decoder.

To improve the throughput, a two-engine architecture is
devised. For the 16 × 16 luma partition, the pixels in the odd
and even rows are processed in parallel. Because the order
k value of the top-right pixel is required when encoding the
current pixel, we adopt the wavefront mode. Specifically, the
compression process of the previous row should be at least
two pixels in advance of that of the current row. On the other
hand, because a data dependency does not exist between the
U and V partitions, the U and V 8 × 8 partitions can be
simultaneously encoded. The coded data of the odd and even
rows are merged into one stream and stored in the output
buffer. If the length of the output buffer is greater than 32 bits,
the compressor will directly write its output to the memory
controller. The reference pixel buffer is shared by two encoder
engines. Because the ENG0 is strictly 2 pixels in advance of
ENG1, the scale of the reference pixel buffer is 13 B, as shown
in Fig. 6.

The order k in UEG-Rice coding requires the previous
k ′ values to be buffered. The primitive implementation, stores
the k ′ values in the previous three rows, which accounts for
16 × 3 × 2 = 96 bits. In our design, by strictly scheduling the
two engines, we can discard the k ′ values in ENG0 that are
no longer required by ENG1, and the freed memory space can
be used by ENG1 for its k ′ value storage. Consequently, the
buffer size is reduced to 17 × 2 = 34 bits.

To increase the clock speed, the encoder engine is composed
of three pipeline stages: 1) the directional predictor; 2) residual
generator; and 3) entropy encoder.

The primitive design of |dxl
i, j |, as shown in Fig. 7(a),

consumes four adders, four subtracts, one comparator, and one
multiplexer. To improve the clock speed, a 4-2 compressor-
based absolute difference computation method was proposed
in [35] and shortens the critical paths by parallel process-
ing. The shortcoming of this method lies on the additional
hardware cost for the parallelism. Our paper proposes the
hardware-friendly algorithm in (12), and the corresponding
circuits design is shown in Fig. 7(c). By sacrificing 1 bit of
precision, the circuit’s performance is significantly improved.
A comparison of the primitive, the 4-2 compressor based, and
our proposed circuits is shown in Table VIII. The results show
that the proposed architecture achieved a decrease in area
of 61.2% and an increase in frequency of 10.5% compared
with the primitive one.

Fig. 7. Hardware implementation for calculating |dxi, j | (pi−2, j−1, pi−1, j−1,
pi−2, j , pi−1, j are neighboring reference pixels, as shown in Fig. 2).
(a) Primitive architecture. (b) 4-2 compressor based architecture. (c) Proposed
architecture.

B. Decompressor Implementation

Fig. 8 depicts the top block diagram of the decompressor.
Based on the index information from the PGT, the
decompressor derives the begin address, the length, and
the CSF of the luma and chroma partitions. The begin
address and the length values guide the memory controller
to adopt the optimal read mode and burst length to fetch the
compressed data from the system DRAM. The neighboring
pixels are required to perform the directional prediction
during the decompression process. We can observe from
Fig. 6 that four rows of pixels should be stored; therefore,
the sizes of the two SRAM are 32 bit × 16 word.

The decompressor employs a three-stage pipeline, including
data fetch, entropy decoding, and directional prediction. The
horizontal data dependency between neighboring pixels will
seriously degrade the pipeline utilization with the primitive
scheduling, as shown in Fig. 9(a). We observe that every
three cycles, only one pixel is decoded. The hardware utiliza-
tion is only 33%. Because the dependency of the odd and even
rows in Y can be ameliorated with the wavefront decoding
mode and because dependencies among luma and chroma
partitions do not exist, we apply the interchange decoding
of Y odd row, Y even row and U V components to increase
the pipeline efficiency, as described by Fig. 9(b). With the
proposed schedule, the hardware utilization is improved to up
to 100%.



LIAN et al.: LOSSLESS FRAME MEMORY COMPRESSION USING PIXEL-GRAIN PREDICTION AND DYNAMIC ORDER ENTROPY CODING 231

Fig. 8. Architecture of the proposed decompressor.

Fig. 9. Processing schedule of (a) primitive decompression architecture and
(b) proposed YU V interchange decompression architecture.

The top block diagram of the HEVC encoder integrated
with the IO codec module is shown in Fig. 10. To obtain a
high throughput, we apply the two-parallel-codec structure to
simultaneously handle two partitions in one PG. To address
the storage space compression, SRAM is applied to cache
the encoded bitstream of the second partition. Specifically, the
space compression is in PG granularity. During the encoding,
the first engine directly writes its output with a 32-bit grain
to the memory controller, because its begin address has been
determined. However, the second engine needs to write its
output stream to the SRAM. For the writing from the SRAM
to the memory controller, there are two situations that must
be discussed.

1) During the encoding procedure, if either DRR of the
two engines is less than 50%, then the begin address of
the second engine is determined. Thereafter, the memory
controller can fetch the buffered data in the SRAM, and
the empty entries are left for the new coded stream.

2) At the end of the encoding of one PG, if two partitions
can share the same partition space, then the data in
the SRAM can be dispatched to the memory controller.
Therefore, the minimum volume of the SRAM is
32 bit × 48 word, which is half of the original partition
size.

The memory controller [36] uses a read reorder buffer [37].
Level-D search region data reuse is adopted in our design
[7]. The reference frame buffer size is FW × (SRV + N − 1),
as shown in Fig. 10. When encoding the Coding Tree
Units (CTUs) in the next row (CTUi, j+1), the pixels in
the overlap area can be reused. It is merely required to
load the data in the emerald area to replace the content
in the yellow rectangle. In this way, assuming that the
sampling format is 4:2:0 and that the reference frame
number is 1, the IO bandwidth requirements are reduced to

Fig. 10. Block diagram of the two-parallel-codec structure. (RRB: read
reorder buffer, SRV : the search range in the vertical direction, SRH : the
search range in the horizontal direction, and N : the size of the CTU.)

1.5 × FW × FH × FR pixels/s, where FW and FH represent
the width and height of the picture and FR denotes the
frame rate. For example, with 4K @ 60 frames/s and a 4:2:0
sampling format, the IO bandwidth for search region loading
is 712 MB/s. The main hindrance of level-D data reuse
strategy lays in the large on-chip memory requirements.
Using the embedded SRAM to implement the level-D
reference buffer is area and power intensive. In contrast,
the embedded DRAM (eDRAM) possesses the advantages
of higher density and lower static power compared with
the SRAM [38], [39]. Because the primary IC foundries,
such as TSMC and United Microelectronics Corporation,
have provided the high-performance eDRAM IPs [40], [41],
eDRAM is becoming a common design tool for advanced
processors and application-specified integrated circuit
design [42]–[45]. In our design, eDRAM is employed to
implement the level-D search region buffering.

V. EXPERIMENTAL RESULTS

A. Compression Performance Analysis

The proposed frame memory compression algorithm is
integrated with HM12.0 reference software to evaluate its
performance. A total of 24 typical video sequences belonging



232 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 1, JANUARY 2016

TABLE IX

DRR OF PROPOSED ALGORITHM AND PREVIOUS LOSSLESS

ALGORITHM (QP = 37, 200 FRAMES, GOP = IBBB)

TABLE X

AVERAGE DRR COMPARISON (LUMA ONLY)

to five classes were tested. All sequences were encoded with
200 frames, and IBBB GOP was used.

The performance comparisons in terms of the DRR of the
proposed algorithm and the DPCM lossless algorithm [21]
with QP = 37 are shown in Table IX. The compression
efficiency of our proposed methods outperformed the previ-
ous method in all benchmarks. The average DRR increase
achieved by our method is 11.9% compared with the DPCM
counterpart. The average performance comparisons in terms of
the DRR of the proposed algorithm and the other three lossless
algorithms are shown in Table X. The proposed algorithm can
achieve an increase in the DRR of at least 3.9% compared
with the other algorithms.

The HEVC profile Main12 supports bit depths beyond
8 bits/sample. The extension of the bit depths makes HEVC

TABLE XI

SUM OF SQUARED ERROR OF ONE 16 × 16 LUMA BLOCK FOR VIDEO

SEQUENCES WITH A BIT DEPTH OF 10 bits/SAMPLE

TABLE XII

COMPARISONS OF PROPOSED AND DPCM ALGORITHMS IN

COMPRESSING 30 bpp SEQUENCES [THE METRIC IS THE RATIO

OF 16 × 16 PARTITIONS THAT CAN BE COMPRESSED IN

(16 × 16 + 8 × 8 × 2) × 8-bit MEMORY REGIONS]

well suited to UHD TV, where very high video quality is
essential. In HM software, the storage of one 10-bit sample
(Y, Cb, or Cr) consumes 16-bit of space. Therefore, the
increase in bit-depth wastes a substantial amount of memory
space and decreases the external bandwidth utilization. We can
see that, for the high-bit-depth videos, if the average bit depth
of the color channels can be reduced to 8 bit, one 16 × 16
partition can be saved in a (16 × 16 + 8 × 8 × 2)× 8-bit
area, instead of occupying a (16 × 16 + 8 × 8 × 2) × 16-
bit region. The performance of DRAM can be significantly
improved. Compared with the previous lossless compression
algorithms, our method provides two types of advantages: first,
the energy of the residuals is reduced by 23.2%–56.4% using
the precision directional prediction, as shown in Table XI.
Second, the k-order UEG-Rice coding efficiently codes the
large-valued prediction residues. Our experiments in Table XII
reveal that 74.5%–92.0% of the partitions in the 30 bpp video
sequences can be compressed to the average 8-bit bit depth,
18.7%–56.1% higher than the predecessor [21]. On average,
85.6% of the partitions can be stored in half of the space
that they previously occupied. Therefore, a reduction in the
activate power of 42.8% can be obtained. In addition, we
compared the compression performance of the proposed algo-
rithm with the HEVC lossless method [46], and the results are
shown in Table XIII. For the high-resolution video sequences
(classes A, B, and E), the proposed algorithm improved the
DRR by 8.7%–12.7% compared with the method in [46]. For
the 30 bpp sequences, the performance gap was increased
to 13.5%.

The compression also leads to a reduction in the dynamic
power consumption of the DRAM. The power performance is



LIAN et al.: LOSSLESS FRAME MEMORY COMPRESSION USING PIXEL-GRAIN PREDICTION AND DYNAMIC ORDER ENTROPY CODING 233

TABLE XIII

DRR OF THE PROPOSED ALGORITHM AND THE HEVC LOSSLESS

METHOD [GOP = IBBB, QP = (22, 27, 32, 37)]

Fig. 11. Simplified DRAM data burst reading/writing state diagram.

measured by the CACTI simulator [47] with the 1.5 V core
and IO voltages. The state-transition diagram of the DRAM
is given by Fig. 11. The DRAM is organized with a 2-D
array structure. The entire data array is composed of multiple
identical banks, which can be simultaneously accessed with
different data buses. A row is simply a group of memory cells
that are activated in response to a row activation command.
A column of data is the smallest independently addressable
unit of memory, and its size is identical to the output data
width. Each column access reads or writes multiple columns
of data depending on the burst length. When the desired data
are not located in the DRAM row buffer, the precharge and
activate operations, which save the current row content to
the memory bank and then reload the desired data row from
the memory bank, are dispatched. The precharge and activate
operations account for 38.2% of the overall dynamic power
requirements of the DRAM. Our memory space compres-
sion algorithm reduced the number of precharge and activate
operations by on average 38%. Accordingly, the dynamic
power dissipation of the DRAM is reduced by 14.5% in our
experiments.

B. Hardware Implementation Analysis

The hardware architecture is described in Verilog HDL
and synthesized with TSMC 65-nm standard cell libraries,

TABLE XIV

HARDWARE IMPLEMENTATION RESULTS FOR THE COMPRESSOR AND

DECOMPRESSOR (VOLTAGE = 0.9 V AND TEMPERATURE = 125 °C)

using Synopsys Design Compiler and IC-Compiler to obtain
accurate postlayout timing, area, and power estimation.
Table XIV shows the hardware implementation results for the
proposed compressor and decompressor.

In the worst working conditions (0.9 V, 125 °C), the
compressor achieved 578-MHz clock speed with only
36.5k-gate standard cells and 192-B SRAM, while the
decompressor consumed 34.7k-gate standard cells and 256-B
SRAM at the frequency of 599 MHz. The power consumption
of the compressor and decompressor are 5.3 and 5.0 mW,
respectively.

Table XV shows a comparison of the compressor imple-
mentation of the proposed algorithm with previous lossy and
lossless algorithms. In Lee’s lossy algorithm [12], the DRR
was fixed as 50%; therefore, the memory bandwidth as well
as the memory requirements could be reduced by half. Because
it is a lossy algorithm, there is a gradual decrease in quality
because of error propagation. Therefore, the lossy algorithm
is not suitable for the HEVC encoder.

The other algorithms are lossless algorithms. The work
in [19] proposed a multimode embedded compression algo-
rithm based on set-partitioning in hierarchical trees (SPIHT)
and achieved a 59.6% DRR. The complex circuit design seri-
ously degraded the clock speed to 10 MHz. The low through-
put (4.5 Mpixels/s) prevents this algorithm from being used
in HD/UHD coding scenarios. The algorithm in [22] consists
of a hierarchical prediction method based on pixel averaging
and pixel copying and SBT. The high DRR (57.3%) mainly
originates from the accurate hierarchical prediction method.
On the other hand, because four pixels in one 8 × 8 partition
could be processed in parallel, the throughput was as high
as 0.92 Gpixels/s. A variable-length coding based on DPCM
was proposed in [21] and could achieve a 56.9% DRR.
It achieved a throughput of 0.53 Gpixels/s through two-engine
parallelism. A lossless reference frame recompression algo-
rithm based on an MDA prediction scheme and semifixed
length coding was proposed in [27]. This algorithm achieved
an average DRR of 61.9%, and the throughput was as high
as 3.13 Gpixels/s. Although the previous lossless algorithms
contributed to the IO traffic reduction, they ignored the
memory size optimization.

The proposed algorithm obtained a DRR of 68.5%, which
is 6.6%–18.5% higher than the predecessors. Because we
introduced the three-stage pipeline architecture, the maxi-
mum clock speed under the worst conditions is 578 MHz
for the compressor, which is 1.93–57.8 times that of



234 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 1, JANUARY 2016

TABLE XV

COMPARISONS OF THE IMPLEMENTATION OF THE PROPOSED ALGORITHM WITH PREVIOUS LOSSY AND LOSSLESS ALGORITHMS

other algorithms. Because of the two-parallel-codec structure,
the maximum encoding throughput is 1.54 Gpixels/s, and the
decoding throughput is 0.78 Gpixels/s. The primary advantage
of the proposed architecture is that it can reduce memory
requirements in the same manner as the lossy algorithm.
On average, 38% memory reductions were achieved, which
is only 12% lower than the lossy counterpart. The internal
read/write power, the IO terminal power and the activate
power consume 40.1%, 21.7%, and 38.2% of the total dynamic
power, respectively. Therefore, for both reductions of the
IO traffic and the frequency of precharge and activate
operations, the dynamic energy consumption of DRAM can
be reduced by 56.8% on average.

VI. CONCLUSION

To reduce the dynamic power requirements of DRAM
in the video codec system, this paper proposes a lossless
compression algorithm that reduces the external traffic and
storage requirements of the reference frames. First, pixel-
granularity adaptive directional prediction is adopted to reduce
the prediction residual energy. Second, dynamic kth-order
unary/Exp-Golomb rice coding is applied to accommodate
the large-valued prediction residuals. The experimental results
demonstrate that the proposed algorithm reduced the OFF-chip
data traffic by 68.5% on average. By applying the PGT-based
storage space compression scheme, we can further reduce the
memory requirements by 38%. Because of the IO traffic reduc-
tion and row buffer utilization improvement, a total of 56.8%
of the dynamic power of external DRAM can be saved by
our strategies. Based on TSMC 65-nm CMOS technology,
our parallel compressor and decompressor achieved the peak-
age throughputs of 1.54 and 0.78 Gpixel/s, respectively, which
can handle QHFD (4K) @ 94 frames/s real-time encoding by
applying the level-D reference data reuse scheme.

REFERENCES

[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the H.264/AVC standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 17, no. 9, pp. 1103–1120, Sep. 2007.

[2] M. Tikekar, C.-T. Huang, C. Juvekar, V. Sze, and A. P. Chandrakasan,
“A 249-Mpixel/s HEVC video-decoder chip for 4K ultra-HD
applications,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 61–72,
Jan. 2014.

[3] 4K Resolution. [Online]. Available: http://en.wikipedia.org/wiki/4K
_resolution, accessed Oct. 17, 2015.

[4] 8K Resolution. [Online]. Available: http://en.wikipedia.org/wiki/8K
_resolution, accessed Oct. 14, 2015.

[5] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[6] T.-Y. Oh et al., “A 7 Gb/s/pin 1 Gbit GDDR5 SDRAM with 2.5 ns bank
to bank active time and no bank group restriction,” IEEE J. Solid-State
Circuits, vol. 46, no. 1, pp. 107–118, Jan. 2011.

[7] C.-Y. Chen, C.-T. Huang, L.-G. Chen, and L.-G. Chen, “Level C+ data
reuse scheme for motion estimation with corresponding coding orders,”
IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 4, pp. 553–558,
Apr. 2006.

[8] O. Vargas, “Achieve minimum power consumption in mobile memory
subsystems,” EE Tines Asia, Mar. 2006.

[9] T. Nishikawa et al., “A 60 MHz 240 mW MPEG-4 video-phone LSI
with 16 Mb embedded DRAM,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC), Dig. Tech. Papers, Feb. 2000, pp. 230–231.

[10] Micron Company, “Calculating memory system power for DDR3,”
Micron Technol., Inc., Boise, ID, USA, Tech. Rep. TN-41-01, 2007.

[11] X. Bao, D. Zhou, P. Liu, and S. Goto, “An advanced hierarchical motion
estimation scheme with lossless frame recompression and early-level
termination for beyond high-definition video coding,” IEEE Trans.
Multimedia, vol. 14, no. 2, pp. 237–249, Apr. 2012.

[12] Y. Lee, C.-E. Rhee, and H.-J. Lee, “A new frame recompression
algorithm integrated with H.264 video compression,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2007, pp. 1621–1624.

[13] A. D. Gupte, B. Amrutur, M. M. Mehendale, A. V. Rao, and
M. Budagavi, “Memory bandwidth and power reduction using lossy
reference frame compression in video encoding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 21, no. 2, pp. 225–230, Feb. 2011.

[14] N. Nazari, R. Shams, M. Mohrekesh, and S. Samavi, “Near-lossless
compression for high frame rate videos,” in Proc. 21st Iranian Conf.
Elect. Eng. (ICEE), May 2013, pp. 1–6.

[15] F. Sampaio, B. Zatt, M. Shafique, L. Agostini, J. Henkel, and S. Bampi,
“Content-adaptive reference frame compression based on intra-frame
prediction for multiview video coding,” in Proc. 20th IEEE Int. Conf.
Image Process. (ICIP), Sep. 2013, pp. 1831–1835.

[16] L. Santos, S. López, G. M. Callicó, J. F. López, and R. Sarmiento,
“Performance evaluation of the H.264/AVC video coding standard for
lossy hyperspectral image compression,” IEEE J. Sel. Topics Appl. Earth
Observat. Remote Sens., vol. 5, no. 2, pp. 451–461, Apr. 2012.

[17] Y. Fan, Q. Shang, and X. Zeng, “In-block prediction-based mixed lossy
and lossless reference frame recompression for next-generation video
encoding,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 1,
pp. 112–124, Jan. 2015.



LIAN et al.: LOSSLESS FRAME MEMORY COMPRESSION USING PIXEL-GRAIN PREDICTION AND DYNAMIC ORDER ENTROPY CODING 235

[18] Z. Shen, C. Miao, and Y. Zhang, “Memory bandwidth reduction for
video decoders based on data arrangements,” in Proc. 6th Int. Congr.
Image Signal Process. (CISP), vol. 1. Dec. 2013, pp. 31–35.

[19] C.-C. Cheng, P.-C. Tseng, and L.-G. Chen, “Multimode embedded
compression codec engine for power-aware video coding system,” IEEE
Trans. Circuits Syst. Video Technol., vol. 19, no. 2, pp. 141–150,
Feb. 2009.

[20] D. Silveira, G. Povala, L. Amaral, B. Zatt, L. Agostini, and M. Porto,
“An energy-efficient hardware design for lossless reference frame com-
pression in video coders,” in Proc. IEEE 20th Int. Conf. Electron.,
Circuits, Syst. (ICECS), Dec. 2013, pp. 573–576.

[21] D. Zhou et al., “A 530 Mpixels/s 4096×2160@60 fps H.264/AVC high
profile video decoder chip,” IEEE J. Solid-State Circuits, vol. 46, no. 4,
pp. 777–788, Apr. 2011.

[22] J. Kim and C.-M. Kyung, “A lossless embedded compression using
significant bit truncation for HD video coding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 20, no. 6, pp. 848–860, Jun. 2010.

[23] G. Povala, D. Silveira, L. Amaral, B. Zatt, M. Porto, and L. Agostini,
“An efficient reference frame compression approach for video coding
systems,” in Proc. IEEE 5th Latin Amer. Symp. Circuits Syst. (LASCAS),
Feb. 2014, pp. 1–4.

[24] H.-C. Kuo and Y.-L. Lin, “A hybrid algorithm for effective lossless
compression of video display frames,” IEEE Trans. Multimedia, vol. 14,
no. 3, pp. 500–509, Jun. 2012.

[25] G.-L. Li, Y.-C. Chen, Y.-H. Liao, P.-Y. Hsu, M.-H. Wen, and
T.-S. Chang, “A 135 MHz 542 k gates high throughput H.264/AVC
scalable high profile decoder,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 4, pp. 626–635, Apr. 2012.

[26] Q. Cai, L. Song, G. Li, and N. Ling, “Lossy and lossless intra coding
performance evaluation: HEVC, H.264/AVC, JPEG 2000 and JPEG
LS,” in Proc. Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit
Conf. (APSIPA ASC), Dec. 2012, pp. 1–9.

[27] L. Guo, D. Zhou, and S. Goto, “A new reference frame recompression
algorithm and its VLSI architecture for UHDTV video codec,” IEEE
Trans. Multimedia, vol. 16, no. 8, pp. 2323–2332, Dec. 2014.

[28] K. McCann, B. Bross, W.-J. Han, I.-K. Kim, K. Sugimoto,
and G. J. Sullivan, High Efficiency Video Coding (HEVC) Test
Model 12 (HM12) Encoder Description, ITU-T/ISO/IEC Joint Collabo-
rative Team on Video Coding, document JCTVC-N1002, Jul. 2013.

[29] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[30] T.-H. Tsai and Y.-H. Lee, “A 6.4 Gbit/s embedded compression codec
for memory-efficient applications on advanced-HD specification,” IEEE
Trans. Circuits Syst. Video Technol., vol. 20, no. 10, pp. 1277–1291,
Oct. 2010.

[31] F. Pan et al., “Fast mode decision algorithm for intraprediction in
H.264/AVC video coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 15, no. 7, pp. 813–822, Jul. 2005.

[32] S. Xue and B. Oelmann, “Unary prefixed Huffman coding for a group of
quantized generalized Gaussian sources,” IEEE Trans. Commun., vol. 54,
no. 7, pp. 1164–1169, Jul. 2006.

[33] T. Silva, J. Vortmann, L. Agostini, S. Bampi, and A. Susin, “FPGA based
design of CAVLC and Exp-Golomb coders for H.264/AVC baseline
entropy coding,” in Proc. 3rd Southern Conf. Program. Logic (SPL),
Feb. 2007, pp. 161–166.

[34] S. Nargundmath and A. Nandibewoor, “Entropy coding of H.264/AVC
using Exp-Golomb coding and CAVLC coding,” in Proc. Int. Conf. Adv.
Nanomater. Emerg. Eng. Technol. (ICANMEET), Jul. 2013, pp. 607–612.

[35] H. Kaul et al., “A 320 mV 56 μW 411 GOPS/watt ultra-low voltage
motion estimation accelerator in 65 nm CMOS,” IEEE J. Solid-State
Circuits, vol. 44, no. 1, pp. 107–114, Jan. 2009.

[36] DesignWare Enhanced Universal DDR Memory Controller IP (uMCTL2)
Datasheet, Synopsys, Inc., Mountain View, CA, USA, 2015.

[37] Achieve 10X DRAM Bandwidth Improvement With a DDR Controller
Read Reorder Buffer, Synopsys, Inc., Mountain View, CA, USA, 2013.

[38] eDRAM. [Online]. Available: http://en.wikipedia.org/wiki/EDRAM,
accessed Sep. 2, 2015.

[39] S. Mittal, J. S. Vetter, and D. Li, “A survey of architectural approaches
for managing embedded DRAM and non-volatile on-chip caches,” IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 6, pp. 1524–1537, Jun. 2015.

[40] High Density Memory. [Online]. Available: http://www.tsmc.com/
english/dedicatedFoundry/technology/hdm.htm, accessed 2014.

[41] UMC’s Embedded DRAM, URAM Proven in 65 nm Customer
Silicon. [Online]. Available: http://www.umc.com/English/news/2008/
20080804.asp, accessed Aug. 2008.

[42] Y. S. Park, D. Blaauw, D. Sylvester, and Z. Zhang, “Low-power
high-throughput LDPC decoder using non-refresh embedded DRAM,”
IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 783–794, Mar. 2014.

[43] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in
Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Dec. 2014, pp. 609–622.

[44] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM’s
next-generation server processor,” IEEE Micro, vol. 30, no. 2, pp. 7–15,
Mar./Apr. 2010.

[45] Xbox 360. [Online]. Available: http://en.wikipedia.org/wiki/Xbox_360,
accessed Oct. 24, 2015.

[46] M. Zhou, W. Gao, M. Jiang, and H. Yu, “HEVC lossless coding and
improvements,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1839–1843, Dec. 2012.

[47] CACTI: An Integrated Cache and Memory Access Time, Cycle Time,
Area, Leakage, and Dynamic Power Model. [Online]. Available:
http://www.hpl.hp.com/research/cacti/, accessed 2008.

Xiaocong Lian (S’15) received the B.S. degree
in electronic science and technology from
Northwestern Polytechnical University, Xi’an,
China, in 2013.

His research interests include algorithms and
very-large-scale integration implementation for
video coding.

Zhenyu Liu (M’07) received the B.E., M.E.,
and Ph.D. degrees in electrical engineering from
Beijing Institute of Technology, Beijing, China,
in 1996, 1999, and 2002, respectively.

He held a post-doctoral position with Tsinghua
University, Beijing, from 2002 to 2004, where he
concentrated on the embedded processor architecture
design. From 2004 to 2009, he was a Visiting
Researcher with the Graduate School of Informa-
tion, Production and Systems, Waseda University,
Tokyo, Japan. He is currently an Associate Professor

with Tsinghua University. His current research interests include low-power
algorithm, SoC design for video compression, such as H.264/AVC and
H.265/HEVC, and architecture research of application-oriented many-core
processor design.

Wei Zhou (M’11) received the B.E., M.S., and
Ph.D. degrees from Northwestern Polytechnical
University, Xi’an, China, in 2001, 2004, and 2007,
respectively.

He is an Associate Professor with Northwest-
ern Polytechnical University. His research interests
include video coding and associated VLSI architec-
ture design.

Zhemin Duan received the B.E. and M.S. degrees
from Northwestern Polytechnical University, Xi’an,
China, in 1978 and 1983, respectively.

He is a Professor with Northwestern
Polytechnical University. His research
interests include video coding and associated
VLSI architecture design.

View publication statsView publication stats

https://www.researchgate.net/publication/283042820


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


