
112 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 1, JANUARY 2015

In-Block Prediction-Based Mixed Lossy and
Lossless Reference Frame Recompression for

Next-Generation Video Encoding
Yibo Fan, Member, IEEE, Qing Shang, and Xiaoyang Zeng, Member, IEEE

Abstract— Frame recompression is an efficient way to reduce
the huge bandwidth of external memory for video encoder,
especially for P/B frame compression. A novel algorithm, which
is called mixed lossy and lossless (MLL) reference frame recom-
pression, is proposed in this paper. The bandwidth reduction
comes from two sources in our scheme, which differs from its
previous designs and achieves a much higher compression ratio.
First, it comes from pixel truncation. We use truncated pixels
(PR) for integer motion estimation (IME) and acquire truncated
residuals for factional motion estimation (FME) and motion
compensation (MC). Because the pixel access of IME is much
larger than FME and MC, it saves about 37.5% bandwidth under
3-b truncation. Second, embedded compression of PR helps to
further reduce data. The truncated pixels in the first stage greatly
help to achieve a higher compression ratio than current designs.
From our experiments, 3-b truncated PR can be compressed to
15.4% of the original data size, while most current embedded
compressions can only achieve around 50%. For PR compression,
two methods are proposed: in-block prediction and small-value
optimized variable length coding. With these experiments, the
total bandwidth can be reduced to 25.5%. Our proposed MLL is
hardware/software friendly and also fast IME algorithm friendly
frame recompression scheme. It is more suitable to work together
with the data-reuse strategy than the previous schemes, and the
video quality degradation is controllable and negligible.

Index Terms— Frame recompression, high-efficiency video cod-
ing (HEVC), mixed lossy and lossless (MLL), motion estimation,
video encoder.

I. INTRODUCTION

AS THE next-generation standard of video coding, High
Efficiency Video Coding (HEVC) [1] is intended to

provide super high definition (HD), which offers significantly
enhanced visual experience. Currently, 1080p HD has already
become a mainstream standard for various video applications.
Higher specifications such as 4 K × 2 K quad full high
definition (QFHD) format, which delivers at least four times

Manuscript received July 31, 2013; revised December 1, 2013 and
February 27, 2014; accepted May 28, 2014. Date of publication June 5, 2014;
date of current version January 5, 2015. This work was supported in part
by National Natural Science Foundation of China under Grant 61306023, in
part by the Specialized Research Fund for the Doctoral Program of Higher
Education under Grant 20120071120021, in part by Science and Technology
Commission of Shanghai Municipality under Grant 13511503400, and in part
by the National High Technology Research and Development (863 Program)
under Grant 2012AA012001. This paper was recommended by Associate
Editor S.-Y. Chien.

The authors are with State Key Laboratory of ASIC and System,
Fudan University, Shanghai 200433, China (e-mail: fanyibo@fudan.edu.cn;
xyzeng@fudan.edu.cn).

Digital Object Identifier 10.1109/TCSVT.2014.2329353

the data throughput of HD, have been targeted by next-
generation applications. However, the corresponding huge
external memory access challenges the design of real-time
video encoder very large-scale integration.

The main source of external memory access comes from
motion estimation (ME). For 1080p at 30 frames/s FHD
video coding, the bandwidth requirement for integer motion
estimation (IME) could be as high as 40 Gb/s, if it set the
search range to be (−64, 63). For fractional motion estimation
(FME) and motion compensation (MC), the bandwidth also
can be as high as 3.1 and 1.6 Gb/s. For 4 K video coding
with higher frame frequency, the bandwidth requirement could
be more than ten times of FHD video coding. Huge external
memory bandwidth dramatically increases the difficulty of
integrated (IC) design, and also makes the input/output (IO)
power consumption unacceptable.

There are three main approaches to reduce the external
bandwidth of video encoder. First, fast ME algorithm reduces
the search points in search range, such as 4SS [2] or TZ [3]
algorithm can reduce at most more than 90% search points.
As a fast algorithm makes pixel data access random and
unpredictable, it is more suitable for CPU- or DSP-based soft
video encoder. For hardware encoder, some other approaches
are proposed, such as pixel truncation [17] and hierarchical
ME [9]. Secondly, many on-chip data reuse methods are
proposed for ME. Tuan et al. [4] summarized data-reuse
schemes as four levels, levels A–D. The main idea of data
reuse is to reduce external memory access through increasing
on-chip memory buffer. For example, the level D data reuse
needs to store several lines of pixel in frame width on chip,
and it can eliminate all of redundant memory access. However,
it is too expensive to store lines of pixel on chip for FHD or
4 K video. The third approach is frame recompression. It is a
technique to reduce the reference frame size by compressing
the original pixel data before such data are stored into off-
chip memory. With a decreased amount of fetched data, the
bandwidth requirement is reduced as a consequence. The
compression algorithm benefits from its fast, high compression
efficiency, and ultralow loss or lossless quality.

The frame recompression techniques have been widely
studied in the past decade. The transform-based approach
is proposed in [5]. However, this approach requires a large
amount of computations which is not suitable for low-latency
and low-power consumption systems. A down sampling-based
recompression method is proposed in [6]. However, the PSNR

1051-8215 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

FAN et al.: IBP-BASED MLL REFERENCE FRAME RECOMPRESSION 113

may be degraded owing to lossy reference frame. In addition,
the differential pulse code modulation (DPCM) is a widely
used spatial domain compression method [7]–[10]. It achieves
high compression efficiency by reducing the spatial redun-
dancies of image. Many domain-specific methods are also
proposed, for example, a lossless frame recompression method
for hierarchical ME scheme is presented in [9], but this method
can only be applied to some special ME fast search algorithms.
TZ search and some other popular fast algorithms cannot be
supported by this scheme.

Most of the existing frame recompression methods are
designed independently of video encoder. Unfortunately, they
did not intend to finely cooperate with encoder, but only
focus on improving the compression ratio. Actually, many
information can be used for frame recompression and make it
work more efficiently with encoder. For example, IME, FME,
and MC have different workload and bandwidth requirement,
the precision of compression can also be different for each
of them. What is more, intra prediction in video encoder
can be used to guide the recompression of each coding
blocks. Frame recompression should take all of them into
consideration, and make use of information from encoder.
In this paper, an encoder friendly frame recompression scheme
is proposed. This scheme fully uses the information from
encoder and discriminate IME from FME and MC to finely
save external memory bandwidth. There are two coding layer
in our scheme: base layer (BL) and enhancement layer (EL).
Base layer is lossy data which only used for IME. Combining
with enhancement layer, lossless data can be reconstructed
and it is used for FME and MC. Base layer is compressed by
proposed three new techniques: tailing-bit truncation (TBT),
in-block prediction (IBP), and small-value optimized variable
length coding (SVO-VLC).

The rest of this paper is organized as follows. In Section II,
frame recompression is briefly introduced. The data-
dependency and current solutions are presented. Section III
describes the proposed frame recompression scheme. In
Section IV, the compression ratio of proposed scheme is eval-
uated and compared with other methods. Section V gives the
implementation of video encoder with proposed mixed lossy
and lossless (MLL) scheme, and evaluates the video quality
under multibit TBT. Finally, the conclusion is presented in
Section VI.

II. FRAME RECOMPRESSION AND MOTIVATION

A. Introduction

Frame recompression can be used in both of video encoding
and decoding, as shown in Fig. 1. For video encoding,
many external data should be loaded on-chip, such as current
macroblock (CMB) for coding, reference pixels for IME,
FME and MC from reference frames, reference pixels for
intra, DB/SAO from current frame and filtered CMB pixels.
Similarly, video decoding also needs such kind of external data
except for IME and FME.

The right part of Fig. 1 shows a quantitative comparison
of bandwidth requirement for video encoding and decoding.
If set the basic coding unit, which corresponding to MB in

Fig. 1. Frame recompression in video codec.

H.264 or CU in HEVC, to be 16 × 16, and search range to be
(−128, 127), the bandwidth requirement for each modules in
video codec are dramatically different. IME occupies most of
the bandwidth, while MC and intra are very small. Obviously,
video encoding faces much more critical bandwidth problem
than video decoding.

B. Current Frame Recompression Schemes

1) ADPCM: DPCM is a common signal encoder that uses
the baseline of PCM but adds some functions based on the
prediction of the samples of the signal. In video coding, DPCM
is a spatial domain compression method, which calculates the
difference between successively scanned data and uses the
difference to represent the data as

Resn = Pn − Pn−1 (1)

where Pn is the nth pixel, the Resn is the difference of
Pn and Pn−1. The DPCM is performed on the 1-D data.
However, image is 2-D. Before DPCM, the pixels are lined
from 2-D to 1-D by scanning. The scan pattern can be
various. For an efficient compression by DPCM, the difference
between successive data must be small so that the data can
be represented by small number of bits. Therefore, DPCM
is normally used along with quantization and VLC. As it
uses quantization, the compression becomes lossy in most of
cases.

ADPCM [10] is a firstly reported frame compression
method which adopts DPCM for video. The algorithm flow-
chart is shown in Fig. 2(a). The adaptive comes from the
quantization coefficient which is adaptively changed according
to content of each coding block. The basic coding block for
ADPCM is 8 × 8, and the scan order is a simple raster scan
as shown in Fig. 2(a).

2) Intra Mode Referenced ADPCM: As the scan order of
ADPCM is very simple, and it cannot fully use the redundant
of neighboring pixels, a scan pattern-alterable DPCM scheme
is proposed in [7]. It makes use of the information from H.264
intra prediction results. As the intra prediction mode gives
the directional information of pixel changes, the DPCM scan
order can be adaptively changed according to image contents,
which is shown in Fig. 2(b). The basic coding block is 4 × 4.
They proposed eight scan orders for each coding block.

114 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 1, JANUARY 2015

Fig. 2. Existing fame recompression schemes. (a) ADPCM. (b) Intra mode referenced ADPCM. (c) HDM. (d) ERP.

A proper scan order can fully make use of redundancy
of neighboring pixels, and produces smaller residuals, which
contributes shorter bit length in VLC coding. Golomb–Rice
coding is used in their scheme. Many quantization coefficients
are tested to determine an optimized one for each coding
unit. Finally, this scheme achieves the compression ratio
of 50%, but the average PSNR degradation is 1.03 dB.
The PSNR degradation mainly comes from the quantization
before DPCM.

3) Hierarchical Minimum and Difference: Hierarchical
minimum and difference (HMD), which removes quantization
and just uses addition operation in decompression process,
is proposed for lossless frame recompression in [11]. The
basic coding unit for HMD is 2 × 2. As shown in Fig. 2(c),
the minimum pixel is first searched within each 2 × 2 block,
which is called as min2 × 2. Then the difference between each
pixel and the corresponding min2 × 2 is calculated, which is
represented as diffPixel. Second, for each 4 × 4 block, there
are four min2 × 2, the minimum value among the four × 2s
is found to be called min4 × 4. The difference between the
min2 × 2 of each 2 × 2 block and the relevant min4 × 4
is computed to be called diff2 × 2. This method is repeated
for next bigger blocks. Fig. 2(c) shows an HMD for 8 × 8
block. The diff4 × 4, diff2 × 2, and diffPixel are generated
according to min8 × 8, min4 × 4, and min2 × 2. Finally, VLC
and packing are performed to compress the min and diff.

In decompression process, the pixel is reconstructed by
adding up the diff with min as

pixel[a][b][c] = min8 × 8 + diff

= min8 × 8 + diff4 × 4[a]
+ diff2 × 2[a][b] + diffPixel[a][b][c] (2)

where a, b, and c are the index for 4 × 4 block, 2 × 2 block,
and pixel, respectively.

4) Embedded Reconstruction Patterns: Embedded recon-
struction patterns (ERP) [12] comprises a predictive pattern
decision for encoding of original 2 × 2 pixel blocks, selective
step quantization and fast reconstruction of embedded patterns
during decoding. In every 2 × 2 pixel block, only 2 pixels are
encoded as predictors while the other two pixels are predicted
by the predictors. Seven reconstruction patterns are proposed
in the ERP which is shown in Fig. 2(d). The light gray color
illustrates the positions of predictor A and B. After the pattern
decision, the selective quantization is performed. For some
patterns, it set quantization to 7 b, while for other patters, 6 b
quantization is applied. After that, the quantized predictors
along with the pattern modes are encoded into 16 b. The
EPR can achieve a constant compression rate of 50%, and
the compressed data can be randomly accessed. Because the
quantization is used, ERP is a kind of lossy compression.

C. Motivation

Most of current pixel compression schemes only achieve
about 50% compression ratio, and it seems hard to go a short
step. Because the improvement from spatial redundancy of
original pixel is very hard, we decided to gain more from
truncated pixel.

Pixel truncation has already been used in motion estimation
to reduce memory bandwidth [17], and truncated pixel will
greatly remove the variations between neighboring points.
From our experiments, it can achieve 15.4% compression ratio
after 3-b truncation.

On combining pixel truncation and compression, much
higher bandwidth reduction than current designs could be
can achieved. Especially for video encoder, the truncated
pixels can be only used for motion estimation, and then
padding the residuals to reconstruct lossless pixels for motion
compensation. It causes negligible video quality drop as
discussed in [18].

FAN et al.: IBP-BASED MLL REFERENCE FRAME RECOMPRESSION 115

Fig. 3. MLL frame recompression scheme.

Moreover, current frame recompression schemes mostly are
not intended designed to firmly cooperate with video codec.
Many useful information from video codec can be used for
frame recompression to achieve higher efficiency.

III. PROPOSED MLL FRAME RECOMPRESSION SCHEME

The proposed frame recompression scheme aims to fully
cooperate with video encoder to reduce the external memory
access and improve the bandwidth utilization. Fig. 3 shows a
whole architecture of MLL scheme.

In video encoder part, there are five modules which load
reference pixels very frequently: IME, FME, MC, intra, and
DB/SAO. DB/SAO stores the final filtered pixels to external
memory for future reference. Intra mode from video encoder
is used by proposed frame recompression. IME has a distinct
source of lossy reference pixels whereas other modules have
lossless reference pixels. As IME occupies most of external
memory access, lossy pixels for IME expect to reduce more
memory bandwidth than previously proposed schemes.

All of memory read/write commands are passed to memory
controller which is able to handle external memory, such as
SDR SDRAM or DDR SDRAM. An arbiter is used to arbitrate

116 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 1, JANUARY 2015

Fig. 4. Tail bit truncation.

different source of memory access. MMU is used to do address
mapping from block number to memory address.

For MLL frame recompression part, there are two data
paths: the encoding path in right, and the decoding path
in left. In encoding path, the filtered pixels are fetched by
8 × 8 blocks. Three proposed techniques are performed in
sequence: TBT, IBP, and SVO-VLC encoding. The outputs
of MLL scheme are truncation residual (TR, 64 n bit) and
prediction residual (PR, variable length), which will be stored
into external memory. In decoding path, the TR and PR
are read out separately from external memory. For PR, it is
sequentially processed by SVO-VLC decoding, IBP, and left-
shifting. The final n-bit lossy 8×8 block is reconstructed. For
TR, it is only accessed when lossless pixels are demanded
from other modules. The lossless pixels can be reconstructed
by adding TR with previously decoded PR.

A. Tail Bit Truncation

Tail Bit Truncation (TBT) is a right-shifting operation to
remove the tail bit of original pixels. Take 1-b TBT as an
example (Fig. 4), 8 × 8 original pixels with 8-b sampling are
loaded into TBT encoder. For each pixel, the 8-b original data
is right shifted 1 b. As a result, two data sets are generated
by TBT: truncated pixels and TR. The bit0 of all pixels are
assembled together as TR, which will be stored to external
memory directly. The remained 7-b data (bit7–bit1) comprise
the truncated pixel, which will be output to IBP for further
compression. There are two kinds of TBT decoding: partial
decoding and full decoding. The truncated 7-b pixels are
generated by SVO-VLC decoding and IBP. Partial decoding
only left-shift the truncated pixel to 8-b, and add zero to least
significant bit (LSB). 1-b lossy pixels can be reconstructed in
partial decoding. Full decoding adds one more operation after
partial decoding, it replaces the LSB zeros by TR. And the
original lossless pixels are reconstructed.

The benefit of TBT is that it almost has no effect to video
quality when doing IME under 1-b precision loss of pixel.
The pixel value after truncation ranges from 1 to 127. The
smaller range of pixel data makes the residual of IBP smaller
and produces more zeros than nonzeros, which benefits the
compression efficiency of SVO-VLC.

Moreover, TBT can be extended to multibit truncation. For
multibit truncation, the compression ratio of truncated pixels
is higher than 1-b truncation. However, the video quality will
be affected since IME search has lower precision. The detailed
discussion of multibit truncation is presented in Section V.

B. Intra Mode Referenced In-Block Prediction

IBP is used to compress the truncated pixels from TBT.
To achieve high compression ratio, many prediction methods
and modes are used in our scheme. As shown in Fig. 5, the
inputs of IBP are 8 × 8 truncated block. The input pixels are
categorized into three types: initial pixel (IP) which located
in (0, 0), basic pixels (BP) which located in top and left,
and remained are normal pixels (NP). Two main procedures
are used in IBP: P1 prediction and P2 prediction. For P1
prediction, it uses IP and BP to do vertical and horizontal
DPCM prediction, and generate BP residual. IP is the start
point of P1 prediction, as shown in the right part of Fig. 5.
The detailed function of P1 is shown as below.

P1 Prediction:

1) Vertical Prediction

Ppred(0, x) = B P(0, x − 1) (3)

B PResidual(0, x) = B P(0, x) − Ppred(0, x). (4)

2) Horizontal Prediction

Ppred(x, 0) = B P(x − 1, 0) (5)

B PResidual(x, 0) = B P(x0) − Ppred(x, 0). (6)

For P2 prediction, it uses both of IP and BP as reference
pixels. Intra mode from encoder is used to reduce mode
prediction computation. Three candidate modes are selected
according to intra mode, and one best NP prediction is chosen
after mode decision. As shown in top right part of Fig. 5, every
pixel has four reference pixels for prediction. C is the pixel to
be predicted, R1 ∼ R4 are neighboring reference pixels. The
P2 prediction can be described as

P1 Prediction:

C(x,y) = f (R1(x−1,y)R2(x−1,y−1),

R3(x,y−1)R4(x+1,y−1)) (7)

N P residual(x, y) = N P(x, y) − C(x,y) (8)

f () is a prediction function based on IBP mode, and its
detailed definition is listed in Table I. To gain a good pre-
diction result, totally eight prediction modes are proposed in
this paper. More IPB modes produce more accurate pixels.
However, it also brings more mode bits and increases the
complexity of mode decision. Considering the massive compu-
tation of mode decision, the intra mode from video encoder is

FAN et al.: IBP-BASED MLL REFERENCE FRAME RECOMPRESSION 117

Fig. 5. Intra mode referenced IBP.

TABLE I

IBP MODE

used to do premode decision. Table II shows a mode mapping
from HEVC intra modes. There are 35 modes in the HEVC
intra prediction. Each intra prediction mode maps to three IBP
candidate modes. Because intra prediction is always performed
in video encoder, every 8 × 8 coding block can guarantee an
intra prediction mode from encoder. Another effort to reduce
IBP complexity is that it only uses addition and shifting, which
introduce very little computational overhead in both of CPU
and digital circuit.

The output of IBP includes IP, IBP mode, BP residual and
NP residual. VLC coding will be performed to reduce size
of data. For MLL encoding path, all of operations mentioned
above should be performed, whereas for MLL decoding path,
it becomes much simpler as it does not needed to do mode
decision.

TABLE II

MODE MAPPING FOR HEVC INTRA MODE AND IBP MODE

Fig. 6. Cumulative distribution of residuals.

C. Small-Value Optimized Variable Length Coding

Most of the residuals from IBP are small value. As we
adopt TBT in MLL scheme, it produces smaller value than
other schemes. Smaller value gives the chance to get smaller
data after compression. To find a suitable VLC coding method,
the residual data is analyzed as shown in Fig. 6. The results
come from seven FHD video sequences.

118 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 1, JANUARY 2015

Fig. 7. Small-value optimized variable length coding.

TABLE III

PROPOSED VLC TABLE

It shows the accumulative absolute date distribution of
residual value from 0 to 9. More than 90% residuals are
ranging from 0 to 4, and less than 1% residuals exceed 9.
Averagely 45% residuals are zero. Another key feature is that
small values are highly locational relevance. The neighboring
value of a small value is highly attempt to be a small value,
while a nonsmall value follows the same rule. Considering
these characters, a small-value optimized VLC method is
shown in Fig. 7.

To suit the locality of value distribution of residual data,
8 × 8 residual block is divided into four 4 × 4 units. Each
unit shares one VLC table, and a table index is included
in the bit-stream. A special case for unit0 is IP, which is
ignored, since IP is a big data in most of cases. There are
eight VLC code tables in our scheme, as shown in Table III.
If the residual is bigger than 32, the value is encoded by
Exp-golomb. S indicates the sign of the residual. The coding
table is selected according to the maximum absolute value of
each 4 × 4 block. Then the residuals are encoded with the
corresponded code table.

The final PR bit stream is packed as shown in Fig. 7. The
first part is IBP prediction mode. The followings are four 4×4

VLC units. In each 4 × 4 VLC unit, the code table index is
encoded at first, and then follows 16 VLC data.

D. External Memory Organization

The external memory organization is shown in the right part
of Fig. 3. There are two memory banks for reference pixel
storage: PR bank and TR bank, and one memory bank for
address table (TLB) storage. Two types of addressing method
are used in our design: TLB addressing and fixed addressing.
For fixed length data, such as TR and TLB data, it can be
addressed by their base address and block index. For PR data,
the data size is variable. To continuously load and store data,
PR data is byte aligned, and the TLB is used to record start
address and length of each 8 × 8 block.

For FHD video sequence, there are totally 32 640 8 × 8 par-
titions. It is not a good idea to store all of these TLBs on-chip.
A small on-chip TLB SRAM with a separate TLB memory
bank is required. Before fetching PR data, the corresponding
TLB should be loaded in advance. Even it causes overhead,
considering PR data is much more than TLB data, this cost
is acceptable. Furthermore, the search window (SW) can be
loaded row by row, and it can only preload the leading and
ending block’s TLB to further reduce overhead.

To improve the external memory efficiency, TLB data is
better to be accessed continuously. For example, SW can be
loaded row by row, only TLBs in vertical boundary are needed.
In this way, the TLB data is stored column by column in TLB
memory bank. A typical TLB data for FHD video encoder is
provided in Fig. 3.

A simple MMU is used to handle all of memory addressing
and TLB refreshing. The 8 × 8 block entry address for luma
and chroma can be generated based on frame number, PR/TR
base address, luma/chroma selector, block coordinate, and
on-chip TLB SRAM.

IV. EVALUATION OF MLL SCHEME

A. Compression Ratio

To evaluate the compression ratio of the proposed MLL
scheme, seven FHD videos with 4:2:0 sampling are applied as
test sequences. As a measure of the compression performance,
the compression ratio is defined as

CR = compressed frame size

original frame size
. (9)

The CR results of selected sequences are shown in Table IV.
For 0-b TBT truncation (n = 0), it is lossless compression,
and it achieves 45.4% compression ratio, which outperforms
current designs by 2.6%–5%. If it uses 1-b TBT, the compres-
sion ratio can be improved to 32.4%. The most significant
case (Sun flower) achieves 25% compression ratio, which
means 3/4 bandwidth can be saved if it allowed 1-bit precision
loss.

TBT is a key technology in MLL to improve compression
ratio and save bandwidth. It can be extended to multibit.
In n-bit (0 < n ≤ 8) TBT case, then least significant bits
of pixel are truncated and assembled as TR. For each 8 × 8

FAN et al.: IBP-BASED MLL REFERENCE FRAME RECOMPRESSION 119

TABLE IV

COMPRESSION RATIOS AND TR/PR RATIOS UNDER MULTIBIT TBT

block, there are 64 n bits TR. The truncated (8-n) bit pixels
are handled by IBP and SVO-VLC. With the increasing of n,
the difference of neighboring truncated pixels is decreasing,
which is beneficial to the IBP compression. As a result, the
compression ratio of PR can be significantly increased. From
Table IV, compress ratio under 3-b TBT is as low as to 15.4%,
which is inconceivable for traditional compression methods.
On the other hand, multibit TBT causes TR growing, which
means more TR data is needed for FME and MC.

The principle of multibit TBT selection can be according to
IME complexity. For a fast algorithm with few search points,
it selects less-bit truncation to improve single pixel precision.
While for algorithm with mass search points, it selects
more-bit truncation to reduce memory bandwidth. Since IME
occupies much more external memory access than FME and
MC, most of reference data are fetched under n-bit loss. As a
result, the actual compression ratio tends to be very low.

B. Bandwidth Reduction Ratio

The bandwidth cost of encoder mainly comes from two
sources: 1) reading reference pixels for motion estimation
and motion compensation and 2) writing reconstructed pixels.
To evaluate the real bandwidth reduction ratio, it needs to take
PR, TR, and TLB overhead in consideration. The overhead
includes: byte-alignment (Bo) and TLB. As PR is VLC coded,
it should to add extra bit (1b ∼ 7b) to make PR byte-aligned.
As it follows even distribution, Bo equals to 3.5 b. TLB is
used to addressing PR for SW loading. It is possible to only
load/store few of PRs TLB to save bandwidth cost, and the
details will be discussed in next section. The block amount
ratio of TR/PR mainly depends on search window size and
the motion activity of video sequence. The statistics of TR/PR
ratio from seven FHD video sequences with search range
(−128, 127) have been made, as shown in Table IV.

MLL contributes a lot for reading bandwidth reduction
(BRr), because most of TRs can be saved in SW. The
reduction ratio is

BRr = PR + Bo + TLB ∗ rtlb + TRn ∗ rpt

64 × 8
× 100% (10)

where rtlb is the ratio of TLB should be loaded for each PR
in SW, rpt is the block amount ratio of TR over PR, and TRn

is the TR data size under n-bit truncation.

Different from reading, encoder should write all of com-
pressed data (TR + PR) to external memory. The writing
bandwidth reduction (BRw) highly depends on compress ratio

BRw = PR + Bo + TLB ∗ rtlb + TRn

64 × 8
× 100%. (11)

The final bandwidth reduction ratio (BRtotal) is

BRtotal = BRr × rrd + BRw(1 − rrd) (12)

where rrd is the reading bandwidth ratio of encoder, rrd is
highly related to motion estimation algorithms, SW data-reuse
methods, SW size and so on. Normally, the reading bandwidth
occupies more than 80% of video encoder.

Table V compares our MLL scheme with other schemes.
The compression ratio is the mathematical performance of
different algorithms, and the bandwidth reduction ratio is the
final IO data reduction. Taking HEVC FHD video encoder
with (−128, 127) search range, Level C data reuse as an
example, the reading bandwidth reduction ratio is 19.8%,
and the writing is 53.8%. Reading occupies about 83% of
bandwidth. The final bandwidth reduction is 25.5%.

Bao et al. [8] combined DPCM compression and data-
reuse cache together to achieve 30.8% bandwidth reduction
ratio, whereas the data compression ratio is still about 50%.
Cheng et al. [20] combined SPIHT and DWT in their method.
Tsai and Lee [19] proposed a compression method for display
memory; however, it cannot be used in video codec. Our
method is equivalent to lossless compression, since the original
pixel can be reconstructed by PR (base layer, BL) and TR
(enhancement layer, EL). Because only our algorithm has two
sets of data after compression, each of them can be sepa-
rately used in motion estimation and motion compensation.
The bandwidth reduction ratio of our design can be much
lower than compression ratio. The final result includes data
alignment, TLB overheads. As other designs have not fully
considered those overheads, our design further outperforms
them in practical usage.

MLL only causes IME prediction accuracy degradation, and
it does not introduce any loss in FME and MC. In contrast,
other lossy compression methods will introduce precision loss
in FME and MC, which causes much higher degradation in
video quality than ours. From Table V, the PSNR reduction
of our design is negligible while n less than 3. According to

120 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 1, JANUARY 2015

TABLE V

COMPARISONS OF DIFFERENT FRAME RECOMPRESSION SCHEMES

our experiments, even set n = 6, it only causes 0.14 db PSNR
reduction.

C. DRAM Bandwidth Utilization Discussion

Bandwidth reduction ratio is a theoretical number to show
how much data can be saved from external memory. In the real
case, it should concern the bandwidth utilization of external
memory, especially for DRAM.

DRAM, such as SDRAM or DDR1/2/3, is widely used
as external memory for its high capacity and low price.
Unlike SRAM, DRAM prefer block-based transmission, and
random access is harmful. Especially for DDR series DRAM,
the prefetch operation greatly speedup the data transmission.
However, if the desired data is tiny and fractional distributed
in external memory, most of the prefetched data are useless
which result in very low bandwidth utilization.

For real usage of frame recompression, it should seriously
consider to improve the DRAM bandwidth utilization after
data compression. The basic principle is to merge the fractional
data to big chain, and make the adjacent data continued store in
external memory. For video encoder, motion estimation algo-
rithms, data-reuse methods and external memory organizations
are key facts for bandwidth utilization.

As shown in Fig. 8, three typical implementations of
video encoder with different data-reuse methods are listed:
1) nondata reuse which needs to load whole SW for every
current LCU; 2) data-reuse level C which only needs one
LCU column in SW; and 3) wave-front parallel processing
(WPP) [1] which needs one column and one row of LCU.
No data reuse is very flexible for encoder to set search center
and SW size. Level C and WPP normally fix search center
to (0, 0), otherwise it causes irregular SW overlap and makes
memory management difficult.

The gray point shown in Fig. 8 represents a basic processing
unit (BPU) in MLL, which is 8 × 8 pixel array as shown in
Fig. 5. A BPU includes two sets of data: PR and TR. LCU
is a 64 × 64 pixel array, which includes 8 × 8 BPUs. For
a (−128, 127) SW, it includes 5 × 5 LCUs which equals to
40 × 40 BPUs. The acquired pixels from external memory
are highly depends on data-reuse methods. Only gray points
are need to be loaded from external memory. To merge as
many BPUs together as possible, three memory organization
methods are proposed: ROW-based, COLUMN-based, and
LCU-based.

As shown in the figure, ROW/COLUMN-based means one
row/column of BPUs in a frame are continuously stored
in external memory. The corresponding TLB for each BPU
are inversely (column/row) stored. The (x, y) represents the
coordinate of BPU. LCU-based is 8 × 8 BPUs in one LCU,
leading and ending TLBs are continuously stored in external
memory. ROW- and COLUMN-based organizations support
very flexible search center and SW size. LCU-based organi-
zation will cause overhead if the boundaries of SW and LCU
do not match.

Memory organization helps to merge BPUs as a long chain
to improve the bandwidth utilization of DRAM. Table VI
shows the chain length of BPU and TLB under different
data-reuse methods and memory organizations. (BPU, TLB)
shows how many BPUs and TLBs can be loaded/stored at a
time. From our experiments, for each BPU, PR is about 79 b
(Table IV), TR is fixed to 192 b (n = 3), and TLB is fixed to
24 b (Fig. 3).

As discussed in Section IV-B, the main data access comes
from PR. It should set the chain length of PR (or BPU) as long
as possible. Taking Level C data reuse in Fig. 8 as an example,
Column-based or LCU-based memory organization produces

FAN et al.: IBP-BASED MLL REFERENCE FRAME RECOMPRESSION 121

Fig. 8. Data reuse and memory organization for improving DRAM bandwidth utilization.

TABLE VI

CHAIN LENGTH OF (BPU, TLB) UNDER DIFFERENT DATA-REUSE

METHODS AND EXTERNAL MEMORY ORGANIZATIONS

40 or 64 BPU chain length, which means the average data
size of PR is 3160 or 5056 b for one-time DRAM access.
The corresponding TLB access is 192 or 240 b. For TR,
it depends on the final motion vectors from IME. According
to our experiments, less than 8% of TR is pure isolated
from neighbors. Most of TRs can be merged into big block
data. On the other hand, even if TR is overloaded, it can be
reused at the next-time motion estimation. Since the total SW
loading is about 27.8 kb (under Level C reuse), TLB and TR
only occupy about 10% of total bandwidth. The final DRAM
bandwidth utilization still be very high. Many techniques

can further improve TR and TLB bandwidth utilization, such
as overloading for data reuse between current LCU, data
buffering to merge tiny data into big block for writing.

D. IBP Mode and Mode Mapping

DPCM-based frame recompression methods only use two
scan patterns (vertical and horizontal), which means they only
use two direction information. In contrast, our proposed IBP
has seven directional modes and one dc mode as shown
in Fig. 9 and Table I. It greatly improves the precision of
prediction, and also outperforms DPCM-based compressions.

MLL make uses of intra mode from encoder. As encoder
always do intra prediction in both of I and P/B frames, there
is no extra overhead to send intra mode information to MLL
for encoder. By referring intra mode, 62.5% mode decision
computation cost can be saved, as it only needs to compare
three out of eight mode in current MLL scheme.

HEVC has very wide intra modes, which provides good
chance to find a good mapping between intra mode and
IBP mode. Through statistical analysis from seven FHD
video sequences, we get the empirical mapping table in
Fig. 5. According to our experiments, more than 95% of
min-cost mode can be successfully covered if three candidates
are selected.

E. Computation Analysis

The main computation in MLL is IBP, which is an extremely
light prediction method for both of software and hardware

122 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 1, JANUARY 2015

Fig. 9. IBP mode selection and distribution.

implementation. Only addition, shifting, and subtraction are
needed, and the computation of different modes is different.
Fig. 9 shows the average mode distribution under seven FHD
test sequences. The average computation of IBP encoding for
one 8 × 8 block is about 334 times (8 − n) bit addition and
144 times right-shifting. The computation of decoding is one-
third of encoding.

The execution time of MLL encoding depends on the
parallelism of IBP predictor. For three-mode parallel design,
it only costs 72 clock cycles to encoding an 8 × 8 block
whereas it is tripled on choosing one-mode serial design.
For decoding, it only costs 56 clock cycles. Multiple IBP
encoder/decoder engines can work together to improve data
throughput.

V. IMPLEMENTATIONS

A. Software and Hardware Implementation

As shown in Fig. 10, for software implementation, MLL
can be implemented as a pixel load/store stack to manage
all of reference pixel read/write operations. For hardware
implementation, MLL is an interface of video encoder to
connect with system bus. All of pixel addressing, compres-
sion are done by MLL, and encoder just treats it as a
memory.

To evaluate hardware cost and performance, our design is
implemented in SMIC 130nm CMOS technology. One IBP
encoder engine and two IBP decoder engines are used to
balance writing and reading bandwidth. The total hardware
cost is 110.4 K Gates, and the maximum clock frequency
achieves 250 MHz. Some extra on-chip memory are needed,
such as TLB SRAM, VLC table, and SRAM buffer for
temporary VLC data. They totally cost about 5 KB. The
external memory size can be reduced to 60% of original frame

Fig. 10. Implementations of MLL scheme with video encoder.

TABLE VII

AVERAGE DATA TRANSMISSION LENGTH AND

BANDWIDTH REQUIREMENT RATIO

size for worst case consideration. To support real-time FHD at
30 frames/s, (−128, 127) search range encoding, the minimum
working frequency for IBP decoding is 206, and 106 MHz for
IBP encoding.

As discussed in Section IV-C, DRAM utilization is a key
issue to evaluate the usability of frame recompression. There
are a lot of DRAM chips that can provide various bandwidth
performance, such as SDRAM, DDR 1/2/3. The external
memory IO bit-width also can be extended by using multi-
ple DRAM chips together to provide multiplied bandwidth.
To evaluate the DRAM utilization, the bandwidth requirement
should be estimated first. For HEVC FHD at 30 frames/s,
(−128, 127) search range and level C data-reuse encoder,
the total reading bandwidth requirement is about 500 MB/s,
and writing is about 100 MB/s. After MLL compression, the
total bandwidth can be reduced to less than 150 MB/s. If it
uses a dedicated memory, 16 b DDR2 or 8 b DDR3 is more
than enough. Moreover, since bandwidth requirement has been
greatly reduced, SDRAM or DDR1 also can be a choice for
FHD video encoder.

RTL simulation is performed under FHD at 30 frames/s,
(−128, 127) search range, LCU-based memory organization

FAN et al.: IBP-BASED MLL REFERENCE FRAME RECOMPRESSION 123

TABLE VIII

AVERAGE PSNR AND BITRATE DEGRADATION UNDER MULTIBIT MLL

and Level C data reuse. SAMSUNG K4B1G0846F-HCF8
DDR3 RTL Model, Altera UNIPHY DDR3 controller [21],
AXI [22] 64 b data bus are used for test environment.
Three IO bit-width configurations, 8, 16, and 32 b, are
tested. Table VII shows the average data transmission length
and bandwidth distribution. The average bandwidth utiliza-
tion, which is calculated by valid data over all prefetched
data, is 95.5% for 32 b DDR3; 97.7% and 98.7% for
16 and 8 b DDR3 memories, respectively. LCU-based mem-
ory organization is the most high efficient for bandwidth
utilization. The downside is that it should set search center
to (0, 0) and SW boundary should match the LCU boundary.

B. Data-Reuse Strategy With MLL

Frame recompression is not the only way to save band-
width. Data reuse also contributes a lot for bandwidth saving.
To finely save external memory access, the combination of
data reuse and frame recompression is necessary for next-
generation video coding system. Fortunately, MLL is an
inherent method which benefit data reuse.

Data reuse is an efficient method to reuse SW for neighbor-
ing LCU (or MB). For each current LCU, the whole search
window will be loaded in advance. The overlapped region of
SW can be reused for next SW. The D-cache and the pixel
buffer in Fig. 10 can be used to store SW on chip. Normally,
all of original pixels are stored in SW. For conventional frame
recompression schemes, the compressed pixels are loaded into
SW. For MLL scheme, only PR is stored in SW, and TR will
be loaded according to motion vectors (MV). As shown in
right part of Fig. 10, by combining with data-reuse scheme,
our proposed MLL scheme can reduce SW SRAM size and
also bandwidth to lower level.

C. Pixel Truncation Strategy With MLL

Pixel truncation is a well-known method to reduce band-
width for motion estimation, and it also contributes to save

hardware cost since the data precision is truncated. Accord-
ing to [13], IME occupied about 33% of hardware resource
in encoder. Taking well-known 2-D SAD-Tree IME archi-
tecture [14], [18] as an example, it saves about 35% of
hardware cost under 3-b pixel truncation. In the other hand,
pixel truncation itself is not a good solution for bandwidth
reduction. Three-bit truncation only saves 37.5% bandwidth,
and higher bit truncation will causes serious video quality
degradation.

MLL can work perfectly with pixel truncation, and it already
include it as a part. MLL only introduces precision loss in
IME, which keeps lower quality loss than ever. Truncation
along with MLL compression greatly reduces redundancy
between neighboring pixels, and saves more bandwidth than
ever, which is over two times of conventional truncation based
designs.

D. MLL-Based ME Versus Conventional ME

To evaluate the impact of MLL-based ME on video quality,
the MLL frame recompression scheme is employed in an
HEVC encoder. The lossy PR data is used in the IME, and
the lossless PR+TR are used in FME and MC. With HM
10.0 reference software [15], three IME search algorithms are
employed in this experiment: Full Search (FS), TZ search
and four-step search (4SS). FS and TZ search are provided
in HM. 4SS is implemented by ourselves. The experiments
are performed under the following settings: sequence structure
is IBBB (the P frame is also called B frame in HM 10.0),
search window is set to (−64, 63), and the resolution of test
sequences is FHD. Seven sequences are tested under three IME
search algorithms and four MLL compression settings: 1–3 b
lossy, and 6-b lossy, as shown in Table VIII. For 1–3 b MLL
compression, the video quality is almost the same as lossless
one. As far as increasing the truncation to 6-b, the visible
quality drop then appears. Chen et al. [18] have mentioned that
3-b truncation is almost lossless for IME search in H.264/AVC,
and here our experiments confirmed it for HEVC encoding.

124 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 1, JANUARY 2015

VI. CONCLUSION

In this paper, an encoder friendly frame recompression
scheme, MLL, is proposed. This scheme fully uses the infor-
mation from encoder and discriminates IME from FME and
MC to finely save external memory bandwidth. There are two
coding layers in our scheme: BL and EL. BL is lossy data only
used for IME, and BL + EL are lossless data which is used
for FME and MC. The BL data is encoded by IBP and SVO-
VLC and the EL data is stored directly in the external memory.
Experimental results show that the bandwidth of the external
memory can be reduced by 74.5%. The proposed MLL can
finely cooperate with video encoder, data reuse methods, and
fast search algorithms. It is easy to be integrated into both of
hardware and software video encoder.

REFERENCES

[1] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, Y.-K. Wang, and
T. Wiegand, High Efficiency Video Coding (HEVC) Text Specification
Draft 10, document Rec. JCTVC-L1003, 2013.

[2] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm for fast
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 6, no. 3, pp. 313–317, Jun. 1996.

[3] JVT of ISO/IEC MPEG, ITU-T VCEG, MVC Software Reference
Manual-JMVC 8.2, document Rec. JVT-B118r2, May 2010.

[4] J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and memory
bandwidth analysis for full-search block-matching VLSI architecture,”
IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 1, pp. 61–72,
Jan. 2002.

[5] T. Y. Lee, “A new frame-recompression algorithm and its hardware
design for MPEG-2 video decoders,” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, no. 6, pp. 529–534, Jun. 2003.

[6] R. Dugad and N. Ahuja, “A fast scheme for image size change in the
compressed domain,” IEEE Trans. Circuits Syst. Video Technol., vol. 11,
no. 4, pp. 461–474, Apr. 2001.

[7] Y. Lee, C.-E. Rhee, and H.-J. Lee, “A new frame recompression
algorithm integrated with H.264 video compression,” in Proc. IEEE Int.
Symp. Circuits Syst., ISCAS, May 2007, pp. 1621–1624.

[8] X. Bao, D. Zhou, and S. Goto, “A lossless frame recompression scheme
for reducing DRAM power in video encoding,” in Proc. IEEE Int. Symp.
Circuits Syst., ISCAS, May/Jun. 2010, pp. 677–680.

[9] X. Bao, D. Zhou, P. Liu, and S. Goto, “An advanced
hierarchical motion estimation scheme with lossless frame
recompression and early-level termination for beyond high-definition
video coding,” IEEE Trans. Multimedia, vol. 14, no. 2, pp. 237–249,
Apr. 2012.

[10] D. Pau and R. Sannino, “MPEG-2 decoding with a reduced
RAM requisite by ADPCM recompression before storing MPEG-2
decompressed data,” U.S. Patent 5838597, Nov. 17, 1998.

[11] S.-H. Lee, M.-K. Chung, S.-M. Park, and C.-M. Kyung, “Lossless
frame memory recompression for video codec preserving random
accessibility of coding unit,” IEEE Trans. Consum. Electron., vol. 55,
no. 4, pp. 2105–2113, Nov. 2009.

[12] Y. V. Ivanov and D. Moloney, “Reference frame compression using
embedded reconstruction patterns for H.264/AVC decoder,” in Proc. 3rd
Int. Conf. Digit. Telecommun., ICDT, Jun./Jul. 2008, pp. 168–173.

[13] T.-C. Chen, C.-J. Lian, and L.-G. Chen, “Hardware architecture design
of an H.264/AVC video codec,” in Proc. Asia South Pacific Conf. Des.
Autom., ASP-DAC, Jan. 2006.

[14] Y. Fan, X. Zeng, and S. Goto, “Optimized 2-D SAD tree architecture
of integer motion estimation for H.264/AVC,” IEICE Trans. Electron.,
vol. E94-C, no. 4, pp. 411–418, Apr. 2011.

[15] HM 10.0 reference software [Online]. Available:
http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/trunk/

[16] T. Y. Lee, “A new algorithm and its implementation for frame
recompression,” IEEE Trans. Consum. Electron., vol. 47, no. 4,
pp. 849–854, Nov. 2001.

[17] Z.-L. He, C.-Y. Tsui, K.-K. Chan, and M. L. Liou, “Low-power VLSI
design for motion estimation using adaptive pixel truncation,” IEEE
Trans. Circuits Syst. Video Technol., vol. 10, no. 5, pp. 669–678,
Aug. 2000.

[18] C.-Y. Chen, S.-Y. Chien, Y.-W. Huang, T.-C. Chen, T.-C. Wang, and
L.-G. Chen, “Analysis and architecture design of variable block-size
motion estimation for H.264/AVC,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 53, no. 3, pp. 578–593, Mar. 2006.

[19] T.-H. Tsai and Y.-H. Lee, “A 6.4 Gbit/s embedded compression codec
for memory-efficient applications on advanced-HD specification,” IEEE
Trans. Circuits Syst. Video Technol., vol. 20, no. 10, pp. 1277–1291,
Oct. 2010.

[20] C.-C. Cheng, P.-C. Tseng, and L.-G. Chen, “Multimode embedded
compression codec engine for power-aware video coding system,” IEEE
Trans. Circuits Syst. Video Technol., vol. 19, no. 2, pp. 141–150,
Feb. 2009.

[21] Altera UNIPHY DDR3 Memory Controller. [Online]. Available:
http://www.altera.com.cn/products/ip/iup/memory/m-alt-high-perf-mem-
controller-ii.html, accessed Feb. 27, 2014.

[22] AXI Bus. [Online]. Available: http://www.arm.com/zh/products/system-
ip/amba/amba-open-specifications.php, accessed Feb. 27, 2014.

Yibo Fan (M’13) received the B.E. degree in elec-
tronics and engineering from Zhejiang University,
Hangzhou, China, in 2003; the M.S. degree in
microelectronics from Fudan University, Shanghai,
China, in 2006; and the Ph.D. degree in engineering
from Waseda University, Tokyo, Japan, in 2009.

He was an Assistant Professor with Shanghai Jiao
Tong University, Shanghai, from 2009 to 2010, and
is currently an Assistant Professor with the College
of Microelectronics, Fudan University. His research
interests include image processing, video coding,
and associated VLSI architecture.

Qing Shang received the B.S. and M.S. degrees in
microelectronics and solid electronics from Fudan
University, Shanghai, China, in 2011 and 2014,
respectively.

His research interests include VSLI design, algo-
rithms and VLSI architectures for multimedia signal
processing, and designing for tests.

Xiaoyang Zeng (M’05) received the B.S. degree
from Xiangtan University, Xiangtan, China, in 1992
and the Ph.D. degree from Changchun Institute
of Optics, Fine Mechanics, and Physics, Chinese
Academy of Sciences, Changchun, China, in 2001.

He was a Post-Doctoral Researcher with Fudan
University, Shanghai, China, from 2001 to 2003.
He then joined State Key Laboratory of ASIC and
System, Fudan University, as an Associate Professor,
where he is currently a Full Professor and the
Director. His research interests include information

security chip design, system-on-chip platforms, and VLSI implementation of
digital signal processing and communication systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

