
2048 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 8, AUGUST 2018

A Hardware-Oriented IME Algorithm for HEVC
and Its Hardware Implementation
Yibo Fan, Leilei Huang, Bei Hao, and Xiaoyang Zeng, Member, IEEE

Abstract— High Efficiency Video Coding (HEVC), the latest
video coding standard, aims to provide coding performance that
is much superior to that of its predecessor, H.264, especially
for high definition video. To fulfill this goal, the inter-prediction
unit (PU) partitions of HEVC are more complex, and the search
range of motion estimation (ME) is much larger. As a result, ME
becomes a bottleneck in the design of the HEVC inter predictor.
In response to this challenge, we developed a hardware-oriented
integer ME algorithm and the related hardware implementation.
Our proposed algorithm led to a decrease in terms of the
Bjontegaard Delta rate when compared with the HEVC test
model 15.0. The corresponding hardware solution benefitted from
2-D data reuse supported by horizontal and vertical reference
SRAMs, on-chip memory reduction supported by 4 × 4 block
compression, and a low-power sum of absolute difference (SAD)
tree supported by PU-level chip selection. When adopting a
32 × 32 SAD tree, the minimum and maximum required
working frequency for 4K × 2K at 30 frames/s videos was [375,
500] MHz. These results demonstrated that our proposed solution
offered desirable improvement in both coding speed and coding
performance.

Index Terms— 2-D data reuse, coding performance, coding
speed, data compression, hardware implementation, HEVC, high
efficiency video coding, IME, integer motion estimation, inter
prediction, SAD tree.

I. INTRODUCTION

H IGH Efficiency Video Coding (HEVC) is the latest
video coding standard. HEVC aims to provide a much

superior coding performance compared to that of its pre-
decessor H.264, especially for high definition (HD) video.
Several new concepts have been introduced in HEVC to
improve coding performance, including notation of the coding
unit (CU), prediction unit (PU), and transform unit (TU).
However, the future design and implementation of HEVC faces
challenges. For this paper, we examined difficulties concerning
motion estimation (ME) and offer a proposed solution.

The Coding Tree Unit (CTU), which can be set to 64 × 64,
is the root node of the CU quad-tree, while the CU is the root
node of both the PU and TU quad-trees. In inter prediction,
the PU can vary from 4 × 4 to 64 × 64, including the newly

Manuscript received October 11, 2016; revised February 27, 2017; accepted
April 25, 2017. Date of publication May 8, 2017; date of current ver-
sion August 3, 2018. This work was supported in part by the National
Natural Science Foundation of China under Grant 61674041, in part by the
STCSM under Grant 16XD1400300, and in part by the State Key Laboratory
of ASIC and System under Grant 2015MS006. This paper was recom-
mended by Associate Editor S. Shirani. (Corresponding authors: Yibo Fan;
Xiaoyang Zeng.)

The authors are with the State Key Laboratory of ASIC and System,
Fudan University, Shanghai 200433 China (e-mail: fanyibo@fudan.edu.cn;
xyzeng@fudan.edu.cn).

Digital Object Identifier 10.1109/TCSVT.2017.2702194

Fig. 1. Inter prediction partitions in HEVC.

introduced asymmetric motion partitions (AMP). As shown
in Fig. 1, the 64 × 64 PUs can split into 64 × 32, 32 × 64,
64 × 16, 64 × 48, 16 × 64, and 48 × 64. The 32 × 32 PUs
can split further into 32 × 16, 16 × 32, 32 × 08, 32 × 24,
08 × 32, and 24 × 32. The 16 × 16 PUs can split further into
16 × 08, 08 × 16, 16 × 04, 16 × 12, 04 × 16, and 12 × 16.

In addition to the numerous combinations of possible parti-
tions, the motion estimation (ME) search range in HEVC also
tends to be larger than that in H.264. For example, the default
search range of HEVC test model (HM) 15.0 is [−64, 64],
and the search range used in the experimental part of related
papers [1]–[3] was usually set to [-64, 64] as well. As a result,
the implementation of ME has been challenging for the design
of HEVC encoders.

Several papers have proposed highly productive ideas, archi-
tectures, or implementations on this topic for both software
and hardware. In the software area, Li et al. [4] proposed a
context-adaptive fast ME technique that chose the appropriate
search method according to the motion intensity measured.
Van et al. [5] proposed a fast ME algorithm for the closed-
loop HEVC trans-rating that changed the start point and search
range according to the input and output motion vectors (MVs).
Nguyen et al. [6] proposed asymmetric diamond search pat-
terns for ME that adopted the wide diamond pattern or the
rot-w-diamond pattern to reduce the encoding time.

In terms of hardware, Nalluri et al. [7] proposed a high-
speed sum of absolute difference (SAD) tree for variable block
size that supported blocks from 4 × 4 to 64 × 64, including
the AMP blocks. Medhat et al. [8] proposed another imple-
mentation for ME that could process 1920 × 1080@30fps
with a search range of [−27, + 27]. Ye et al. [9] presented a
hardware-oriented IME implementation that shared the search
process among different PUs according to the clustering fea-
ture of MVs.

In view of the challenges to HEVC development described
above and in light of the preceding research, we pro-
posed a hardware-oriented integer ME (IME) algorithm and

1051-8215 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

FAN et al.: HARDWARE-ORIENTED IME ALGORITHM FOR HEVC AND ITS HARDWARE IMPLEMENTATION 2049

Fig. 2. (a) Data reuse level. (b) SRAM access limitation.

its hardware implementation. The remainder of this paper
explains our procedures and findings. Section II presents
the background, motivations, and contributions of this paper.
Section III introduces the proposed IME algorithm, while
Section IV gives the corresponding hardware implementation.
Comparisons are provided in Section V. Finally, Section VI
concludes this paper.

II. BACKGROUND, MOTIVATIONS & CONTRIBUTIONS

In this section, we provide the notation used in this paper
for the data reuse level and cost reuse level, followed by the
motivations and contributions of this paper.

A. Background

1) Data Reuse Level: For hardware implementations, ref-
erence and current pixels are usually stored in two register
arrays that are connected to a SAD tree to calculate the cost,
as shown in Fig. 4(a). Three possible data reuse levels could be
adopted during the update of the reference register array: “no
reuse,” “1-D reuse,” and “2-D reuse,” as shown in Fig. 2(a).

“No reuse” signifies that there is no data reuse between two
search points. Generally, this level is adopted by software, with
the result that there is an almost linear relationship between
the time cost of search and the number of search points for
software.

“1-D reuse” means that data between two vertical
(horizontal) adjacent points can be reused efficiently, if refer-
ence pixels are located horizontally (vertically) in the reference
SRAM. This level is adopted by almost all hardware designs.

“2-D reuse” signifies that data between any two adjacent
points can be reused efficiently, which cannot be adopted in
general structure due to the access limitation of SRAMs. This
limitation will be analyzed in Section IV B.

2) Cost Reuse Level: For software algorithms, SAD costs
of different PUs usually are tested in separate searches. For
example, in HM, 64 × 64 PUs and their splits are searched
first, then the four 32 × 32 PUs within it and their splits are
searched. This process is executed recursively until the tests
towards 8 × 8 PUs and their splits are finished, unless some
early termination conditions are met.

For hardware implementations, thanks to the adoption of
SAD trees, SAD costs can be reused. In other words, costs
of all PU levels for the same MV are gathered in the
same search. However, this approach could introduce some
unnecessary power consumption if only one specific PU (and
its splits) needs to be tested.

B. Motivations

In the software area, several fast ME algorithms have been
proposed to reduce the total search points while keeping the
same coding performance. However, it is still unlikely for them
to finish the search task for HD applications in real time.
Nevertheless, the contributions of these works are remarkable,
such as the diamond search [11], the hexagonal search, and
the square search, all of which would be of great assistance if
they could be imported efficiently to hardware designs.

In the hardware area, several papers proposed hardware-
friendly search algorithms [12]–[14]. However, these methods
are inefficient because their data reuse levels are not satisfying.
As a result, full search or block-based search and general SAD
trees are still favored, which will unavoidably introduce much
unnecessary power consumption.

Given the above state of affairs, it is quite an attractive chal-
lenge to work on the development of algorithms suitable for
implementation on hardware platforms. Accordingly, for this
paper we proposed a hardware-oriented IME algorithm and
succeeded in providing a feasible implementation supporting
real-time encoding.

C. Contributions

The contributions of this paper are given as follows:

1) We analyzed the limiting factors when implementing
IME on a hardware platform.

2) We proposed a hardware-oriented algorithm based on the
above analysis which achieved a decrease in BD rate.

3) We developed the corresponding hardware implementa-
tion that could support 4 K × 2 K@30fps video coding.

III. THE HARDWARE-ORIENTED IME ALGORITHM

A. Limiting Factors

Three main limiting factors could exist during the hardware
implementation of IME.

1) Search Pattern is Limited: During hardware implemen-
tations, it is important to pay great attention to the data reuse
level because it has a deep influence on efficiency and power
consumption.

For example, Medhat et al. [14] proposed a search pattern
called FCSA that searches “from the center point at every row
of search window, then, it takes, consecutively, one candidate
left to the center point and one candidate to the right till
it reaches search window’s edges” [14]. This kind of search
pattern may be efficient for software, but it is not efficient for
hardware. The reason is quite obvious: the farther the search
point is from the center, the less the data can be reused. As a
result, full search or block-based search is still favored, but
these patterns lack flexibility and efficiency.

2) Starting Point is Limited: In the HM, the IME is tra-
versed from the largest CU (LCU) to the smallest CU (SCU)
recursively, as mentioned previously. For this reason, the
starting point for each PU could benefit from MV predic-
tions (MVPs).

However, for hardware solutions, the search process can be
paralleled between PUs, thanks to the adoption of SAD trees.

2050 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 8, AUGUST 2018

This adoption, in fact, is also an obvious necessity to fulfill real
time encoding. Assuming that 8000 cycles (corresponding to
4K×2K @30fps @500MHz) is allowed for the IME towards
one coding tree unit (CTU), if each PU is searched individu-
ally, the average cycle margin allowed for each would be only
8000 ÷ (1 + 4 + 16 + 64) ÷7 = 13. It is almost impossible
to find a good enough result in a search range of [−64, 64]
with such a small cycle margin. As a result, the starting point
for each PU cannot be as flexible as it is in software.

3) Real Time Problem: Assuming that the search range is
[−64, 64], then 129 × 129 = 16641 search points must be
tested for every PU partition. Considering the hardware cost of
register arrays and SAD calculation logic, a 64 × 64 SAD tree
would be too costly. Instead, we adopted a 32 × 32 SAD tree
for the purposes of this paper. Even by taking full advantage
of a SAD tree by utilizing parallel searching, the calculations
would still take at least 16641 ×4 = 66564 cycles.

Of course, the search range could be reduced to keep the
cycle cost within a reasonable range, such as [−23, 23], which
is 47 × 47 ×4 = 8836 cycles. However, this approach would
lead to a relatively high BD rate increase for videos with
highly dynamic motions. For example, the BD rate of the
sequence “BasketballDrive” increased 1.7% according to the
test using HM 15.0.

B. The Detailed Algorithm

Based on the analysis made above, we proposed a hardware-
oriented algorithm as presented in this paper.

In order to utilize fully the potential possibility of data reuse,
the proposed algorithm searched from the center, then spread
to the surroundings in diamond pattern. All search points in
the same diamond pattern could benefit from 2-D data reuse,
which made the search efficient and power-saving.

In order to balance the flexibility of starting points and the
parallelism of search, the proposed algorithm took two types
of steps: coarse steps and fine steps. In a coarse step, all PU
partitions were searched in parallel from the same starting
point (0, 0) without using MVPs. In a fine step, the best PU
partition decided in the coarse step was refined further by
searching around its own starting points if necessary.

Details of these steps are given as follows.
1) Coarse Step: In this step, the following points were

tested and the best MV of each block was updated based on
SAD cost only, instead of on the Rate-Distortion (RD) cost.
The search worked as follows:

• Starting point (0, 0);
• each point on the diamond pattern with a stride of 1, then

stride 2, 3, 4 . . . 10;
• each point on the diamond pattern with a stride of 12,

then stride 16, 20 and 24;
• each point on the diamond pattern with a stride of 32,

then stride 40, 48, 56 and 64.

These searches are described by the solid lines in Fig. 3.
After the above searches, the decision to PU partition was
made. In order to get a more accurate partition results, both
SAD costs and rate costs of MV differences (MVDs) are
considered. However, the final MVs of the neighboring PUs

Fig. 3. The proposed algorithm.

are yet to be decided in the fine step. As a result, MVP of
the current PU is generated based on the best MVs of the
neighboring PUs got in the coarse steps.

2) Fine Step: After the PU partition decision was finished,
MVs of the best PU partition were refined further if necessary.
To be more specific, the following refinements were done if the
best MV found in the coarse step was located in the diamond
pattern whose stride was larger than 10.

• If the current block belonged to an 8 × 8 PU, a search
range of [−3, 3] from the corresponding MV was
searched.

• If the current block belonged to a 16 × 16 PU, a search
range of [−5, 5] from the corresponding MV was
searched.

• If the current block belonged to a 32 × 32 or 64 ×
64 PU, a search range of [−7, 7] from the corresponding
MV was searched.

The above search process is described by the gray blocks.

IV. THE PROPOSED IMPLEMENTATION

A. Overall Architecture

The overall architecture is shown in Fig. 4 (a). We pro-
posed several novel ideas to solve problems in throughput,
bandwidth, area, and power consumption, including:

• Horizontal and vertical (H-V) reference SRAM to pro-
vide 2-D data reuse, which is not supported by general
reference SRAM structures;

• Data compression based on 4 × 4 blocks to reduce the
area cost caused by on-chip reference SRAMs;

• PU-level chip selection to avoid unnecessary power con-
sumption during the fine step and during the update of
reference registers.

FAN et al.: HARDWARE-ORIENTED IME ALGORITHM FOR HEVC AND ITS HARDWARE IMPLEMENTATION 2051

Fig. 4. (a) The proposed hardware architecture (b) data mapping in H-V reference SRAMs (c) update of register array (d) “checker board” distance.

B. Throughput and the Proposed H-V Reference SRAM

The efficiency of the proposed algorithm is based on an
assumption that 2-D data reuse could be utilized. However,
this data reuse level could not be adopted in general reference
SRAM structures because of the access limitation of SRAMs,
as mentioned in Section II A.

This kind of access limitation can be explained by Fig. 2 (b),
in which the reference pixels are buffered by a large SRAM.
Pixels in the zeroth row can be accessed with address 0; pixels
in the first row can be accessed with address 1; and so on.
In order to search one point for a 64 × 64 PU — for example,
the 64 × 64 block of point a— 64 cycles are needed to load
the 64 × 64 block stored in SRAM. However, after this block
is loaded, by taking the advantage of 1-D reuse, the update
of point bor TABLE I point c can be done in only one cycle
because the missing pixels are located in just one address.
In contrast, for the other adjacent points d, e, f, and g, or for
the individual point h, missing pixels are located in different
addresses. All of them require another 64 cycles to be updated.
By using some extra registers [10], the cycle cost to prepare
blocks for point d or e could be reduced to only 1 cycle.
Unfortunately, the use of extra registers would be too costly to
be applied to points f and g or points in even further positions
such as point h. For this reason, 2-D reuse is not supported
by existing designs.

In order to support 2-D reuse, we proposed using H-V
reference SRAM, which adopted a horizontal SRAM and a
vertical SRAM. As shown in Fig. 4 (b), the horizontal SRAM
stored the reference pixels in horizontal order, and the vertical
SRAM stored the reference pixels in vertical order. In other
words, with address 0, the zeroth row could be accessed
from the horizontal SRAM, and the zeroth column could be
accessed from the vertical SRAM. Thus, if the search point
moved vertically, missing pixels could be fetched from the
horizontal reference SRAM in one cycle, which is similar
to existing designs. If the search point moved horizontally,
missing pixels could be fetched from the vertical SRAM in
just one cycle, too. Even for diagonal directions, missing
pixels could be fetched from two SRAMs in one cycle as
well. The cycle cost to update the register array could be

concluded by (1), which uses the “checker board” distance
shown in Fig. 4 (c).

Cyc = min(64, max(|xc − xd|, |yc − yd|)) (1)

To demonstrate the efficiency of H-V reference SRAM,
we mapped separately an example of diamond search and an
example of hexagonal search on the proposed architecture.
As shown in Fig. 5, only 60 points were loaded into the
register array to realize the diamond search with stride length
of 8, which took 63 + 60 = 123 cycles. Only 82 points were
loaded into the register array to realize the hexagonal search
with the same stride length, which took 63 + 82 = 145 cycles.
Here, black arrows indicate the search points loaded, while
gray circles stand for the points calculated.

Attention should be paid to the following factors. First, the
total cycle cost could be reduced further by rearranging the
search order. Second, extra points loaded could either be sent
to the SAD tree to improve the search results, or they could
be bypassed to reduce the power consumption.

C. Bandwidth and Transpose Memory

From the above, it was easy to see the efficiency of the H-V
reference SRAM. However, one critical problem remained
to be solved: how to transfer the off-chip reference pixels to
the vertical reference SRAM efficiently. Transferring pixels
to the vertical reference buffer directly would do great harm
to the bandwidth, considering that pixels belonging to the same
column are stored discontinuously in the off-chip memories.

To solve this problem, a memory structure called transpose
memory was adopted, to accomplish transposition towards the
coefficients in the discrete cosine transform (DCT). As in
the other designs, first the reference pixels were loaded into
the horizontal reference SRAMs. Then they were transferred
again from the horizontal reference SRAMs to the vertical
reference SRAMs by the transpose memory.

It is obvious that the former transfer occupied the same
bandwidth as the other designs, while the latter did not occupy
any bandwidth. In fact, the latter transfer could be executed
concurrently with other operations, for example, with loading

2052 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 8, AUGUST 2018

Fig. 5. Map of diamond search and hexagonal search.

current pixels or dumping reconstruction pixels. Thus, extra
cycle costs were removed also.

Shang et al. [15] proposed an SRAM-based transpose
memory, which could provide a throughput of 32 pixels/cycle
with an extremely low hardware cost. By using such a memory,
this design was able to prepare the reference pixels in the
vertical reference SRAM easily without any extra bandwidth
occupation or cycle cost.

D. Area Cost and the Proposed Block Compression
Technique

Although H-V reference SRAM provided efficient 2-D data
reuse, it doubled the area cost of on-chip reference buffers.
As mentioned above, a commonly-adopted search range is
[−64, 64]. In other words, 192 × 192 = 36864 pixels must
be stored on chip, which is already a heavy burden.

Some reference compression algorithms [16], [17] were
proposed to reduce the bandwidth to transfer reference pixels,
but the area cost was not reduced. Ivanov and Moloney [19]
proposed a 2 × 2 block-based compression technique which
had a fixed data compression rate of 50%. In other words,
their method could reduce both bandwidth and area cost
to 50%. To further reduce the area cost, we proposed a data
compression technique based on 4 × 4 blocks, which had a
fixed data compression rate of 25%. According to Table I, our
method led to a negligible increase in terms of BD rate. The
detailed algorithm is given as follows.

Each 4 × 4 block, namely, 4 × 4 × 8 = 128 bits,
was compressed to 32 bits, 4 of which were used to store
compression mode, and 28 of which were used to store
truncated pixels. In other words, a total of 2∧4 = 16 modes
were supported in this technique. Modes and the corresponding
decompressed block are described in Fig. 6, where:

• Pixels in each 4 × 4 block are denoted by numbers 0∼f.
• The truncated pixels are marked by a suffixed single

quote, which are obtained by discarding the last bit,
as described by x’ = x & 8’hfe in Fig. 6.

• The average operation towards a vertical line, horizontal
line, or 2 × 2 block is marked by a prefixed “v”,
“h” or “b”.

• “2 × 2 block” refers to pixel 0, 1, 4, 5, pixel 2, 3, 6, 7,
pixel 8, 9, c, d or pixel a, b, e, f.

For decompression:
• In mode 0 ∼ 7, decompression was made based on

truncated pixels in a horizontal or a vertical line.

TABLE I

BD RATE INCREASE OF THE PROPOSED DATA COMPRESSION

• In mode 8 ∼ 12, decompression was made on truncated
pixels in different 2 × 2 blocks.

• In mode 13 ∼ 15, decompression was made on the aver-
age of each horizontal line, vertical line, or 2 × 2 block.

Decision of these modes was made based on the SAD cost
between the original and decompressed pixels. Regardless of
the mode, decompression was always made based on just
4 truncated pixels. As shown in Fig. 7, in mode 0, the truncated
value of pixel 0, 1, 2, 3 was used to do decompression, so the
higher 7 bits of these data needed to be stored, which took
4 × 7 = 28 bits. The situation was quite similar for the other
modes.

In addition, reference SRAMs that adopted this technique
could be taken as normal SRAMs but with more write and read
latency. This ability benefitted cooperation with H-V SRAMs,
so combining this technique with H-V SRAMs proved to
be straightforward. As shown in Fig. 8, to write original
data, every 4 neighboring lines were compressed and stored
together. In this way, the data width of SRAM remained
unchanged, but the depth was reduced to one quarter. To read
decoded data, for example, line x + 1, the corresponding line
in reference SRAM was fetched and decompressed to recover
line x + 1.

E. Power Consumption and the Proposed Low-Power SAD

For general SAD trees, costs of all PU levels are always
calculated, which is suitable for full search and block-based
search applications. However, for our proposed algorithm and
other fast ME algorithms, some PUs could be bypassed to save
unnecessary power consumption.

In addition, even by taking advantage of 2-D reuse, several
cycles would still be needed to update the reference register
array if the current search point and the next search point
were relatively far away from each other. During this process,
the entire SAD tree could be bypassed to save some power.

FAN et al.: HARDWARE-ORIENTED IME ALGORITHM FOR HEVC AND ITS HARDWARE IMPLEMENTATION 2053

Fig. 6. The proposed data compression technique based on 4 × 4 block.

Fig. 7. Example of the proposed data compression technique.

Fig. 8. Reference SRAM with the proposed data compression technique.

Based on the above two reasons, for our research we
proposed a SAD tree with PU-level chip selection. An imple-
mentation of the 32 × 32 tree is presented in Fig. 9 as
an example. Three pipeline stages were adopted in this tree,

Fig. 9. Tree with PU-level chip selection: side view (left) and top view (right).

which were costs for 08 × 08 PUs and their splits, costs for
16 × 16 PUs and their splits, and costs for 32 × 32 PUs and
their splits. To support the PU-level chip selection, each PU
and its splits was given an individual enable signal, i.e., for
PUs of 32 × 32 level, 16 × 16 level, and 08 × 08 level, 1,
4 and 16 enable bits were provided separately. For example,
if ena_16[2] is valid, then only the gray parts in Fig. 9 are
enabled.

V. RESULTS AND COMPARISONS

A. Software Performance

The proposed algorithm was realized and tested using
HM 15.0 software by replacing the default IME search
algorithm with the proposed one. As shown in Table II,
the proposed algorithm achieved better BD rate performance
than even HM 15.0, which may need some explanation here.

First, the anchor was HM 15.0 with the default setting,
which adopts a fast search algorithm, not full search.

Second, by taking advantage of the H-V reference SRAM
and SAD tree, the proposed solution searched much more
densely around the shared starting point (0, 0), which is an
advantage for a scene with relatively static motion. As for
scenes with strong dynamic motions, the proposed solution
would refine the search result for each PU if the coarse result
were located on a diamond pattern with a stride of more
than 10.

B. Hardware Performance

The corresponding hardware implementation was realized in
RTL, tested by simulation, and verified by FPGA (TR4 devel-
opment board), but not proved by silicon yet. Detailed perfor-
mance results are provided below.

1) Throughput: The main contribution of the proposed H-V
reference SRAM is that it can support 2-D reuse, fully utilizing
the reusable data between neighboring samples in all of the
eight directions. Table III lists the throughput of searching
single points, along lines and within blocks.

The overall throughput of IME was calculated in the fol-
lowing way. Thanks to the H-V reference SRAM, the coarse
step took only (31 + 1 + 0 + 4 + 0 + 8 + 0 + 12 + 0 +

2054 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 8, AUGUST 2018

TABLE II

BD RATE INCREASE OF THE PROPOSED ALGORITHM

TABLE III

AVERAGE THROUGHPUT OF SEARCH (SAMPLE/CYCLE)

16 + 0 + 20 + 0 + 24 + 0 + 28 + 0 + 32 + 0 + 36 +
0 + 40 + 1 + 48 + 3 + 64 + 3 + 80 + 3 + 96 + 7 +
128 + 7 + 160 + 7 + 192 + 7 + 224 + 7 + 256) × 4 =
6180 cycles, where:

• 31 is the initial cycle for register arrays;
• 1 + 0 is the cycle to search MV (0, 0) and the checker

board distance between MV (0, 0) to a diamond pattern
with a stride of 1 minus 1;

• 4 + 0 is the cycle to search the diamond pattern with a
stride of 1 and the checker board distance between it and
the next diamond pattern of minus 1, and so on;

• × 4 is needed because a 32 × 32 SAD tree was adopted
instead of a 64 × 64 SAD tree to keep the hardware costs
within a reasonable range. Since the smaller (32 × 32)
calculation engine was used, more cycles were needed to
get the results.

• Thanks to the simplicity of the proposed compression
technique, the decompression operation here occupies no
extra cycle.

As to the fine step, the cycle cost depended on the results
achieved in the coarse step. In the hypothetical best case,
no extra cycles were needed. In the worst case, all of the

MVs garnered in the coarse step needed to be refined. If only
8 × 8 PUs existed, cycle cost was no more than (7 + 7 × (7
÷ 7)) × 64 × 2 = 1792, where:

• the first 7 is the maximum number of initial cycles for
each block in an 8 × 8 PU;

• 7 × (7 ÷ 7) is the cycle cost to search the window of
[−3, 3] with seven 8 × 8 engines working in parallel;

• 64 × 2 is the maximum MVs amount.

If only 16 × 16 PUs existed, cycle cost was no more than
(15 + 11 × (11 ÷ 4)) × 16 × 2 = 1536, where:

• 15 is the maximum number of initial cycles for each block
in a 16 × 16 PU;

• 11 × (11 ÷ 4) is the cycle to search the window of
[−5, 5] with four 16 × 16 engines working in parallel;

• 16 × 2 is the maximum MVs amount.

In a similar way, if only 32 × 32 PUs or a 64 × 64 PU
existed, the cycle cost was no more than (31 + 15 × 15) × 4
× 2 = 2048. As a result, the cycle cost of the fine step was
no more than 2048. In other words, the maximum required
working frequency for 4K × 2K@30fps videos was 3840 ×
2160 ÷ 64 ÷ 64 × 30 × (6180 + 2048) = 500 MHz, and
the minimum frequency was 375 MHz.

2) Bandwidth: Thanks to the transposed memories adopted
and the 4 × 4 block compression technique proposed, band-
width of the proposed design was reduced to 25%.

3) Area Cost: With the adoption of H-V reference SRAM,
an extra vertical reference buffer was needed in this design.
Fortunately, thanks to the data compression method proposed,
the overall area cost of reference memories was even reduced.

Using ARM’s memory compiler sram_sp_hdc_svt_rvt_hvt,
the regular reference SRAM structure needed 12 SRAMs
whose word number was 192 and word bit was 128. However,

FAN et al.: HARDWARE-ORIENTED IME ALGORITHM FOR HEVC AND ITS HARDWARE IMPLEMENTATION 2055

TABLE IV

AREA COST OF THE PROPOSE ARCHITECTURES

TABLE V

POWER AND CYCLE COST OF MEMORY STRUCTURES

the H-V reference SRAM structure with the proposed data
compression technique needed only 6 SRAMs. Detailed gate
counts are listed in Table IV, which were achieved under
TSMC65 technology with Design Compiler.

Since the Least Significant Bit (LSB) of each pixel was dis-
carded in the proposed data compression technique, the same
modification was applied to the SAD tree as well.

4) Power Consumption: Compared with area cost, power
consumption may have a higher priority in some embedded
systems. In order to provide a quantitative comparison, our
experiment implemented the diamond search with a stride
length of 8 on the H-V reference memory structure and a
general reference memory structure. According to Table V,
the power consumption was reduced to 23.1%.

Table VI lists the power consumption of the SAD tree. If the
entire tree was bypassed, power consumption was reduced
to 18.8%. All results were obtained under TSMC65 technology
with Prime Power.

C. Overall Comparison

Overall comparisons are given in Table VII. In terms of
BD rate increase, the proposed design achieved the best
performance among them.

In terms of area cost, the size of reference SRAM was
greatly reduced thanks to the data compression technique
proposed, while the gate count of the SAD tree was relatively
larger because it supported all the block sizes in HEVC. (The
size of reference SRAM was estimated by the search range.
For example, the required size for a search range of [−16, 16]
was (16 × 2 + 64)^2 = 9.216 KB.)

In terms of throughput, only our proposed design considered
the cycle cost to update the reference register array. The design
also provided 2-D data reuse thanks to the H-V reference
SRAM proposed, which makes the “maximum resolution”
more meaningful. Comparison analyses to other works are
given below.

TABLE VI

POWER CONSUMPTION OF SAD STRUCTURES (32 × 32)

By adopting a technique called PCTS, Ye et al. [9] claimed
that their design succeeded in encoding 4K × 2K@30fps
videos with a working frequency of only 200 MHz. However,
this result may have been inaccurate because the cycle cost
to update the reference pixels was omitted. According to
their calculation, “only one cycle is required for every search
candidate,” but the checker board distances of most search
points in their search steps were larger than 1. Of course,
storing them by registers could provide the wanted throughput,
but obviously it was unwise to store a search window of
[−64, 64] with expensive registers.

By adopting a technique called FCSA, Medhat et al.’s [14]
design succeeded in encoding 4K × 2K@30fps videos with
a working frequency of 550MHz. However, the search range
supported by them was only [-16, 16]. As mentioned previ-
ously, such a narrow search range would lead inevitably to
a relatively high BD rate increase for videos with dynamic
motion even if the full search were adopted.

Beyond this problem, Medhat el al. [14] also omitted a
data reuse strategy in their paper. If the search window
had been stored in SRAMs, the cycle cost to update the
search point from one side to another would have increased
dramatically with the distance from the center. If the search
window had been stored in registers, the hardware cost would
have increased dramatically with the search range. In other
words, if their solution were to be implemented by hardware,
the application scope might be limited to those with narrow
search ranges.

Jou et al.’s [20] algorithm would “select the most probable
search direction and steps through a statistical analysis to
reduce the number of search points” and managed to encode
4 K × 2 K@60 fps videos. This approach seems attractive,
but the following two points need to be considered.

First, their BD rate increase was as high as 4.04%, which
meant the coding speed of the algorithm was excellent but the
coding performance was poor. According to their paper, on the
one hand, the search points were over-reduced by adopting
a search method called predictive enhanced predictive zonal
search (PEPZS). On the other hand, block sizes supported were
over-simplified as well to reduce the calculation burden, which
together led to a very high BD rate increase.

Second, their coding speed might have been exaggerated as
well because the cycle costs to update the reference register
array were not considered. If 2-D data reuse is not sup-
ported, their search method, PEPZS, would be quite inefficient
because this method needs to take 8 different search directions.

2056 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 8, AUGUST 2018

TABLE VII

AREA COST OF THE PROPOSE ARCHITECTURES

As a matter of fact, Jou et al.’s [20] algorithm could be
imported easily to our structure, since all the 8 directions
needed would be provided efficiently by the H-V reference
SRAM we have proposed. In other words, Jou et al.’s [20]
design could be optimized by adopting the proposed H-V
reference SRAM, as well as the proposed low-power SAD
tree and 4 × 4 block based compression technique.

Fig. 8. Reference SRAM with the proposed data compres-
sion technique

Fig. 9. Tree with PU-level chip selection: side view (left)
and top view (right)

VI. CONCLUSION

There are great challenges to implementing IME under
the HEVC standard. This paper has presented a hardware-
oriented IME algorithm that achieved a decrease in BD rate as
compared to HM 15.0. Our corresponding hardware solution
succeeded in supporting 4K × 2K@ 30 fps videos with a
working frequency of no more than 500 MHz. These results
demonstrate that our proposed solution offered desirable
improvement in both coding speed and coding performance.
For future study, we will investigate other possible algorithms
further and test them on the proposed hardware platform.

REFERENCES

[1] N. Parmar and M. H. Sunwoo, “Enhanced Test Zone search
motion estimation algorithm for HEVC,” in Proc. Int. SoC Design
Conf. (ISOCC), Nov. 2014, pp. 260–261.

[2] S.-H. Yang, J.-Z. Jiang, and H.-J. Yang, “Fast motion estimation
for HEVC with directional search,” Electron. Lett., vol. 50, no. 9,
pp. 673–675, Apr. 2014.

[3] H. Kibeya, F. Belghith, H. Loukil, M. A. B. Ayed, and N. Masmoudi,
“TZSearch pattern search improvement for HEVC motion estima-
tion modules,” in Proc. 1st Int. Conf. Adv. Technol. Signal Image
Process. (ATSIP), Mar. 2014, pp. 95–99.

[4] X. Li, R. Wang, X. Cui, and W. Wang, “Context-adaptive fast motion
estimation of HEVC,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2015, pp. 2784–2787.

[5] L. P. Van, J. D. Cock, A. J. Diaz-Honrubia, G. V. Wallendael,
S. V. Leuven, and R. V. D. Walle, “Fast motion estimation for closed-
loop HEVC transrating,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
Oct. 2014, pp. 2492–2496.

[6] P. Nguyen et al., “Asymmetric diamond search pattern for motion
estimation in HEVC,” in Proc. IEEE 5th Int. Conf. Commun.
Electron. (ICCE), Jul./Aug. 2014, pp. 434–439.

[7] P. Nalluri, L. N. Alves, and A. Navarro, “High speed SAD architectures
for variable block size motion estimation in HEVC video coding,” in
Proc. IEEE Int. Conf. Image Process. (ICIP), Oct. 2014, pp. 1233–1237.

[8] A. Medhat, A. Shalaby, and M. S. Sayed, “High-throughput hardware
implementation for motion estimation in HEVC encoder,” in Proc. IEEE
58th Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2015, pp. 1–4.

[9] X. Ye, D. Ding, and L. Yu, “A hardware-oriented IME algorithm and its
implementation for HEVC,” in Proc. IEEE Vis. Commun. Image Process.
Conf., Dec. 2014, pp. 205–208.

[10] J. Byun, Y. Jung, and J. Kim, “Design of integer motion estimator
of HEVC for asymmetric motion-partitioning mode and 4K-UHD,”
Electron. Lett., vol. 49, no. 18, pp. 1142–1143, Aug. 2013.

[11] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block
matching motion estimation,” in Proc. Int. Conf. Inf., Commun. Signal
Process. (ICICS), vol. 1. Sep. 1997, pp. 292–296.

[12] M. E. Sinangil, A. P. Chandrakasan, V. Sze, and M. Zhou,
“Hardware-aware motion estimation search algorithm development
for High-Efficiency Video Coding (HEVC) standard,” in Proc.
19th IEEE Int. Conf. Image Process. (ICIP), Sep./Oct. 2012,
pp. 1529–1532.

[13] G. Sanchez, B. Zatt, M. Porto, and L. Agostini, “ES&IS:
Enhanced spread and iterative search hardware-friendly motion
estimation algorithm for the HEVC Standard,” in Proc. IEEE
20th Int. Conf. Electron., Circuits, Syst. (ICECS), Dec. 2013,
pp. 941–944.

FAN et al.: HARDWARE-ORIENTED IME ALGORITHM FOR HEVC AND ITS HARDWARE IMPLEMENTATION 2057

[14] A. Medhat, A. Shalaby, M. S. Sayed, M. Elsabrouty, and F. Mehdipour,
“Fast center search algorithm with hardware implementation for motion
estimation in HEVC encoder,” in Proc. 21st IEEE Int. Conf. Electron.,
Circuits Syst. (ICECS), Dec. 2014, pp. 155–158.

[15] Q. Shang, Y. Fan, W. Shen, S. Shen, and X. Zeng, “Single-port SRAM-
based transpose memory with diagonal data mapping for large size 2-D
DCT/IDCT,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22,
no. 11, pp. 2423–2427, Nov. 2014.

[16] L. Guo, D. Zhou, and S. Goto, “A new reference frame recompression
algorithm and its VLSI architecture for UHDTV video codec,” IEEE
Trans. Multimedia, vol. 16, no. 8, pp. 2323–2332, Dec. 2014.

[17] Y. Fan, Q. Shang, and X. Zeng, “In-block prediction-based mixed lossy
and lossless reference frame recompression for next-generation video
encoding,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 1,
pp. 112–124, Jan. 2015.

[18] X. Lian, Z. Liu, W. Zhou, and Z. Duan, “Lossless frame memory
compression using pixel-grain prediction and dynamic order entropy
coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 1,
pp. 223–235, Jan. 2016.

[19] Y. V. Ivanov and D. Moloney, “Reference frame compression using
embedded reconstruction patterns for H.264/AVC decoder,” in Proc.
3rd Int. Conf. Digit. Telecommun. (ICDT), Bucharest, Romania, 2008,
pp. 168–173.

[20] S. Y. Jou, S. J. Chang, and T. S. Chang, “Fast motion estimation
algorithm and design for real time QFHD High Efficiency Video
Coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 9,
pp. 1533–1544, Sep. 2015.

[21] D. Zhou, J. Zhou, G. He, and S. Goto, “A 1.59 Gpixel/s motion
estimation processor with −211 to +211 search range for UHDTV
video encoder,” IEEE J. Solid-State Circuits, vol. 49, no. 4, pp. 827–837,
Apr. 2014.

[22] M. E. Sinangil, V. Sze, M. Zhou, and A. P. Chandrakasan, “Cost
and coding efficient motion estimation design considerations for High
Efficiency Video Coding (HEVC) standard,” IEEE J. Sel. Topics Signal
Process., vol. 7, no. 6, pp. 1017–1028, Dec. 2013.

Yibo Fan received the B.E. degree in electronics and
engineering from Zhejiang University, Hangzhou,
China, in 2003, the M.S. degree in microelectronics
from Fudan University, Shanghai, China, in 2006,
and the Ph.D. degree in engineering from Waseda
University, Tokyo, Japan, in 2009.

He was an Assistant Professor with Shanghai
Jiao Tong University, Shanghai, China, from
2009 to 2010. He is currently an Associate Pro-
fessor with the College of Microelectronics, Fudan
University. His research interests include image

processing, video coding, and associated VLSI architecture.

Leilei Huang received the B.S. degree in
microelectronics from Fudan University, Shanghai,
China, in 2014, where he is currently pursuing the
M.S. degree in microelectronics.

His research interests include VLSI design,
algorithms and VLSI architectures for multimedia
signal processing.

Bei Hao received the B.S. degree in microelectronics
from Fudan University, Shanghai, China, in 2015,
where she is currently pursuing the M.S. degree in
microelectronics.

Her research interests include VLSI design,
algorithms and VLSI architectures for multimedia
signal processing.

Xiaoyang Zeng (M’05) received the B.S. degree
from Xiangtan University, Xiangtan, China, in 1992,
and the Ph.D. degree from Changchun Institute of
Optics, Fine Mechanics, and Physics, Chinese Acad-
emy of Sciences, Changchun, China, in 2001. From
2001 to 2003, he was a Post-Doctoral Researcher
with Fudan University, Shanghai, China. He joined
the State Key Laboratory of ASIC and System,
Fudan University, as an Associate Professor, and he
is currently a Full Professor and the Director. His
research interests include information security chip

design, system-on-chip platforms, and VLSI implementation of digital signal
processing and communication systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

