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A Micro-Code-Based IME Engine for HEVC and Its Hardware
Implementation

Leilei HUANG†, Nonmember, Yibo FAN†a), Member, Chenhao GU†, and Xiaoyang ZENG†, Nonmembers

SUMMARY High Efficiency Video Coding (HEVC) standard is now
becoming one of the most widespread video coding standards in the world.
As a successor of H.264 standard, it aims to provide a much superior en-
coding performance. To fulfill this goal, several new notations along with
the corresponding computation processes are introduced by this standard.
Among those computation processes, the integer motion estimation (IME)
is one of bottlenecks due to the complex partitions of the inter prediction
units (PU) and the large search window commonly adopted. Many algo-
rithms have been proposed to address this issue and usually put emphasis
on a large search window and great computation amount. However, the
coding efforts should be related to the scenes. To be more specific, for
relatively static videos, a small search window along with a simple search
scheme should be adopted to reduce the time cost and power consumption.
In view of this, a micro-code-based IME engine is proposed in this paper,
which could be applied with search schemes of different complexity. To
test the performance, three different search schemes based on this engine
are designed and evaluated under HEVC test model (HM) 16.9, achieving
a B-D rate increase of 0.55/−0.07/−0.14%. Compared with our previous
work, the hardware implementation is optimized to reduce 64.2% of the
SRAMs bits and 32.8% of the logic gate count. The final design could
support 4K × 2K @139/85/37fps videos @500MHz.
key words: high efficiency video coding (HEVC), integer motion estimation
(IME), hardware implementation, very large scale integration (VLSI)

1. Introduction

High Efficiency Video Coding (HEVC) is now becoming
one of the most widespread video coding standards in the
world. As a successor of H.264 standard, it aims to provide
a much superior encoding performance.

To fulfill this goal, several new notations like the cod-
ing unit (CU), prediction unit (PU), transformation unit
(TU) are introduced by this standard. To be more spe-
cific, the basic processing unit in HEVC is called the coding
tree unit (CTU) which contains one luma coding tree block
(CTB) and two chroma CTBs. The size of luma one can be
set to 16×16, 32×32 or 64×64. In a general situation, a size
of 64 × 64 would be taken to fully explore the performance
of HEVC standard. The CTU plays the role of root node of
the CU quad-tree while the CU plays the role of root node
of the TU quad-tree and PU. In inter prediction, the size of
PUs could vary from 4 × 4 to 64 × 64, including the asym-
metric motion partitions (AMP). As shown in Fig. 1, 64×64
PUs can split into partitions of size 64×32, 32×64, 64×16,
64 × 48, 16 × 64, and 48 × 64. 32 × 32 PUs can split further

Manuscript received December 13, 2018.
Manuscript revised May 20, 2019.
†The authors are with the State Kay Lab of ASIC & System,

Fudan University, Shanghai, 200433 China.
a) E-mail: fanyibo@fudan.edu.cn (Corresponding author)

DOI: 10.1587/transele.2018ECP5077

into partitions of size 32 × 16, 16 × 32, 32 × 08, 32 × 24,
08 × 32, and 24 × 32. 16 × 16 PUs can split further into
partitions of size 16× 08, 08× 16, 16× 04, 16× 12, 04× 16,
and 12 × 16.

Due to those complex partitions and the large search
window usually adopted, the integer motion estimation
(IME) has become one of the bottlenecks in the HEVC en-
coder. Many algorithms have been proposed to address this
issue and usually put emphasis on a large search window and
great computation complexity. For example, Yang et al. [1],
Yoo et al. [2], and Shen et al. [3] employ early termination
algorithms to reduce the number of search points. However,
these methods are useful only for software based encoders
due to the irregular processing flow. Sanchez et al. [4], Hu
et al. [5] and Bao et al. [6] developed several hierarchical
motion estimation algorithms to extend the search window.

Some different but more efficient methods are also
adopted to further improve the efficiency of motion estima-
tion (ME) such as affine motion estimation [7] and bit trun-
cation [8].

However, the coding efforts should be related to the
scenes. To be more specific, for relatively static videos, a
small search window along with a simple search scheme
should be adopted to reduce the time cost and power con-
sumption.

In view of this, a micro-code-based IME engine is pro-
posed in this paper, which could be applied with search
schemes of different complexity. To test the performance,
three different search schemes based on this engine are de-
signed and evaluated under HEVC test model (HM) 16.9,
achieving a B-D rate increase of 0.55/−0.07/−0.14%. Com-
pared with our previous design [17], the hardware imple-
mentation is optimized to reduce 64.2% of the SRAMs bits
and 32.8% of the logic gate count. The final design supports
4K × 2K @139/85/37fps videos @500MHz.

The rest of this paper is organized as follows. Sec-

Fig. 1 Inter prediction partitions in HEVC.
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tion 2 presents the background, motivations, and contribu-
tions of this paper. Section 3 introduces the proposed IME
engine and the detailed programming interface. Section 4
gives the corresponding hardware implantation. Section 5
compares the search schemes and hardware implementa-
tions with other designs. Finally, Sect. 6 concludes this pa-
per.

2. Background, Motivations and Contributions

In this section, some statistic behaviors and previous works
are introduced, followed by motivations and contributions
of this paper.

2.1 Statistic Behaviors

To evaluate the relationship between the necessary coding
efforts and the coding scenes, some statistic information are
collected under HM 16.9.

First, full searches with different search windows
are applied to sequences including “BlowingBubbles”, a
small-resolution video with small motions in pictures, “Ki-
mono”, a large-resolution video with small motions, “Bas-
ketballDrill”, a small-resolution video with large motions,
and “BasketballDrive”, a large-resolution video with large
motions. It can be inferred from Table 1 that videos with
a larger resolution and larger motions may need a wider
search window, while for videos with a smaller resolution
and smaller motions, a narrow search window would be
enough.

Second, the best MVs of all PUs and their partitions
are collected and analyzed in the unit of LCUs. According
to the results, most of them are located in a diamond-shape
or square-shape block, while some of them have a strong
directionality. For example, Figs. 2 (a) and (b) give the best
MVs of all PUs and their partitions in two certain LCUs (in

Table 1 Full search with different search windows.

“BasketballDrive”). The horizontal axis stands for the hor-
izontal component of MVs; the vertical axis stands for the
vertical component of MVs. It can be clearly seen that the
shape of Fig. 2 (a) looks like a right slash, while the one in
Fig. 2 (b) looks like a left slash. For such LCUs, a directional
search scheme should be favored.

2.2 Previous Works

However, existing algorithms usually put emphasis on a
large search window and great computation amount while
neglecting those statistic behaviors mentioned above.

For example, Zhou et al. [9] propose a two-step search
scheme with a search window of ±211 (horizontal) and
±106 (vertical). A rhombus search is applied for the coarse
search step while a full search is adopted during the fol-
lowing refinement search. Dung et al. [10] propose a dual-
search-windowing (DSW) algorithm which would introduce
a secondary search window. Jiang et al. [11] adopts a
search range of ±64 and always split LCUs into four quar-
ter LCUs (QLCUs). In conclusion, a large search windows
(±211 × ±106, dual window or ±64) and great computa-
tion amount followed (although the computation could be
reduced by two-step search, dual search or CTU split, it is
still large) are more favored. Of course, those designs are
meaningful for large-resolution or large-motion videos.

But, for those videos with small resolutions or small
motions, they may be inefficient. In other words, when deal-
ing with those videos, it is possible to save a great power
and bandwidth by reducing the complexity. Unfortunately,
the above designs did not discuss about this topic.

2.3 Motivations

A programmable IME engine may be an appropriate choice
to solve the above problems. To be more specific, when the
target videos are relatively static or a fast encoding is re-
quired or the low-power mode is enabled, the engine could
be programmed to execute some simple algorithms which
costs lesser time and power; when the target videos have lots
of fierce motions or the time cost and power consumption
are not so cared, the engine could be programmed to exe-
cute some complex algorithms which ensures a good coding
performance.

In our previous work [17], a hardware-oriented algo-

Fig. 2 Distributions of the MVs in some certain LCUs.
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rithm and the corresponding hardware implementation is
proposed. By adopting the horizontal-vertical (H-V) ref-
erence SRAM and reference register array with eight up-
dating directions, the implementation is quite suitable for
transplanting different kinds of search algorithm.

However, the addressing logic of the previous
work [17] is designed for a specific algorithm, and as a re-
sult, it lacks in flexibility. Due to this reason, this paper aims
to put forward a flexible IME engine which could be easily
programmed to execute algorithms of different complexity.
The challenge mainly lies in how to provide enough flex-
ibility and, at the same time, keep a simple programming
interface.

Besides, the hardware cost of our previous implemen-
tation [17] is relatively high when compared with other de-
signs. This paper also puts many efforts into reducing the
hardware cost without affecting the coding performance as
well as the throughput.

2.4 Contributions

The contributions of this paper are given as follows:

i. We proposed a micro-code-based IME engine.
ii. We optimized our previous hardware implementation.

iii. We evaluated three different search schemes based on
this engine.

3. The Proposed IME Encoding Engine

As an engine, the proposed one is not designed for a certain
algorithm. Instead, it executes IME searching in the unit
of search steps and those search steps could form different
search algorithms.

To be more specific, in each step, this engine searches
all the PUs and their partitions contained in one quarter LCU
(QLCU) according to the same settings including starting
point, searching shape and down-sample rate; in different
steps, those settings are configured to different values.

In this way, both simple searching algorithms and com-
plex ones could be supported by the proposed design. The
only difference is that the former one may consist of fewer
steps and the latter one may consist of more steps, as the
schemes listed in Sect. 5.1.

3.1 Starting Point

In a general case, IME may search from the center point
of the search window, namely, point (0, 0). However, by
collecting some statistic information from previous LCUs
or previous frames, a better starting point may be adopted.
In view of this, the starting point could be directly config-
ured in each step. However, this may need a closely-coupled
CPU which updates the starting points every frame or even
every LCU.

To make this process more automatically, the proposed
engine could be configured to acquire the starting points

Fig. 3 Automatically acquiring of starting points.

from the MVs got in previous steps. This is usually adopted
when previous steps execute a larger-region search and the
current step executes a smaller-region search.

Two examples are provided here to help the under-
standing.

i. As shown in Fig. 3 (a), the rectangle block colored with
lighter gray are searched with a down-sample rate of
1/4. The dotted arrow denotes for the MV of the 32×32
PU got after this search.
To refine it, the IME engine may start from this MV
and search the square block colored with darker gray
without down sampling.

ii. As shown in Fig. 3 (b), the rectangle block colored with
lighter gray are searched to get the best MVs of all PUs
and their partitions contained in QLCU 0. The dotted
arrow denotes for the MV of the 32 × 32 PU got after
this search.
To get the best MVs of all PUs and their partitions con-
tained in QLCU 1, the IME engine may start from this
MV and search the square block colored with darker
gray. Of course, the offset between QLCU 1 and
QLCU 0 should be applied to the starting point as il-
lustrated by the solid arrow.

3.2 Searching Shape

The basic searching shape is a hexagon. However, by chang-
ing the width, height and slopes of edges, it can be trans-
formed into various shapes.

Several possible shapes are illustrated in Fig. 4. Among
which, Fig. 4 (a) shows the basic shape, a hexagon.

However, by specifying smaller θ0∼3, namely, smaller
slopes of the four declining edges, a hexagon could be trans-
formed into to a diamond shape as shown in Fig. 4 (b); or by
specifying larger θ0∼3 (90◦), it could be transformed into a
rectangle shape as shown in Fig. 4 (c). Even shapes with cer-
tain directions could be got by specifying an unequal θ0∼3
as shown in Fig. 4 (d).

Different shapes are suitable for different scenes. For
example, the directional shape described in Fig. 4 (d) may
be suitable for LCUs which have similar MV distributions
as the one shown in Fig. 2 (a).
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Fig. 4 Possible searching shapes.

Fig. 5 Down-sample search.

3.3 Down Sampling

On one hand, a 32×32 instead of a 64×64 SAD tree and reg-
ister array are adopted in this engine in view of the hardware
cost. As a result, MVs of the 64 × 64 PU and its partitions
cannot be directly got.

In a conventional way, this is done by iteration.
Namely, the four 32×32 PUs in the 64×64 PU are searched
successively, the related costs of each search are accumu-
lated and stored with one large buffer. This approach may
be accurate, but the hardware cost is relatively large consid-
ering of the buffer used.

In view of this, the proposed engine searches the 64×64
PU and its partitions by down sampling. As shown in Fig. 5,
both the 64 × 64 PU and its reference block are reduced
to a 32 × 32 block by 1/4 down sampling and processed
with a 32 × 32 SAD engine. The best MVs and costs of the
down-sampled 32 × 32 block and its partitions is taken as
those of the 64 × 64 PU and its partitions. (Costs need to be
scaled back). In a similar way, the best MVs and costs of
the four 16 × 16 down-sampled blocks and their partitions
are taken as those of the corresponding 32 × 32 PUs and
their partitions, so as the 16 × 16 PUs, 8 × 8 PUs and their
partitions.

On the other hand, hierarchical search strategies are
favored by lots of IME designs, which usually consist of

Fig. 6 Formats of the micro-codes.

two different searches, a coarse search and a refined search.
The former one is performed to cover a large region with
an acceptable cycle cost, while the latter one is performed
to achieve a refined result by searching around the MVs got
in the coarse search. As a matter of fact, down sampling is
one effective way to implement coarse search and it shows
a good performance according to the B-D rate results listed
in Table 3.

3.4 Micro-Codes

The proposed engine is programmed through micro-codes.
The bit length of the micro-code is 40, among which, 14 bits
are used to describe the starting point, 23 bits are used to de-
scribed the searching shape, 3 bits are used to described the
down-sample rate. Detailed code format is listed in Fig. 6.

i. For the starting point, 1 bit is used to indicate whether
it is got by directly configuration or automatically ac-
quiring. For the former situation, another 15 bits
are used to indicate the value of the starting point
(x, y). X component occupies 7 bits covering a range
of [−64, 63], y component occupies 6 bits covering a
range of [−32, 31]. For the latter situation, another 5
bits are used to indicate the acquiring sources. Sup-
ported sources includes MVs of 64×64 PU, four 32×32
PUs and sixteen 16 × 16 PUs.

ii. For the searching shape, 6 bits are used to indicate the
width, covering a range of [0, 63]; 5 bits are used to in-
dicate the height, covering a range of [0, 32]; 3 bits are
used to indicate the slope of each θ. Supported slope
includes infinite, 4, 2, 1, 1/2 and 1/4.

iii. For the down-sample rate, 1 bit are used to indicate
whether it is down sampled or not. For the former situ-
ation, another 1 bit is used to indicate the down-sample
rate, 1/4 or 1/16. For the latter situation, another 2 bits
are used to indicate the QLCU to be searched.

4. The Proposed Hardware Implementation

In our previous work [17], a related implementation is pro-
posed, which put forward several novel structures like the
horizontal and vertical (H-V) reference SRAM, data com-
pression based on 4× 4 blocks and SAD with PU-level chip
selections to support the 2-D data reuse, reduce the size of
reference SRAMs and save the power consumption. The fi-
nal performance in B-D rate loss is quite attractive, but the
hardware cost is relatively large and the search algorithm
lacks in flexibility since it is fixed by hardware.

In view of this, an optimized implementation is given
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Fig. 7 Structure of the optimized implementation.

in this paper. As shown in Fig. 7, the optimized implemen-
tation still adopts the data compression and de-compression
logic, the H-V SRAM and the low-power SAD tree, but the
following optimizations are made.

i. the addressing logic is re-designed to support the
micro-codes introduced in Sect. 3.4

ii. the updating logic of reference register array is simpli-
fied to reduce the hardware cost

iii. the reference register array is reused to remove the
transpose memory

iv. pixel bit truncation is evaluated to reduce the hardware
cost of H-V SRAMs, register arrays and the SAD tree

4.1 Addressing Logic

In our previous implementation [17], the addressing logic is
designed for the specific algorithm proposed, which does
show a good performance in B-D rate loss but lacks in flex-
ibility.

In the optimized implementation, the addressing logic
is re-designed to support the micro-codes introduced in
Sect. 3.4, which could offer flexibilities in the starting point,
searching shape and down-sampling rate. Once started, the
addressing logic reads and executes the micro-codes stored
in code SRAM one by one. Those micro-codes stored in
code SRAM could be pre-programmed according to the
scene or updated every frame or even every LCU if some
statistic information could be collected and analyzed on the
fly.

4.2 Updating Logic

In our previous implementation [17], 8 updating directions
are supported by the reference register array as shown in
Fig. 8 (a), where, squares denote for the reference register
array; gray parts denote for the neighboring pixels to be up-
dated; black dots stand for search points; arrows stand for
search directions. All directions could be updated in one cy-
cle thanks to the H-V reference SRAM adopted. Although
this makes the lined-based search quite efficient, it leads to
a complex updating logic in reference register array.

In the optimized implementation, although H-V refer-
ence SRAM is still adopted, only 3 directions are supported,

Fig. 8 Comparison between updating logics.

namely, shifting up, shifting down and shifting right, as
shown in Fig. 8 (b). Due to this simplification, the search
to shapes with hypotenuses would take more cycles, but it
also traverses more points as shown by Figs. 8 (c) and (d)
and saves a lot of hardware costs according to Table 6.

4.3 Transpose Memory

In our previous implementation [17], an SRAM-based trans-
pose memory [12] is adopted to fill the vertical SRAM with-
out occupying the bandwidth of external memories. How-
ever, it still has the following defects.

On one hand, its hardware cost is not low enough to
be ignored. When compiled with ARM’s memory compiler
rf sp hdd svt rvt hvt, one 32-word 8-bit SRAM occupied
about 2K gate count. Since 32 SRAMs are needed, the total
gate count is more than 64K.

On the other hand, as a single-port-SRAM-based struc-
ture, it could only provide a “half-duplex communication”.
To be more specific, the reading from the horizontal SRAM
and writing to the vertical SRAM could not be launched at
the same time.

In the optimized implementation, the reference regis-
ter array is reused as the transpose memory, which not only
reduce the hardware cost but also provide a “duplex commu-
nication”. The detailed transpose process is shown in Fig. 9.
To simplify the illustration of this process, a 4 × 4 transpose
instead of a 32 × 32 transpose is adopted.

In this example, rows are marked with numbers;
columns are marked with letters; blocks are marked with
font type, normal, underline, and italic. Those rows,
columns and blocks are counted from 0. For example,
1A∼D (1A, 1B, 1C and 1D) denotes for the 1st row of the 0th

4 × 4 block; 0∼3D (0D, 1D, 2D and 3D) denoted for the 3rd

column of the 1st block; 2A∼D (2A, 2B, 2C and 2D) denotes
for the 2nd row of the 2nd block. It can be seen from Fig. 9
that
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Fig. 9 Reference-register-array-based transpose memory.

i. At cycle 0, the 0th row, namely, pixel 0A∼D are writ-
ten into the register array after shifting down, so as the
following three rows of the 0th block.

ii. At cycle 3, all pixels of the 0th block are stored in the
register array.

iii. At cycle 4, the 0th row of 1th block, namely, pixel
0A∼D are written into the register array after shifting
right, so as the following three rows of the 1th block.
At the same time, the 0th column of the 0th block,
namely, pixel 0∼3A are read from the register array,
so as the following three columns of the 0th block

iv. At cycle 7, all pixels of the 1th block are stored in the
register array and all pixels of the 0th block are trans-
posed.

v. At cycle 8, the 0th row of 2th block, namely, pixel 0A∼D
are written into the register array after shifting down, so
as the following three rows of the 2th block.
At the same time, the 0th column of the 1th block,
namely, pixel 0∼3A are read from the register array,
so as the following three columns of the 1th block

vi. At cycle 11, all pixels of the 2th block are stored in the
register array and all pixels of the 1th block are trans-
posed.

The hardware cost of this reuse is merely nothing, because
the shift-down and shift-right logics are already supported
by the reference register array as shown in Fig. 8 (b).

However, extra time cost will be introduced because
only after the transpose operation is done, the reference reg-
ister array could be used to do the search. A detailed time
cost is calculated as follows.

i. If the size of search window is 128×64, the total refer-
ence pixels would be (128+64)×(64+64) = 24576 pix-
els. After the 4 × 4-block-based compression, it would
be 24576/4 = 6144 pixels. (Although the data com-
pression is involved, the transpose process still works
by applying some tricks).

ii. By taking advantages of the “duplex communication”,
the time cost of filling the vertical SRAM would be
6144/32 + 32 = 224 cycles.

Table 2 Hardware cost and B-D rate loss vs truncated bits.

iii. In addition, 2/3 of the search windows between the hor-
izontally neighbored LCUs could be reused. By taking
advantages of this, the time cost could be reduced to
6144/3/32 + 32 = 96 cycles.

4.4 Pixel Bit Truncation

In our previous implementation [17], a 4 × 4 block based
compression and decompression technology is adopted to
reduce the size of reference SRAMs. Due to this technology,
the bit depth of pixels is truncated to 7, which, of course, has
been proved to introduce no significant loss.

In the optimized implementation, the truncation of bit
depth is further evaluated in respect of the B-D rate loss and
the hardware cost reduction. Detailed results are shown in
Table 2. According to those results, B-D rate is not sensitive
when the truncation bit is 3 and it saves 40.8% of the gate
count of the SAD tree, which is an optimal choice from this
paper’s point of view.

5. Comparison

5.1 B-D Rate Performance

To test the proposed engine, three feasible search schemes
based on the micro-codes are designed and evaluated under
HM 16.9. The detailed search steps of each schemes are
listed in Table 4, while the corresponding B-D rate perfor-
mances are listed in Table 3.

According to Table 4,

i. Scheme A is the simplest one. It just searches a dia-
mond shape with a width of 16 pixels and height of 16
pixels (W16 H16), and no feedback is taken.

ii. Scheme B is more complicated. It involves a “coarse”
search (step 0) and a “refined” search (step 1–4). In the
coarse search, it searches a rectangle shape (W48 H32).
Although a 1/4 down sampling is adopted, this search
range (W48 H32) is much larger than that of scheme
A (W16 H16). In the refined search, it starts from the
feedback points and searches a rectangle shape (W11
H11).

iii. Scheme C is the most complicated one. In compari-
son to scheme B, it keeps the refined search (step 4–7)
unchanged but enhances the coarse search (step 0–3).
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Table 3 Comparison in B-D rate increase.

Table 4 Searching steps of three proposed schemes.

Due to the 1/4 down sampling, a starting point of (0, 0)
only covers points in even lines and even rows Consid-
ering of this, scheme C searches starting points (0, 0),
(0, 1), (1, 0) and (1, 1) to cover all points.

iv. Scheme C* uses the same steps as scheme C, but no bit
truncation is applied.

According to Tables 3 and 4, it can be concluded that
scheme A is quite simple, which may be sufficient for small-
resolution or small-motion videos. However, for sequences
like BasketballDrive and BasketballDrill which have large
resolutions and large motions, it would introduce a great B-

Table 5 Re-descripted steps of Zhou et al.’s work [9].

D rate loss (12.1% and 2.1%) due to the small search range
it adopts. As for scheme B, it makes up the deficiency of
scheme A by involving a large-range coarse search. As a
result, the B-D rate loss of BasketballDrive and “Average
All” is reduced to 0.9% and −0.0719%. Then scheme C
further reduces them to −0.5% and −0.1356% by enhancing
the coarse search. Of course, scheme C* is the best one
since no bit truncation is involved.

As a matter of fact, both of the algorithms proposed by
Zhou et al. [9] and Jiang et al. [11] could be implemented
on the proposed engine. As an example, the algorithm pro-
posed by Zhou et al. [9] is re-descripted by the steps listed
in Table 5. It should be pointed out Zhou et al.’s work [9]
also sends MVPs to the refined step. This may work be-
cause Zhou et al.’s work [9] is targeted for H.264 standard,
in which, the processing unit (macro-block) is as small as
16 × 16. In other words, only one 16 × 16, two 16 × 8, two
8 × 16, and four 8 × 8 blocks need to be evaluated in the
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Table 7 Overall comparison.

Table 6 Comparisons in area cost.

refined step. But as mentioned in Sect. 1, this is not a feasi-
ble way for HEVC standard because of the vast combination
of PU sizes and their partitions. As a result, MVPs are re-
placed by the best MVs of QLCUs in step 5–8. By executing
these steps under HM-16.9, the B-D rate loss of “Basketball-
Drive” and “Average All” and is 2.88% and 3.09% respec-
tively. The cycle cost is 576+ (32+ (208×2−1)× (104×2−
1)/16)+ (32+ (3×2−1)× (2×2−1))×8 = 6353, where the
first item 576 is the cycle cost to do transpose, the second
item is the cycle cost of step 0 and the third item is the cycle
cost of step 1–8. (Please refer to Sect. 5.2 for the calculation
method.) According to this result, Zhou et al.’s work [9] is
not so appropriate for HEVC standard, which may largely
come from the high down-sampling rate it adopts.

5.2 Throughput

The cycle cost of scheme A could be estimated by 96+(32+
(16 × 2 − 1)2/2) × 4 = 2146, where

i. 96 is the cycle cost of transposition.
ii. 32 is cycle cost to load original pixels and the corre-

sponding reference pixels of the first search point.
iii. (16 × 2 − 1)2/2 is the total search points in the “W16

H16 Diamond” shape

iv. ×4 is because the same step is executed on 4 QLCUs.

This throughput guarantees a real-time process of 4K × 2K
@ 139 fps videos under a working frequency of 500MHz.

In a similar way, the cycle cost of scheme B could be
estimated by 96+ (32+ (48× 2− 1)× (32× 2− 1)/4)+ (32+
(11 × 2 − 1)2) × 4 = 3516, corresponding to 4K × 2K @ 85
fps videos under 500MHz; the cycle cost of scheme C could
be estimated by 96+ (32+ (48×2−1)× (32×2−1)/4×4)+
(32 + (11 × 2 − 1)2) × 4 = 8004, corresponding to 4K × 2K
@ 37 fps videos under 500MHz.

5.3 Area Cost and Power Consumption

As shown in Table 6, the area cost is reduced a lot compared
with our previous implementation [17]. Most of the mod-
ules take benefits from the truncation of pixel bits, while the
H-V reference SRAM is also reduced due to the adoption
of a rectangle search window, the updating logic is also re-
duced due to the removal of extra directions. Of course, the
transpose memory could be removed thanks to the reuse of
reference register array.

5.4 Overall Comparison

The overall comparison is given in Table 7.
In terms of B-D rate increase, the proposed search

scheme B and C(*) achieves a negative B-D rate loss. Al-
though it is not as good as that of Fan et al.’s design [17],
it provides much more flexibility in starting points, search
shapes and down-sample rates.

In terms of throughput, the proposed search scheme A
costs only 2146 cycles, which is similar to Jou et al.’s de-
sign [16]. However, the corresponding B-D rate increase of
the proposed design is 0.55%, while that of Jou et al.’s [16]
is 4.04%.

In terms of area cost, the SAD tree after normalization
is about the same size with Jou et al.’s design [16] while the
reference SRAM achieves the smallest area.
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In terms of flexibility, the proposed implementation
could be programmed with micro-codes to execute search
schemes of different complexity.

6. Conclusion

The integer motion estimation (IME) is one of bottlenecks
in HEVC encoding due to the complex partitions of the
inter prediction units (PU) and the large search window
commonly adopted. Many algorithms have been proposed
to address this issue and usually put emphasis on a large
search window and great computation amount. However,
the necessary coding efforts is closely related to the scene.
To be more specific, for relatively static videos, a small
search window along with a simple search scheme should
be adopted to reduce the time cost and power consump-
tion. In view of this, a micro-code-based IME engine is
proposed in this paper, which could be applied with search
schemes of different complexity. To test the performance,
three different search schemes based on this engine are de-
signed and evaluated under HM 16.9, achieving a B-D rate
increase of 0.55/−0.07/−0.14%. Compared with our previ-
ous design [17], the hardware implementation is optimized
to reduce 64.2% of the SRAMs bits and 32.8% of the logic
gate count, which supports 4K × 2K @139/85/37fps videos
@500MHz.
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