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A Highly Configurable 7.62GOP/s Hardware Implementation for
LSTM

Yibo FAN†a), Member, Leilei HUANG†, Kewei CHEN†, and Xiaoyang ZENG†, Nonmembers

SUMMARY The neural network has been one of the most useful tech-
niques in the area of speech recognition, language translation and image
analysis in recent years. Long Short-Term Memory (LSTM), a popular
type of recurrent neural networks (RNNs), has been widely implemented
on CPUs and GPUs. However, those software implementations offer a poor
parallelism while the existing hardware implementations lack in configura-
bility. In order to make up for this gap, a highly configurable 7.62 GOP/s
hardware implementation for LSTM is proposed in this paper. To achieve
the goal, the work flow is carefully arranged to make the design compact
and high-throughput; the structure is carefully organized to make the de-
sign configurable; the data buffering and compression strategy is carefully
chosen to lower the bandwidth without increasing the complexity of struc-
ture; the data type, logistic sigmoid (σ) function and hyperbolic tangent
(tanh) function is carefully optimized to balance the hardware cost and ac-
curacy. This work achieves a performance of 7.62 GOP/s @ 238 MHz on
XCZU6EG FPGA, which takes only 3K look-up table (LUT). Compared
with the implementation on Intel Xeon E5-2620 CPU @ 2.10GHz, this
work achieves about 90× speedup for small networks and 25× speed-up
for large ones. The consumption of resources is also much less than that of
the state-of-the-art works.
key words: Recurrent Neural Networks (RNN), Long Short-Term Memory
(LSTM), hardware implementation

1. Introduction

In recent years, deep neural networks (DNNs) have made
a series of incredible achievements in many areas [1]–[3].
Taking pattern recognition as an example, DNN exceeds
many excellent algorithms and now represents the new state
of the art. As the name implies, neural networks work in a
similar way as the human neurons. However, unlike human
neural networks which could store information over time,
DNNs could only work on the current input.

To address this issue, recurrent neural networks
(RNNs) are designed later. This kind of neural networks
would store previous outputs and serve them as assistant in-
formation for current predictions, which makes RNNs natu-
rally suitable for solving problems related to sequences like
speech recognition, language translation and image analy-
sis. However, the information in RNNs could easily fall into
vanishing or exploding [4].

To overcome this shortcoming, a novel type of RNNs,
namely, long short-term memory (LSTM), is proposed.
LSTM introduces an efficient gradient-based algorithm to
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ensure that the internal state remains constant during the
recurrent process. Due to this advantage, LSTM has been
widely refined and popularized by many researchers on soft-
ware platforms. However, it is quite difficult for CPUs and
GPUs to offer sufficient parallelism for the matrix calcu-
lation in LSTM. In consideration of this, hardware imple-
mentations are needed especially in embedded systems. Un-
fortunately, most of the existing hardware architectures for
LSTM are non-configurable, which cannot support different
sizes, different data range, precision or throughput. More-
over, the resource consumption of those designs is usually
too much for the requirement of cost-sensitive applications
like the Internet of Things (IoT).

In view of the above situation, a highly configurable
7.62 GOP/s hardware implementation for LSTM which
takes only 3K look-up table is proposed in this paper. The
rest of this paper would present it in a detailed way. To
be more specific, Sect. 2 gives the background, motivations
and contributions of this paper. Section 3 illustrates the pro-
posed hardware implementation. Comparisons are made in
Sect. 4. Finally, Sect. 5 concludes this paper.

2. Background, Motivations and Contributions

2.1 Background

2.1.1 Concept of Memory Cell

The concept of long short-term memory (LSTM) neural
network was first put forward by S. Hochreiter and J.
Schmidhuber [4] in 1997 to overcome the long-term mem-
ory dependency problem of conventional RNNs. To be more
specific, in a standard RNN structure, each neuron passes
the output information to a successor. As the propagation
goes on, the information passing along the chain would
easily fall into a situation either vanishing or exploding.
Therefore, the output at the end of sequence usually fails to
build a stable relationship with the input at the beginning of
sequence.

To solve this problem, LSTM, a modified version of
RNN, introduces the concept of “memory cell” to establish
long-term memory dependency, which is composed of the
cell state ct, three gates which protect and control ct and one
gate which determines the output ht. The cell state is like
a conveyor belt, which runs straight down the entire chain
with only some minor linear interactions. In this way, it is
natural for the information to flow along the chain without
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being changed, which solves the problem of long-term
dependency.

2.1.2 A Commonly-Adopted LSTM Model

There are several updated versions of LSTM models nowa-
days, such as those proposed by J. Schmidhuber et al. [5]–
[7]. And as a summary article, J. Schmidhuber et al. [7]
analyzed the role and utility of computational components
of typical LSTM models. Among those models, the one de-
scribed by Eqs. (1)–(6) is commonly adopted. This model
has no peephole connections, thus the computation speed is
relatively high and the resources consumption is relatively
low. For those reasons, this model is also adopted by the
proposed implementation.

ft = Wf xxt +Wf hht−1 + b f (1)

it = Wixxt +Wihht−1 + bi (2)

gt = Wgxxt +Wghht−1 + bg (3)

ot = Woxxt +Wohht−1 + bo (4)

ct = σ( ft) � ct−1 + σ(it) � tanh(gt) (5)

ht = σ(ot) � tanh(ct) (6)

In Eqs. (1)–(6),

i. σ stands for the logistic sigmoid function;
ii. tanh stands for the hyperbolic tangent function;

iii. � stands for the element wise multiplication;
iv. ft, it, gt, and ot stand for the input vectors of forget gate,

input gate, candidate cell gate, and output gate at round
t respectively;

v. xt, ct and ht stand for the input vector, the cell state and
the output vector of LSTM at round t;

vi. W∗∗ stand for the weight matrices, where, the first sym-
bol ∗ could be f , i, g and o; the second ∗ could be x and
h;

vii. b∗ stand for the bias vectors, where, the symbol ∗ could
be f , i, g and o.

Attention should be paid on the flowing points.

i. theσ and tanh here are vector-based functions. In other
words, they return the sigmoid or hyperbolic tangent
value of each element of the input vectors.

ii. unlike other papers [9]–[12], [14]–[18], the ft, it, gt, and
ot here stand for the input vectors instead of the output
vectors of the related gates.

iii. Although the form of Eqs. (1)–(6) are quite simple,
they perform a considerable amount of calculation.
For example, if one LSTM layer has H neurons and X
inputs, then xt would have a size of X × 1; ht−1 and b f

would have a size of H × 1; Wix would have a size of
H × X; Wf h would have a size of H × H.
In this way, Eq. (1) alone performs H × (H +W) times
of multiplication and make a sum of H × (H +W + 1)
elements in one single round, which is a heavy burden
for software platforms.

2.1.3 Related Papers

LSTMs, just like other neural networks, are convention-
ally implemented on software platforms. But as analyzed
above, it faces greater challenges on the matrix-vector op-
erations [8], let alone that the energy efficiency is rather too
low because software platforms usually lack in parallelism.

In view of this, several hardware accelerators for
LSTMs have been proposed to improve the performance.

A.X.M. Chang et al. [9] described a LSTM hardware
implementation with 2 layers and 128 neurons based on
FPGA. Later, they [10] presented three new hardware ac-
celerators for LSTM to further improve the performance.
Unfortunately, unlike software solutions, the layer size,
namely, the neuron number and the input length, of those
designs are non-configurable.

On the contrary, J.C. Ferreira et al. [11] proposed a
size-configurable design, the parallelism of which is also
high enough. However, the high parallelism is achieved at
the cost of great design complexity.

In a similar way, Y. Guan et al.’s [12] design keeps
the accuracy of results by adopting floating-point type data,
which brings a large computational workload to the hard-
ware system.

Other related papers also proposed remarkable algo-
rithms or structures. For example, Y. Zhang et al. [13], [14]
proposed a dense and sparse network and later an overlap of
computation and data; Z. Wang et al. [15], [16] proposed a
hybrid compression and later a mixed quantization scheme;
J. Park el al. [17] and S. Han et al. [18] presents a sparse
matrix format to improve the speed of LSTM accelerator.

2.2 Motivations and Contributions

Although several papers have proposed hardware solutions
for LSTM, some defects still could be observed.

Firstly, unlike software ones, existing hardware solu-
tions usually lack in configurability. As a mature design, the
size of layer, the granularity of parallelism and the range of
data should be configurable. Among the mentioned designs,
only J.C. Ferreira et al. [11] and Y. Zhang et al. [13], [14]
could support several layer sizes like 64 or 128 while other
designs only support one certain size.

Secondly, the existing hardware solutions usually pay
attention to the parallelism but overlook the bandwidth.
Among the mentioned designs, only Z. Wang et al. [15] pays
attention to the compression of weight matrices and S. Han
et al. [18] chooses to store all weight matrices with on-chip
memories.

Thirdly, float-point type, σ and tanh functions are
costly to be implemented on hardware platform. As a re-
sult, the implementation of those computations may easily
go to two different extremes. They are either over-simplified
thus the performance would be too poor or over-complexed
thus the hardware cost would be too much. For example, Y.
Guan et al.’s [11] uses floating-point type data directly and
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S. Han et al. [18] uses the look-up table, which both makes
the final cost too much.

Considering the above situation, the proposed paper
aims to put forward a hardware solution of LSTM to solve
the above detects, which has the following contributions:

i. We carefully re-arranged the work flow to make the de-
sign compact and high-throughput;
(This design utilizes only 3K LUT but achieves a
throughput of 7.62 GOP/s).

ii. We carefully organized the structure to make the design
more configurable;
(The layer size, data range and parallelism could be
configured on the fly, although the maximum layer size
and parallelism must be pre-determined according to
the system requirements.)

iii. We carefully chose the data buffering and compression
strategy to lower the bandwidth without increasing the
complexity of structure.
(Buffering strategy reduced 50% of the bandwidth.)

iv. We carefully optimized the data type, σ and tanh func-
tion to balance the hardware cost and accuracy.
(No obvious accuracy loss could be observed between
the original version and the optimized version, but
hardware cost is reduced to a large extend)

3. Hardware Implementation

3.1 Overview

Figure 1 gives the architecture of the proposed LSTM de-
sign, which shares the same notations with Eqs. (1)–(6). It
can be easily seen from Fig. 1 that this design could be di-
vided into two parts. One is the gating part responsible for
the calculation of Eqs. (1)–(4). The data rate of this part is
very high, so multiplier array and adder array are adopted
to raise the parallelism. The other one is the network part
responsible for the calculation of Eqs. (5)–(6). This part has
a relatively low data rate, so only one instance of σ and tanh
is used and shared to reduce the hardware cost.

The following sub-sections will give some discussions
about the throughput, configurability, bandwidth and accu-

Fig. 1 Architecture of the proposed implementation

racy from the view of work flow, structure, buffering and
compression strategy, data type and the implementation of
σ and tanh function.

3.2 Work Flow and Throughput

3.2.1 Work Flow

The work flow of this design could be concluded into two
phases, initialization phase and running phase. Again, the
following notations share the same meaning with Eqs. (1)–
(6).
In initialization phase:

i. All W∗∗ are stored to off-chip memories;
ii. All b∗ are stored to on-chip memories;

iii. All registers like the length of xt, ht are configured.

In running phase:

i. The design reads in the xt of the current round and
buffers them with on-chip memories.

ii. The design reads in the W∗∗ in an interleaving way and
send them to the multiplier and adder arrays together
with xt and ht read from on-chip memories.
By word “interleaving”, it means this design reads in
the first row of Wf x and send with xt; then it reads in
the first row of Wf h and send with ht−1; then it reads in
the first row of Wix and send with xt; . . .
In this way, the accumulator could get the result of ft, it,
gt, ot in the unit of element instead of vector. In other
words, it could get the first elements of ft, it, gt, ot; then
the second elements of ft, it, gt, ot; and then the third
elements; . . .

iii. Once the elements with the same order have been col-
lected, the corresponding elements of ct as well as ht

could be calculated by network part.
iv. Once the current round is finished, the ping-pong buffer

for ht is switched.

3.2.2 Throughput

Unlike general LSTM designs, the work flow is re-arranged
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Fig. 2 (a) Space-time diagram of a non-interleaving implementation. (b) Space-time diagram of an
interleaving implementation (the proposed one)

in an interleaving way so that the lifecycle of data ft, it, gt,
ot are greatly shortened. The difference of the interleaving
and non-interleaving way is given in Fig. 2. Obviously, for
the non-interleaving implementation, all elements of ft are
collected together, which is the same to it, gt and ot. As a
result, those data have to be buffered before ct and ht are
calculated out.

However, in the interleaving way, ft, it, gt and ot with
the same order are collected together. As a result, there is no
need to store them to and fetch them from off-chip memories
or buffer them with on-chip memories.

In addition, the calculation time of Eqs. (5)–(6) is cov-
ered by that of Eqs. (1)–(4). In this way, if bandwidth is not
considered, the throughput would be directly determined by
the calculation cycle of ft, it, gt, ot, namely, the parallelism
of multiplier and adder array. Thus, for LSTM layer with H
neurons and X inputs, the cycle cost of one round is:

(X × H + H × H) × 4/P (7)

where, X × H is the cycle to calculate one W∗xxt; H × H is
the cycle to calculate one W∗hht; ×4 is because four W∗xxt

and W∗hht in ft, it, gt, ot need to be calculated; P is the
parallelism.

3.3 Structure and Configurability

3.3.1 Layer Size

As mentioned before, the layer size could be configured on
the fly. To support the configurability in layer size, the fol-
lowing items need to be adjusted.

i. the fetch module needs to know when to stop reading
W∗∗ and xt;

ii. the accumulator needs to know when to start a new ac-
cumulation;

iii. the on-chip memory controller needs to know when to
reset the address to 0 and switch the ping-pong buffer.

Thanks to the simplicity of the current structure, all of the
above operations could be easily implemented with coun-
ters. However, since xt, ht−1, ht and ct are stored with on-
chip memories, they will limit the maximum size of layer.

Fig. 3 Minimum resource to support different maximum layer size

Figure 3 gives the minimum resource to support different
maximum layer size based on the synthesis result under
FPGA XCZU6EG. (Parallelism is set to 32, which could be
referred from Sect. 3.3.3). According to it, resources of flip
flop (FF) and look-up table (LUT) increases slightly with
the layer size while the digital signal process unit (DSP)
keeps the same, because, for logic resource, the layer size
would only have influence on the data width of counter. As
to the memory resource, the increase of the logically-needed
block memory (BRAM) is proportional to the increase of
layer size, which is marked with darker yellow; however, the
actually-used BRAM only increases under size 512, 1024,
which is marked with lighter yellow, because the depth of
most memories have not reached the depth of the BRAM.

3.3.2 Data Range

A fixed-point type with 16-bit width is adopted in this de-
sign to reduce the hardware cost of calculation. However,
in order to meet the requirements of different scenarios, the
data range could be configured on the fly, which is denoted
by the Q value. For example, Wf x could be configured to
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Fig. 4 Multiplier array and adder array

Q10.6, which means the highest 10 bits are integer part,
while the lowest 6 bits are fractional part; xt could be con-
figured to Q4.12, which means the highest 4 bits are integer
part, while the lowest 12 bits are fractional part; . . . In this
way, the hardware cost of the multiplier array and the adder
array are still kept small because only fixed-point operations
are involved; while the data range is extended by Q value
to make this design adaptable to different scenarios. Extra
cost is merely one configurable bit shifter in the accumu-
lator. As to the accuracy of this optimization, it could be
inferred from Table 3.

3.3.3 Parallelism

Unlike the layer size and data range, parallelism is not so
meaningful to be configured on the fly, but it should be eas-
ily adjusted to meet the system requirements.

In this design, parallelism could be adjusted by

i. expanding or shrinking the data bus of W∗∗;
ii. reshaping the on-chip memories for xt and ht;

iii. expanding or shrinking the size of multiplier and adder;

For example, if a parallelism of 16 is required, then the bus
width of W∗∗ should be expanded to 16 elements; the size
of xt and ht should be reshaped to 16 × (H/16) and 16 ×
(X/16) instead of 1 × H and 1 × X; the multiplier array and
adder array should be expanded to handle 16 elements in
one cycle, as described in Fig. 4.

Fortunately, the above adjustment could be easily con-
trolled with parameter and generate block in Verilog HDL.
In addition, although structures with low parallelism cannot
be expanded to structure with higher parallelism on the fly,
the converse of it is feasible, which should be meaningful
under some low-power modes.

Of course, some tradeoff exists between the throughput
and hardware cost under different parallelisms. As shown
in Fig. 5, in addition to logic resource, memory resource
also increases with the parallelism. The former one directly
comes from the increase of adder array and multiplier array,
while the later one comes from the change of memory shape.
To be more specific, if the parallelism is 32, xt requires a

Fig. 5 Minimum resource to support different maximum parallelism

Table 1 Data size and bandwidth occupied by each data

32-in-width and (H/32)-in-depth memory instead of a 1-in-
width and H-in-depth memory, which is similar to ct, ht and
b∗. As a result, although the logically-needed memory keeps
the same, the actually-used memory would be much larger,
especially on FPGA platforms.

3.4 Buffering and Compression Strategy and Bandwidth

3.4.1 Buffering Strategy

The data amount in LSTM design is quite large, which
means the buffering strategy is very important to balance the
occupation of bandwidth and the size of on-chip memories.
To better analyze the situation, the detailed data amount and
the corresponding bandwidth occupied are listed in Table 1.

Based on this table, the cost of the following two strate-
gies could be easily estimated. If all of them are stored with
off-chip memories, it requires a bandwidth of 4×X×H+4×
H×H+X×H×4+H×H×4+4×H+4×(H+H)+H+2×H
element/round. If all of them are stored with on-chip mem-
ories, it requires a bandwidth of only X + H element/round,
which is used to read xt and write ht, but the on-chip mem-
ories are as large as 4 × X × H + 4 × H × H + X + 12 × H
elements.
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Fig. 6 W∗∗ stored in the interleaving order

The above strategies go to two different extremes, one
uses only off-chip memories, the other one uses only on-chip
memories, both leading to an imbalance between on-chip
memories and bandwidth. On the contrary, the buffering
strategy adopted in the proposed design balances them in
the following way.

i. xt is buffered with on-chip memories, because it re-
quires a large bandwidth to be transferred but a small
space to be stored with. To be more specific, if xt is
buffered with one on-chip memory whose size is X el-
ements, it could save a bandwidth of X × H × 4 ele-
ment/round.

ii. ht−1 is similar to xt, but in order to keep ht−1 for current
round and collect ht for next round, it is stored with
ping-pong memories.

iii. thanks to the interleaving work flow, the lifecycle of ft,
it, gt, ot are greatly shortened as described in Sect. 3.2.
In another word, neither bandwidth nor on-chip mem-
ory is needed for them;

iv. ct−1 is stored with just one piece of memory instead of
ping-pong memories, because after any certain element
of ct is figured out, the corresponding element of ct−1

would be out of its lifecycle;
v. W∗∗ is stored with off-chip memories since they are too

costly to be stored with on-chip memories. To better
utilize the burst transfer of bus and off-chip memo-
ries, they should be stored in the interleaving order as
they are read, which is shown in Fig. 6. In this figure,
W∗∗(x, y) stands for the element in row x, column y.

vi. b∗ is stored with on-chip memories to keep the

Table 2 Comparison of different buffering strategy

simplicity of the data flow.

In this way, the buffering strategy adopted requires on-chip
memories of X + 2 × H + H + 4 × H elements and a band-
width of 4× X ×H + 4×H ×H + X +H element per round.
An example is given in Table 2 to help the comparison, ac-
cording to which, the buffering strategy adopted saves 50%
bandwidth at a cost of merely 0.13 Mb on-chip memories
compared with strategy a).

3.4.2 Compression Strategy

To further improve the bandwidth, it is recommended to
do some compression to W∗∗. Two strategies could be
adopted. One is using some asymmetrical algorithms, be-
cause W∗∗ are usually trained off-line. In other words, they
are known values in general situation. By word “asym-
metrical”, it means the calculation cost of compression and
de-compression should be different. Of course, for the cur-
rent design, algorithms which are difficult to compress while
easy to de-compress should be used. To be more specific,
the interleaved W∗∗ could be compressed as a whole, stored
to off-chip memories, then de-compressed in fetch module.
In other words, no changes in gating part or network part are
needed. Due to this reason, this part is not integrated and
designers should choose suitable compression algorithm ac-
cording to the system requirements.

The other one is using sparse W∗∗. By word “sparse”,
it means only a few elements in W∗∗ are kept and the rest
are set to zero. In this way, only non-zero elements need
to be calculated. To handle this kind of compression, the
proposed design need to be re-structured in the following
aspects.

i. each W∗∗ and its index would be stored in pairs.
ii. memories for xt and ht would be increased according

to the parallelism.
iii. One FIFO would be added between the gate part and

network part.

For example, if the first row of the sparse Wf x has J non-zero
elements whose indexes are a, b, c, . . . and the first row of
the sparse Wf h has K non-zero elements whose indexes are l,
m, n, . . . , it should be stored in the way described by Fig. 7.
If the parallelism is 3, then 3 piece of 1×H SRAM are used
to store ht−1, 3 piece of 1 × X SRAMs are used to store xt.
Indexes like a, b, c or l, m, n would be used as the address
to access those SRAMs as described in Fig. 8.

As to the FIFO added between the gate part and net-
work part, it is used to balance the throughput of gating



FAN et al.: A HIGHLY CONFIGURABLE 7.62GOP/S HARDWARE IMPLEMENTATION FOR LSTM
269

Fig. 7 Sparse W∗∗ stored with column index

Fig. 8 Access of xt

Fig. 9 Sigmoid function

part and network part because the former one is no longer
regular.

3.5 σ and tanh Function, Data Type and Accuracy

3.5.1 σ and tanh Function

σ and tanh function are costly to be directly implemented
on hardware platform. Taking σ function as the example, it
contains exponent calculations as shown in Eq. (8).

σ(x) = 1/(1 + exp(−x)) (8)

Thus two different methods could be used to implement this
function directly on hardware platform. One is by calcula-
tion, both Taylor expansion and polynomial fitting with an
order of 8 have been tried to substitute this function. How-
ever, as shown in Fig. 9, Taylor expansion diverges quickly
when leaving the expansion point; while the error of poly-
nomial fitting is rather too high.

The other one is by look-up table. However, as men-
tioned above, a fixed-point type with 16-bit data width is
used in this design. In other words, the look-up table would
be as large as 1Mb, which is too costly.

In this design, to balance the hardware cost and accu-
racy, σ function is divided into 2 regions as described in
Fig. 9. Region in the dashed box is called the region of
interest (ROI). ROI would be further divided into several
sub-regions and each sub-region would be fitted with an

Fig. 10 Implementation of Sigmoid function (x ≥ 0)

Table 3 Accuracy of the proposed design

individual second-order function. As to the other regions,
σ function returns with 0 or 1 directly. Attention should be
paid on the fact that since theσ function is centrosymmetric,
only half of it needs to be implemented.

An example of such an implementation is given as fol-
lows. In this example, it is assumed that the input data has
a type of Q10.6, which covers a range of [−512, 512 − 2−6].
ROI is set to (−8, 8), then for the input data in the range of
[8, 512 − 1/26], it returns with 1; for the input data in the
range of [−512,−8], it returns with 0.

To simplify the structure, each sub-region is equal-
length and the length is a power of 2 times the value of
LSB, namely, 2−6. In this way, if the input data is in ROI,
the higher bits could be directly used as the address to read
the fitting coefficients; while the lower bits could be directly
used as the input of the fitting function. For example, if each
sub-region has a length of 1, bit [8:6] would be used as the
address; while bit [5:0] would be used as the input. Fig-
ure 10 has described the above architecture in a more visual
way.

Since tanh function could be implemented in the same
way and the data rate in network part is relatively low as
suggested by Fig. 2, these two functions are reused in the
time-division-multiplexing (TDM) way.

Also as illustrated by Fig. 10, the second-order func-
tion fitted out is implemented by the iteration of a one-order
function engine. In other words, this implementation could
be configured on the fly to realize higher-order fittings.

In addition, both ROI and the number/length of sub-
regions are configurable to be adapted to different Q val-
ues. Since each sub-region is equal-length and the length is
a power of 2 times the value of LSB, this could be easily
realized by two selectors. One is used to extract the bits to
be served as address of fitting coefficient; the other is used
to extract the bits to be served as inputs of fitting function.
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3.5.2 Data Type and Accuracy

As mentioned in Sect. 3.3.2, a fixed-point type with 16-bit
data width is adopted in this design to reduce the hardware
cost of calculation; while the Q value is adopted to expand
the data range.

A floating-type LSTM with no optimization in speed
is used to evaluate the performance of the data type, σ and
tanh function. According to Table 3, no obvious accuracy
loss could be detected for the proposed optimization.

4. Comparison

4.1 Frequency, Hardware Cost and Power

Thanks to the optimization in work flow, structure and data
type, this design achieves the highest working frequency, the
smallest hardware cost and the lowest power among those
designs listed in Table 4, where, the best results of each
comparison item is highlighted with bold italic.

To be more specific, based on the function partition,
the proposed design clearly divide the LSTM into two

Table 4 Comparison in frequency, hardware cost, power, throughput, time and error rate

different parts, the gating part whose calculation is simple
but data rate is high and the network part whose data rate is
low but the calculation is complex. In this way, the calcu-
lation in the gating part, namely, matrix operation, only in-
volves adding and multiplying; while the calculation in the
networking part, namely, the σ and tanh function, is also
simplified into iterations of multiplying and adding. More-
over, those two parts all benefit from the Q value adopted,
which involves only fixed-type calculations but keep the
data range large. As a result, compared with other designs,
this work’s frequency could be optimized to a great extent.

In addition to the simplicity of calculation and the data
type with Q value, the hardware cost and power also bene-
fit from (1) the interleaving work flow which saves the on-
chip memory for ft, it, gt and ot; (2) the ROI region (and
centrosymmetric) adopted for σ and tanh function which
avoids the use of the large lookup table or complex calcu-
lation; (3) the TDM reuse of the σ and tanh which further
reduced the cost and power.

4.2 Throughput and Normalized Throughput

In this paper, throughput is compared using OP/s, which
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stands for the (multiply) operation per second. For the
proposed structure, if a parallelism of 32 is adopted, the
throughput could be easily estimated by 32 (OP) times 238
(MHz), namely 7.62 GOP/s. This throughput is the high-
est one among those designs listed in Table 4 except S. Han
et al. [18], and the throughput achieved by S. Han et al. [18]
comes from a sparse W∗∗, which is not recommended from
this paper’s point of view.

First, although the accuracy loss is just 0.3% according
to S. Han et al.’s paper [18], it may not be so convincing,
because the original error rate which uses dense W∗∗ is as
high as 20.4%. In other words, the accuracy loss of sparse
W∗∗ for high accuracy vectors are remained to be checked.

Second, the control of data flow is quite trivial because
the number of non-zero elements in each row is irregular.
In other words, the design is too closely coupled with the

Fig. 11 (a) Throughput vs power (MOP/s/W). (b) Throughput vs cost
(MOP/s/LUT). (c) Time vs size (us/element). (d) Time vs size in log10
(us/element in log10)

feature of W∗∗, which may lower the configurability in par-
allelism and layer size. Nevertheless, the proposed design
could be also restructured to handle sparse W∗∗ as described
in Sect. 3.4.2.

In order to give a fairer comparison, the throughput
is normalized to hardware cost and power separately. Fig-
ure 11 (a) and column “Th/C” in Table 4 give the through-
put over hardware cost, namely, the throughput offered by
each LUT; Fig. 11 (b) and column “Th/P” in Table 4 give
the throughput over power, namely, the throughput offered
by each watt. According to them, the proposed design offers
the highest value for both normalizations, which benefits a
lot from the high parallelism & throughput and the low cost
& power.

4.3 Time and Normalized Time

Although, J. Liu et al. [10] achieves the shortest time among
those designs, it targets to a small network. As a result,
a normalized time is given to help the comparison. Fig-
ure 11 (c)–(d) and Column “Ti/S” in Table 4 gives the time
over network size, namely, the time to process each element.
According to them, S. Han et al. [18] achieves the shortest
time at a great cost due to the sparse W∗∗ adopted. But it
must be pointed out again that this may be suitable for low
accuracy situations only and the configurability may be lim-
ited. While for dense W∗∗, the proposed design offers the
shortest time.

4.4 Configurability

Among those designs, only the proposed one could be con-
figured in not only the size and data range but also the par-
allelism and σ and tanh function, which is listed in Ta-
ble 5. Again the best results of each comparison item is
highlighted with bold italic.

Table 5 Comparison in configurability
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i. Layer size: Instead of a fixed or discrete layer sizes, the
proposed one supports arbitrary ones, and it could be
configured on the fly. (Of course, the maximum layer
size is limited by the on-chip memories for xt and ht.)

ii. Data type: Although a 16-bit fixed-point data type is
adopted in this design, the Q value is adopted to change
data range of W∗∗, xt, ht, . . . on the fly.

iii. Parallelism: Although the highest parallelism and the
corresponding hardware cost is pre-determined by sys-
tem requirements, it could be configured to a lower one
on the fly, which is meaningful under some low-power
mode.

vi. σ and tanh function: the ROI, the number and length of
sub-sections, even the order of fitting functions could
be configured on the fly.

5. Conclusion

This paper proposed a highly configurable 7.62 GOP/s hard-
ware implementation for LSTM. The work flow is rear-
ranged to make the design compact and high-throughput; the
structure is organized to make the design configurable; the
data buffering and compression strategy is chosen to lower
the bandwidth without increasing the complexity of struc-
ture; the data type, σ and tanh function are optimized to
balance the hardware cost and accuracy. This work achieves
7.62 GOP/s @ 238 MHz on XCZU6EG FPGA, which takes
only 3K LUT.
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