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Abstract— The JPEG is one of the most widely used lossy
image-compression standards, whose compression performance
depends largely on a quantization table. In this work, we uti-
lize a Convolutional Neural Network (CNN) to generate an
image-adaptive quantization table in a standard-compliant way.
We first build an image set containing more than 10,000 images
and generate their optimal quantization tables through a classical
genetic algorithm, and then propose a method that can efficiently
extract and fuse the frequency and spatial domain information
of each image to train a regression network to directly generate
adaptive quantization tables. In addition, we extract several
representative quantization tables from the dataset and train
a classification network to indicate the optimal one for each
image, which further improves compression performance and
computational efficiency. Tests on diverse images show that the
proposed method clearly outperforms the state-of-the-art method.
Compared with the standard table at the compression rate of
1.0 bpp, the regression and classification network provide average
Peak Signal-to-Noise Ratio (PSNR) gains of nearly 1.2 and
1.4 dB. For the experiment under Structural Similarity Index
Measurement (SSIM), the improvements are 0.4% and 0.54%,
respectively. The proposed method also has competitive computa-
tional efficiency, as the regression and classification network only
take 15 and 6.25 milliseconds, respectively, to process a 768×512
image on a single CPU core at 3.20 GHz.

Index Terms— Convolutional neural network (CNN), image
compression, JPEG, quantization table, peak signal-to-noise ratio
(PSNR), structural similarity index measurement (SSIM).

I. INTRODUCTION

S INCE its proposal by the Joint Photographic Experts
Group in 1992 [1], the JPEG has become the most

commonly used lossy image compression standard. Compared
to other image compression formats, the JPEG has a great
advantage in flexibility, as it can easily adjust the degree of
compression. Although some later lossy image-compression
standards, such as JPEG 2000, WebP, and BPG, have in some
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ways exceeded its performance, the JPEG is still the most
popular image format used in the World Wide Web and digital
cameras due to its flexibility and universality.

A conventional JPEG encoder has three basic steps. For
each color component, the image is divided into 8 × 8 blocks
and transformed to 8 × 8 coefficient matrices via 2D Discrete
Cosine Transform (DCT). The resulting DCT coefficients
are uniformly quantized by an 8 × 8 quantization table and
transferred to an entropy encoder. The JPEG standard allows
the encoder free selection of quantization tables and Huffman
tables. Thus the optimization research for JPEG compres-
sion mainly focuses on Huffman table optimization [2]–[6],
quantization table optimization [7]–[16], and DCT coefficient
adjustment [17], [18], aiming to achieve better image quality
at the same or a higher compression rate.

Many studies have shown that the quantization table is
the key factor in compression performance. Research focuses
on many methods of quantization table optimization, such
as rate-distortion optimization [7]–[11], human visual system
(HVS)-based optimization [12]–[14], heuristic optimization
[15], [16], and Deep Neural Network (DNN) favorable opti-
mization [25]. Optimization methods can generally be divided
into two categories. One is to propose a new universal quan-
tization table [12], [16], [25], and the other to adaptively
generate the optimal quantization table according to the input
image [7]–[11], [13]–[15]. A universal quantization table has
difficulty performing well on all kinds of images due to
their diverse content, while the generation of a self-adaptive
quantization table often results in complex iterative operations.

To obtain a self-adaptive quantization table for each image
without iterative calculation, we propose a CNN-based optimal
quantization table generator, QNet, to learn the correspondence
between an image’s features and its optimal quantization table,
and then infer the optimal quantization table efficiently for
each input image according to its statistical characteristic.
Other optimization methods, such as soft threshold quan-
tization and Huffman table optimization, can be used in
conjunction with this method.

Neural network based compressions have made a series
of remarkable achievements, some even outperforming JPEG,
WEBP, and BPG [19]–[21], [26]. Johnston et al. [19] pre-
sented a general architecture for compressing with RNNs,
content-based residual scaling, and a new variation of GRU.
Experimental results prove that the proposed architecture out-
performs JPEG at image compression across most bitrates on
the rate-distortion curve on the Kodak dataset images, with and
without the aid of entropy coding. Huszar et al. [20] aimed
at directly optimizing the rate-distortion tradeoff produced by
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an autoencoder. A simple but effective approach was proposed
for dealing with the non-differentiability of rounding-based
quantization, and for approximating the non-differentiable cost
of coding the generated coefficients. Their performance is
similar to JPEG 2000 when evaluated for perceptual quality.
Simoncelli et al. [26] presented a complete image compression
method based on nonlinear transform coding, and a frame-
work to optimize it end-to-end for rate-distortion performance.
Using a variant of stochastic gradient descent, they jointly
optimized the entire model for rate-distortion performance
over a database of training images, introducing a continuous
proxy for the discontinuous loss function arising from the
quantizer. The compression method offers improvements in
rate-distortion performance over JPEG and JPEG 2000 for
most images and bit rates. Bourdev et al. [21] firstly used
GANs for image compression and proposed a compression
architecture that consist of an autoencoder featuring pyramidal
analysis, an adaptive coding module, and regularization of the
expected codelength. Their algorithm typically produces files
2.5 times smaller than JPEG and JPEG 2000, 2 times smaller
than WebP, and 1.7 times smaller than BPG on datasets of
generic images across all quality levels. At the same time,
the codec is also lightweight and deployable. Most of the
neural network-based compressions use similar architecture to
autoencoders, which directly encode images in a variety of
formats. Thus, they are relatively lacking in compatibility and
are difficult to apply on a common platform. The proposed
method simply utilizes the neural network to obtain an optimal
quantization table, which is highly standard-compatible.

In this paper, we first build an image set containing more
than 10,000 images and generate their optimal quantization
tables through a computing-intensive genetic algorithm. After
that, we propose a novel method to efficiently extract and fuse
the frequency and spatial domain information of each image
and train a regression network, namely QNet-R, to directly
generate the quantization table. In training QNet-R, the quan-
tization tables obtained by the genetic algorithm are used as the
ground truth. We analyze the images and their optimal quanti-
zation tables and determine that images with similar frequency
domain distributions often correspond to very similar optimal
quantization tables. Inspired by this, we place the optimal
tables into several categories by Principal Component Analysis
(PCA) and a K-means clustering algorithm and mark the
images with the category to which their optimal quantization
table belongs. These cluster centers are used as representative
quantization tables, and all we need is an efficient classification
network, namely QNet-C, to indicate the right one for each
input image. In training QNet-C, the category index of each
image is used as the classification label.

QNet is independent of the quantization table optimization
algorithm used to build the training set, so a variety of
methods can be chosen according to the application scenario.
We use the classical genetic algorithm to generate the optimal
quantization table for images in the training set because of
its relatively high accuracy. In this work, QNet is trained
under PSNR and SSIM to prove that it is also independent
of the image quality assessment. In practice, the image qual-
ity evaluation index is easily replaced by other HVS-based

evaluation indices, such as Feature-Similarity Index Measure-
ment (FSIM) [16].

The rest of this paper is organized as follows. Section II
reviews previous quantization table optimization work in the
literature. The CNN-based quantization table optimization
method is described in section III. Experiments and analysis
of results are presented in section IV. Conclusions are drawn
in section V.

II. RELATED WORK

A. Rate-Distortion Optimization

The rate-distortion optimization method establishes a
rate-distortion function and then minimizes the total
rate-distortion cost to obtain the optimal quantization table.
The main drawback of traditional rate-distortion optimization
is difficulty balancing computational cost and accuracy. Hence,
the crucial problem in rate-distortion optimization is to more
efficiently evaluate quantization tables [11]. Ratnakar and
Livny [10] used the empirical entropy of quantized DCT
coefficients to estimate the rate and employed histograms to
calculate the rate and distortion to significantly improve JPEG
compression performance. Yang et al. [11] modeled transform
coefficients across different frequencies as independently dis-
tributed random sources and applied the Shannon lower bound
to approximate the rate-distortion function of each source.
They proposed an efficient statistical-model-based algorithm
to design quantization tables for DCT-based image coding.
Experimental results show that the work of Yang et al. [11]
surpassed that of Ratnakar and Livny [10] in both PSNR
improvement and computational performance and is currently
the best rate-distortion optimization algorithm.

However, since they must establish a distortion function,
current rate-distortion optimization methods are mainly based
on Mean Square Error (MSE) and have difficulty achieving
good performance under complex or subjective image quality
assessment. In contrast, QNet merely learns the correspon-
dence between the image and its optimal quantization table
and is easily applied under various image quality assessments.

B. HVS-Based Optimization

HVS-based optimization attempts to model the human
visual system and then generates an optimal quantization table
according to the perceptual importance of each frequency
component. Wang et al. [12] derived a perceptual quantization
table to replace the standard table by incorporating the human
visual system model with a uniform quantizer. Since this
method attempts to provide another universal table, it incurs no
additional computational cost, but it has limited generalization
ability. Zhang et al. [14] used the Just-Noticeable Difference
(JND) model to represent human-perceived distortion and
obtained the optimal quantization table by minimizing the rate-
distortion cost at all frequencies. By combining rate-distortion
optimization with the HVS method, this method achieves sig-
nificant rate improvement with high subjective image quality
and a large computational cost, since it iteratively calculates
the rate-distortion function.

Aiming mainly just to learn the correspondence between
image features and optimal quantization tables, QNet is easily
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combined with various HVS by establishing different training
sets.

C. Heuristic Optimization

Heuristic optimization methods include simulated annealing
algorithms, genetic algorithms, and particle swarm optimiza-
tion. They usually start from a random solution and iterate
to find the optimal solution constrained by a specific quality
evaluation index. Manavalan et al. [15] proposed a knowledge-
based genetic algorithm combining knowledge about image
compression with traditional genetic algorithms, resulting in
a better rate-distortion tradeoff and faster convergence speed
compared to classical methods. However, it needs to evolve
for hundreds of generations to obtain an approximate optimal
solution, which means a huge computational cost.

Max et al. [16] used a simulated annealing algorithm
to generate several quantization tables that outperform the
standard table under FSIM. They claimed that these new
quantization tables could reduce the distortion under FSIM
by over 10% while improving compression by over 20% at
quality level 95. However, the optimization tables in the paper
are manually selected according to the compression result of
a test set, which means that these tables may be difficult to
adapt to various image contents. In addition, in compressing
an image, the compressor does not know which of the optimal
quantization tables to use.

D. DNN Favorable Optimization

Different from human perception-oriented optimization
methods, Liu et al. [25] proposed a DNN-oriented quantization
table design method, DeepN-JPEG, to decrease data offloading
and local storage cost in terminal devices. Experimental results
showed that DeepN-JPEG improved the compression rate
by a factor of nearly 3.5 and consumed only 30% of the
power of the conventional JPEG with no loss of classification
accuracy. With the explosive growth of artificial intelligence
applications, image compression tasks will increasingly be
oriented toward neural networks rather than human perception.

In summary, current human perception-oriented JPEG quan-
tization table optimization methods are limited by the short-
comings of the coupling with image quality assessment, lack
of generalization, and high computational cost. Different from
previous research, the QNet proposed in this work is indepen-
dent of specific image quality assessments and can adaptively
generate the optimal quantization table for each input image
without significantly increasing the computational workload.

III. CNN BASED OPTIMIZATION

In this section, we first describe the network architec-
ture to extract and fuse the features in the frequency and
spatial domains, and we then introduce the regression net-
work QNet-R and classification network QNet-C used in our
research. The method of extracting representative quantiza-
tion tables from the optimal quantization table space is also
described.

A. Feature Extraction and Fusion

In the JPEG encoding process, the input image is partitioned
into non-overlapping 8 × 8 blocks and transformed from the

pixel domain to the frequency domain by a normalized, two-
dimensional DCT transformation. After transformation, the
image data matrix contains both the intra-block frequency
domain information and inter-block spatial domain informa-
tion.

The ordinary convolution layer slides the convolution ker-
nels on the input matrix, which inevitably confuses the fre-
quency domain information in different blocks and hinders
the efficient extraction of meaningful feature maps. Thus,
the critical problem is to make the information in these two
domains fully usable while not confusing each other.

The convolution layer with kernel size 1 × 1 was first used
to reduce the number of feature channels or cross-channel
information interactions [22]. For the sake of brevity, hereafter
we refer to the convolution layer with kernel size 1 × 1 as
1 × 1 convolution. In this work, we use 1 × 1 convolution to
extract the intra-block frequency domain information without
confusing it with the inter-block spatial domain information.
As shown in Fig. 1, we consider the 64 frequency points in
each block as 64 channels and use the 1×1 convolution layer
to extract the intra-block feature in the frequency domain.
This layer performs convolution on the same positions of the
64 channels, which only involves DCT coefficients in a single
8 × 8 block. After that, the ordinary convolution layer can be
used to fuse each block feature in the spatial domain without
information confusion. This method can be used by the image
processing tasks with a fixed block size to avoid information
confusion while extracting intra- and inter-block features.

B. QNet-R: Regression Network

A neural network can generally be built for any resolution.
This paper takes 768×512 as an example, since it is represen-
tative and widely used. For other resolutions, we can resize
images to this fixed resolution as needed. Fig. 2 shows the
architecture of the regression network. We merely describe
the luminance component of the image, since the quantization
process of the three components of a JPEG image is the
same, and a similar structure can be used for the chrominance
components. The size of each feature map is marked between
adjacent layers. The final output of QNet-R is a 1×64 vector,
which represents an 8 × 8 quantization table.

As mentioned before, the input image is divided into 8 × 8
blocks, and then we apply a DCT transformation. We adopt
a 1 × 1 convolutional layer to extract the frequency domain
features from each block, which is followed by a rectified lin-
ear unit (ReLU) as an activation function. The local response
normalization layer is connected after the 1 × 1 convolutional
layer to improve the generalization capabilities of the entire
network.

Since the size of the final output feature map is quite large
(8 × 8), we first use a deep convolutional neural network to
extract spatial features. However, deep networks are prone to
overfitting, it is hard to pass gradient updates through the entire
network [22], and to naively stack large convolutional layers
is computationally expensive. An inception module [23] has
an excellent topological structure, and it provides powerful
representation ability without increasing the depth of the net-
work. The architecture of the inception module with dimension
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Fig. 1. A 2-dimensional DCT coefficient matrix of size (W, H) is converted to a tensor of size (W/8, H/8, 64) according to 64 frequency points, and then a
1 × 1 convolution operation is performed in the frequency dimension to extract the frequency domain characteristics.

Fig. 2. The structure of the regression network.

Fig. 3. The structure of inception module with dimension reductions.
Compared to the naive version, 1×1 convolution is used to compute reductions
before the expensive 3 × 3 and 5 × 5 convolutions as a function of applied
field.

reductions is shown in Fig. 3. Unlike traditional CNNs that aim
to stack the networks deeper, the inception module tries to
widen the network. Here, it performs convolution on the input
feature maps with three filter sizes (1 × 1, 3 × 3, 5 × 5). The
outputs are concatenated and sent to the next layer. With the
help of the inception module, we can fuse the spatial domain
features with frequency domain features between all 8 × 8
blocks with little increase in computational complexity. The
final output is obtained by a fully connected layer.

C. Representative Quantization Tables Extraction

During our research, we found that images with similar
Alternating Component (AC) coefficient distributions often
correspond to similar optimal quantization tables. Images with

different frequency domain features are shown in Fig. 4, and
the distributions of their AC coefficients and optimal quanti-
zation tables are shown in Fig. 5. By observing Fig. 5, we can
find that the quantization tables corresponding to images
in Fig. 4 (a)-(c), which have rich high-frequency components,
are almost uniformly distributed in the frequency domain. But
for those composed mainly of low-frequency components,
as in Fig. 4 (d)-(f), the high-frequency entries are significantly
larger than the low-frequency entries.

The above observation implies that perhaps just a few
typical quantization tables can represent the entire optimal
quantization table space. Hence, we might extract one or sev-
eral representative quantization tables to simplify the adaptive
quantization table generation network. Max et al. [16] obtained
several optimal quantization tables from simulated annealing,
but the tables were manually selected according to a small
test set. We employ PCA and K-means clustering to place the
optimal tables into several categories and label the images
as the category to which their optimal quantization table
belongs. The case that the quantization tables and images are
placed into two categories is illustrated in Fig. 6. The cluster
center quantization tables are used as the adaptive quantization
tables for images in each category, so the entire optimal
quantization table space can be simply represented by several
cluster centers. Experimental results show that this approxi-
mation only slightly degrades compression performance, and
it greatly simplifies the generation of adaptive quantization
tables. To compress a new image, we just need an efficient
classification network to identify its category, and then we
use the corresponding center quantization table as its adaptive
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Fig. 4. Images with different frequency domain features. (a) - (c) are rich in detail and (d) - (f) are relatively flat.

Fig. 5. Distribution of the AC coefficients and optimal quantization tables for images in Fig. 4. (a)-(f) correspond to Figs. 4 (a)-(f), respectively. The
horizontal axis represents the frequency points in zigzag order. For images, the vertical axis represents the ratio of the sum of coefficients at each single AC
frequency point to the sum of all AC coefficients, and for quantization tables the vertical axis represents the ratio of each AC entry to the sum of all AC
entries. We can see that images with similar frequency domain distributions, such as (a)-(c) and (d)-(f), have very similar quantization tables.

quantization table. K-means clustering aims to partition N
observations into K clusters, where each observation belongs
to the cluster with the smallest Euclidean distance. To directly
use K-means to classify the quantization table is susceptible
to isolated points and noise. The PCA algorithm is a way to
reduce the dimensions of data while minimizing information
loss. Here, we first project the 64-dimensional quantization
table data into 48-dimensional space through PCA, and then

use K-Means clustering to place the resulting 48-dimensional
vectors into several categories.

D. QNet-C: Classification Network

After obtaining several cluster center quantization tables,
the goal of the network is just to identify the right one for each
input image, which can be regarded as a typical classification
task. Since the images have been labeled as the category to
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Fig. 6. The optimal quantization tables are placed into two categories by the
PCA and K-Means algorithms and the images are also classified according to
the category to which its optimal quantization table belongs. Then the cluster
center quantization tables (represented by triangles) are used as the adaptive
quantization tables for images in each category. This figure chooses some
typical quantization tables and project them into 3D space through PCA for
clustering. In practice, K-Means clustering is performed in 48-dimensional
space.

which its optimal quantization table belongs, the classification
task can be established naturally. The number of image cate-
gories is usually much smaller than 64, hence, QNet-C can be
greatly simplified compared to QNet-R. As shown in Fig. 7,
we remove the inception module and halve the output channels
of the 1×1 convolution. The number of parameters in the fully
connected layer is also greatly reduced.

IV. EXPERIMENTAL RESULTS

A. Training Dataset Setup

DIV2K is a high-resolution image set of the NTIRE
2017 challenge on single image super resolution, including
800 training images, 100 validation images, and 100 test
images [24]. For this paper, we obtained 16,000 images by
mirroring and cropping on the training set of DIV2K, and then
we calculated the optimal quantization table corresponding
to each image through the classical genetic algorithm to
establish a training dataset. The validation and test set were
created similarly, and each contained 2000 images. Finally,
the comparison between the proposed method and previous
methods was made on the test set, the Kodak image set, and
an image set provided by Alibaba. The widely used Kodak
image set contains 24 natural images, while the Alibaba image
set contains 100 artificially processed images, including text,
faces, and commodities. Experiments were conducted on the
set of standard 8-bit grayscale images with a resolution of
768 × 512.

There are many types of research of the generation
of self-adaptive optimal quantization tables, including rate-
distortion optimization [11], the genetic algorithm [15], and
the simulated annealing algorithm [16]. The method proposed
in this paper is applicable to the optimal quantization table
dataset generated by any algorithm. Since it does not affect
the computational complexity of the inference phase, we used
the classical genetic algorithm with large computational com-
plexity to ensure the accuracy of the dataset.

The genetic algorithm is a kind of heuristic algorithm.
Its main idea is to generate a large number of individuals
through crossover and mutation methods based on the previous

generation of data and then to evaluate each individual’s
unfitness index and retain a certain number of outstanding
individuals as parents, repeating this process until the small-
est unfitness index no longer changes. In this experiment,
the whole genetic algorithm aims to find the quantization table
with the smallest unfitness index for each image. Without loss
of generality, the mutation method is defined as randomly
adjusting a random item of one quantization table within
±10% and the crossover method is defined as exchanging a
random item of two quantization tables. The unfitness index
is used to characterize the degree of unsuitability of each
quantization table. We established training sets under both
PSNR and SSIM to prove that the method proposed in this
paper is also independent of the image quality assessment.
For simplicity, the following description takes PSNR as an
example, and operations are the same for SSIM. Let S∗ and
P∗, respectively, be the compressed file size and PSNR value
of the baseline compression using the standard quantization
table. Similarly, let Si and Pi be the compressed file size and
PSNR value of the compression using the newly generated
table Ti in the genetic algorithm. Since the genetic algorithm
tries to find the quantization table with the highest image
quality and no compression rate degradation, the difference
of file size is magnified by a factor of 10 as a penalty when
Si > S∗, so as to eliminate quantization tables that do not
meet the compression ratio requirement. When Si ≤ S∗,
the unfitness index must only consider the change in image
quality. The unfitness index of quantization table Ti is

U (Ti ) =
{

(Si − S∗) × 10 + (P∗ − Pi ) , i f Si > S∗

P∗ − Pi , otherwi se.
(1)

For each image, we first use the mutation method to generate
500 new quantization tables based on the standard quantization
table, and then evaluate the unfitness index of each quanti-
zation table, retaining the top 50 quantization tables. From
the second round on, each iteration utilizes the mutation and
crossover methods to generate 500 new quantization tables
based on the 50 quantization tables that survived the previous
iterations, evaluates their unfitness index and retains the top
50 of the 550 quantization tables (the 50 tables retained by
last iteration and the 500 tables generated by this iteration).
When the minimum unfitness index no longer shrinks during
10 consecutive iterations, the genetic algorithm is considered
to reach convergence, and the quantization table corresponding
to the minimum unfitness index is taken as the optimal
quantization table for the image.

B. Representative Quantization Tables

In practical applications, the number of clusters can be
determined according to the diversity of image features. For
the previously mentioned dataset, we tried to divide the
optimal quantization table data into 15, 10, 5, and 3 categories
and use the cluster center quantization table to compress the
images in each category. The original optimal quantization
tables offer an average PSNR improvement of 1.72 dB at
the same compression rate of standard table with a quality
level of 80, and that of the cluster center quantization tables
corresponding to the 15, 10, 5, 3 categories are 1.70, 1.69,
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Fig. 7. The structure of the classification network.

Fig. 8. The mean PSNR improvement of different clustering number. Result
of the original optimal quantization tables is also illustrated.

Fig. 9. The distribution of the extracted quantization tables. The horizontal
axis represents the table index in the zigzag order and the vertical axis
represents the ratio of each entry to the sum of all entries.

1.67, 1.12dB. As shown in Fig. 8, the PSNR gain does not
significantly degrade until the tables are placed into three
categories. Considering both the simplification and PSNR
improvement, we select the case of five clusters as learning
target. The frequency domain distribution of the five cluster
center quantization tables is shown in Fig. 9. Essentially,
the quantization table defines the proportion of quantization
loss at each frequency point. It can be clearly seen that the
five optimal quantization tables represent five kinds of loss
distribution in the DCT domain, which further demonstrates
that the optimal quantization table is closely related to the
frequency domain feature of an image.

C. CNN Training

In experiments, we found that the network using only AC
coefficients as input can reduce the amount of computation
while accelerating the convergence, which implies that the
quantization table is mainly dependent on the AC coefficient
distribution of the image. Therefore, we convert the 768×512
image to a 96 × 64 × 63 tensor as the input of the network,
with the last dimension representing 63 AC coefficients.

In order to improve the generalization ability and stability of
the network, we also need to enhance the training set. Since
the JPEG standard is to compress images in units of 8 × 8
blocks, we increase the data space by randomly rearranging
8 × 8 blocks. Experiments show that the optimal tables still
have the same benefits on rearranged images. This also implies
that the neural network extracts statistical features rather than
the local relationship in the spatial domain.

By analyzing the tables, we found that the high-frequency
entries are generally significantly larger than the
low-frequency entries, but the latter has a greater influence
on compression performance. Thus, we scale the ground
truth tables according to the magnitude of each entry in the
standard table, so as to make the contribution of each entry
on the loss function fairer. In the inference phase, the optimal
quantization table could be obtained by reverse scaling
the output of the regression network. Denote the standard
quantization table as T ∗. Then the scaling factor is defined as

Fi = min0≤ j≤63 T ∗
j

T ∗
i

, 0 ≤ i ≤ 63. (2)

The MSE between the network output and the scaled quan-
tization table is used as the loss function. To avoid over-
fitting, we add L2 regularization to the loss function. The
hyper-parameter α is employed to adjust the contribution of
the L2 regularization and MSE to the final loss. Let fR be the
transformation function of the regression network. Then the
final loss function can be written as

L R (ω, x) = M SE
(

fR (ω, x) , T �
opt

)
+ αL2 (ω) . (3)

where x is the AC coefficient matrix, ω is the coefficient of the
regression network, and T �

opt is the scaled optimal quantization
table.

For the classification task, the category index of each image
is converted to a one-hot vector v to train the network. The
softmax function S and cross-entropy function H are used
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TABLE I

PSNR COMPARISON OF DIFFERENT Q-TABLE OPTIMIZATION METHODS
FOR 512 × 512 LENA

TABLE II

PSNR COMPARISON OF DIFFERENT Q-TABLE OPTIMIZATION METHODS
FOR 512 × 512 GOLDHILL

in the loss function, and L2 regularization is added to avoid
overfitting. Similar to (3), the loss function of the classification
network is

LC (ω, x) = H
(
S( f C (ω, x)), v

) + αL2 (ω) . (4)

The regression and classification networks are trained using
the TensorFlow framework and the Adam optimizer [27].

D. Comparison Results
We first compare the results of QNet-R and QNet-C to

Yang et al. [11] and Max et al. [16] under PSNR. To facilitate
our subsequent discussion, we shall refer to compression
with quantization table generated by Yang et al. [11] and
Max et al. [16] as OptD-HDQ and Anneal. As mentioned ear-
lier, the OptD-HDQ and Anneal represent the state-of-the-art
JPEG quantizers obtained by rate-distortion optimization and
heuristic algorithms. Since Anneal produces several optimal
quantization tables, we compress the images using each
optimal table and select the best result as a comparison.
For OptD-HDQ, we just quote the results of hard decision
quantization claimed in the paper. The performance of baseline
JPEG encoder using the standard quantization table is shown
as an anchor. Tables I and II show the PSNR performance
of these optimization methods for 512 × 512 Lena and
Glodhill.

Figs. 10-12 show the mean PSNR of the test set, Kodak
image set, and Alibaba image set, respectively. Each is
compressed using the quantization table obtained by Anneal,
QNet-R, and QNet-C. It can be clearly seen that our proposed
method achieves greater improvements. The R-D curve of
QNet-R is slightly higher than that of Anneal, and QNet-
C performs significantly better than the other two methods
when the compression rate is greater than 0.75, which is most
common. At the compression rate of 1.0 bpp, QNet-R and

Fig. 10. Mean PSNR of the 2000 images in test set.

Fig. 11. Mean PSNR of the 24 images in Kodak image set.

Fig. 12. Mean PSNR of the 100 images in Alibaba image set.

QNet-C provide average PSNR gains of nearly 1.2 and 1.4 dB
on the test set, Kodak image set, and Alibaba image set,
compared to the standard table.

Fig. 13 shows the subjective quality comparison on Kodak
Image 21. Since most applications usually require high image
quality, we compare the images under compression ratios of
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Fig. 13. The subjective quality comparison on Kodak Image 21. The compression ratios of left and right column are target at 1.25 and 2.0 bpp respectively.
The top row is compressed by using the standard table while the middle and bottom rows are the compression results with the adaptive quantization tables
offered by QNet-R and QNet-C.

TABLE III

SSIM COMPARISON OF DIFFERENT Q-TABLE OPTIMIZATION METHODS

FOR 768 × 512 KODIM01

1.25 and 2.0 bpp. It can be seen that the textures of the images
compressed with the adaptive quantization tables offered by
QNet-R and QNet-C are better preserved.

To illustrate that the proposed method is applicable to
various image quality assessments, we trained networks under
the SSIM dataset. Tables III–V show the SSIM performance
of the classification and regression networks for Kodim 01-03.
It is seen from the table that the SSIM index has been
improved significantly over different compression ratios.

In addition to image quality, the computational cost is
an important factor on which to evaluate optimization algo-
rithms. Since Anneal aims to produce an optimal universal

TABLE IV

SSIM COMPARISON OF DIFFERENT Q-TABLE OPTIMIZATION METHODS

FOR 768 × 512 KODIM02

quantization table, it does not require additional computation
during image compression. Other methods [10], [11], [15] are
mostly based on iterative algorithms, which usually result in a
large computational workload. Manavalan et al. [15] usually
takes about 100 iterations to obtain the optimal quantization
table, requiring more than 2500 s to process a 768×512 image
on a single core at 3.20 GHz. Rate-distortion optimization
has higher computational efficiency than heuristic algorithms.
The methods proposed in V. Ratnakar and M. Livny [10]
and Yang et al. [11] require 1.95 s and 0.9 ms, respec-
tively, to process a 768 × 512 image on an Apple Mac
Pro 8-core 2.4 GHz computer. In contrast, it takes 15 and

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 12,2021 at 08:27:14 UTC from IEEE Xplore.  Restrictions apply. 



YAN et al.: QNet: AN ADAPTIVE QUANTIZATION TABLE GENERATOR BASED ON CONVOLUTIONAL NEURAL NETWORK 9663

TABLE V

SSIM COMPARISON OF DIFFERENT Q-TABLE OPTIMIZATION
METHODS FOR 768 × 512 KODIM03

6.25ms, respectively, for QNet-R and QNet-C to process a
768 × 512 image on a single CPU core at 3.20 GHz. For
comparison, the vanilla JPEG encoder needs about 95 ms
under the same conditions. Thus, the CNN-based quantization
table generator proposed in this paper is easily added to the
JPEG compression process with no significant performance
degradation.

V. CONCLUSION

We proposed the CNN-based method QNet to adaptively
generate an optimal quantization table in a standard-compliant
way. Compared to other quantization table optimization meth-
ods, QNet has the advantages of image quality assessment
independence and high efficiency. The 1 × 1 convolution and
inception module were used to extract and fuse features in
the frequency and spatial domains without confusion. The
regression network was trained on a dataset containing more
than 10,000 images and their corresponding optimal quan-
tization tables. In addition, we adopted PCA and K-means
clustering to place the images and optimal quantization tables
into several categories and trained a classification network
to further improve the compression performance and compu-
tational efficiency. We evaluated the compression results on
the test set, Kodak image set, and Alibaba image set, and
results showed that the regression network and classification
network gained significant benefits under both PSNR and
SSIM compared to the standard table provided by the JPEG
standard. At the compression rate of 1.0 bpp, QNet-R and
QNet-C provided average PSNR gains of nearly 1.2 and 1.4 dB
on the test set, Kodak image set, and Alibaba image set. For
the experiment under SSIM, the improvements were 0.4% and
0.54%, respectively. In terms of performance, the regression
and classification network only took 15 and 6.25 ms, respec-
tively, to process a 768 × 512 image on a single CPU core at
3.20 GHz. In summary, QNet can achieve significant improve-
ments in compression performance with little computational
workload.
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