
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 30, NO. 9, SEPTEMBER 2020 3289

A Pipelined 2D Transform Architecture Supporting
Mixed Block Sizes for the VVC Standard

Yibo Fan , Yixuan Zeng , Heming Sun , Jiro Katto , Member, IEEE, and Xiaoyang Zeng, Member, IEEE

Abstract— For the next-generation video coding standard
Versatile Video Coding (VVC), several new contributions have
been proposed to improve the coding efficiency, especially in
the transformation operations. This paper proposes a unified
32×32 block-based transform architecture for the VVC standard
that enables 2D Discrete Sine Transform-VII (DST-VII) and
Discrete Cosine Transform-VIII (DCT-VIII) of all sizes. It mainly
gives three contributions: 1) The N-Dimensional Reduced Adder
Graph (RAG-n) algorithm is adopted to design the minimal
adder-oriented computational units. 2) The storage of the asym-
metric transform units can be realized in the dual-port SRAM-
based transpose memory. 3) The pipelined 2D transformations
of mixed block sizes are achieved with the throughput rate
of 32 samples per cycle. The synthesis results indicate that this
architecture can reduce area by up to 73.1% compared with
other state-of-the-art works. Moreover, power saving ranging
from 4.9% to 9.9% can be achieved. Regarding the transpose
memory, at least 21.9% of the area can be saved by using SRAM.

Index Terms— Versatile Video Coding, transform, pipeline,
DST-VII, DCT-VIII.

I. INTRODUCTION

V IDEO compression is very important in the reduction
of the storage space of video data. The International

Telecommunication Union (ITU) and the International Orga-
nization for Standardization (ISO) are jointly developing a
new international video coding standard called Versatile Video
Coding (VVC) [1]. VVC is expected to achieve 50% coding
efficiency gain over the current video coding standard High
Efficiency Video Coding (HEVC) [2] at the same level of
video quality. It is worth noting that these superior coding per-
formances are obtained at the expense of high computational
complexity. In particular, one of the most frequently performed
modules is the variable size transform computation.

VVC makes three changes in transformation operations:
1) Besides retaining Discrete Cosine Transform-II (DCT-II)
adopted by HEVC, Discrete Sine Transform-VII (DST-VII)

Manuscript received May 13, 2019; revised July 21, 2019; accepted
July 31, 2019. Date of publication August 12, 2019; date of current version
September 3, 2020. This work was supported in part by the National Natural
Science Foundation of China under Grant 61674041, in part by the Alibaba
Innovative Research (AIR) Program, in part by the IBM Faculty Award, in part
by the Innovation Program of Shanghai Municipal Education Commission,
and in part by the Pioneering Project of Academy for Engineering and
Technology and Fudan-CIOMP Joint Fund. This article was recommended
by Associate Editor C.-T. Huang. (Corresponding author: Heming Sun.)

Y. Fan, Y. Zeng, and X. Zeng are with the State Key Laboratory of ASIC and
System, Fudan University, Shanghai 200433, China (e-mail: fanyibo@fudan.
edu.cn; 18210860015@fudan.edu.cn; xyzeng@fudan.edu.cn).

H. Sun is with the Waseda Research Institute for Science and Engineering,
Tokyo 169-8555, Japan (e-mail: hemingsun@aoni.waseda.jp).

J. Katto is with the Graduate School of Fundamental Science and Engineer-
ing, Waseda University, Tokyo 169-8555, Japan (e-mail: katto@waseda.jp).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2019.2934752

and Discrete Cosine Transform-VIII (DCT-VIII) are added as
the new transform types. 2) Using different transform types in
two (horizontal and vertical) transform directions is supported.
3) A more flexible block partitioning method is employed,
which supports both asymmetric block sizes and symmetric
block sizes.

Several low-cost hardware architectures have been devel-
oped for HEVC DCT-II in the past few years. For the trade-off
between hardware cost and work efficiency, Shen et al. [3]
proposed a mixture of multipliers and addition/shift operations
to realize matrix multiplication. A unified architecture for all
of the transform sizes was proposed by Meher et al. [4] using
Chen’s algorithm [5]. A fast algorithm for eight-point integer
transform was introduced by Sun et al. [6] to reduce the
computational complexity. A cyclic memory organization and
a reordered parallel-in serial-out scheme [7] were employed to
reduce the hardware cost. Zhang and Lu [8] presented a fully
parallel hardware architecture for an HEVC encoder, includ-
ing transformation operations. By only calculating several
pre-determined low-frequency coefficients of transform units
(TUs), Kalali et al. [9] significantly reduced the computational
complexity of DCT-II. A novel truncation scheme [10] was
proposed to implement the approximated transform design.
Pastuszak and Abramowski [11] introduced a computationally
scalable algorithm for an intra encoder.

However, because of the differences of the transform
sizes and types, the previous methods cannot be directly
used in the VVC transforms. Several hardware implemen-
tations [12]–[16] for DST-VII/ DCT-VIII have been pro-
posed. The 1D transforms of only small sizes (four-point
and eight-point) were implemented by Kammoun et al. [12]
and Ben Jdidia et al. [13], respectively. Mert et al. [14] real-
ized two different types of high-performance 2D transform
hardware for 4 × 4 and 8 × 8 TUs. Kammoun et al. [15]
and Garrido et al. [16] proposed a unified 2D transform
architecture at the expense of many hardware resources. These
designs were both FPGA-based designs, using either FPGA
multipliers or DSPs. It is difficult to compare them with the
ASIC-based designs.

Regarding the transpose memory, some effective storage
schemes were described in the literature. The transpose mem-
ory proposed by Mert et al. [14] consists of eight SRAMs,
each of which is 8 × 32 bits, which is enough to realize the
transform up to the 8 × 8 block size. Chen et al. [17] and
Sjövall et al. [18] exploited the same storage space to support
the 32 × 32 transform. The only difference is the word width.
Each word unit can store 4 points (4 × 16 = 64 bits) and
1 point (16 bits) respectively for [17] and [18]. An advanced
diagonal storage strategy which enables data to be obtained
parallelly was described in [19].

1051-8215 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 12,2021 at 08:32:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2523-8261
https://orcid.org/0000-0002-2942-1859
https://orcid.org/0000-0001-5583-4895
https://orcid.org/0000-0002-1671-2614

3290 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 30, NO. 9, SEPTEMBER 2020

TABLE I

BASIS FUNCTIONS OF THE TRANSFORMATIONS IN VVC

This paper presents a high-performance hardware imple-
mentation for 2D DST-VII/DCT-VIII operations in VVC. The
main contributions of this design are as follows. 1) Minimal
adder-oriented logical computational units: To minimize
the number of adders as much as possible, the N-Dimensional
Reduced Adder Graph (RAG-n) algorithm [20] is adopted
to design the logical computation parts of VVC transforms.
2) Transpose memory supporting the storage of asym-
metric blocks: Dual-port SRAM is employed as transpose
memory, and the storage of various asymmetric blocks can
be realized by a diagonal scheme. 3) A 32 × 32 block-
based pipeline operation: The 2D transformations of mixed
block sizes can be achieved in a pipeline, and 32 transformed
coefficients can be calculated each cycle after a certain initial
delay.

The rest of this paper is organized as follows. In Section II,
the basic principles and algorithms are introduced. The pro-
posed pipelined 2D transform architecture, including transpose
memory, is described in detail in Section III. Section IV gives
the experimental results and comparisons. Section V concludes
this paper.

II. BASIC PRINCIPLES

A. The Transformation Operations in VVC
Since the transforms could eliminate the correlations among

prediction residuals and concentrate the residuals’ energy, it is
widely used in various image and video coding standards.
HEVC uses DCT-II as the main transform function, and
DST-VII is used for intra coding of a 4 × 4 luminance
component. Moreover, both the horizontal transformation and
vertical transformation use the same transform type, and the
TUs are symmetric blocks, containing 4 × 4, 8 × 8, 16 × 16
and 32 × 32 block sizes [2].

For the coding efficiency gain, VVC uses three transform
kernels: DCT-II, DST-VII and DCT-VIII. Table I presents
the different basis functions of the selected DCT/DST type.
Meanwhile, the horizontal and vertical transformations may
adopt different transform types. In the reference software
(VTM4.0) [21], two additional flags are added for signaling the
horizontal and vertical transform types. Additionally, a more
flexible partitioning mode is adopted. This partitioning scheme
ensures that asymmetric transform blocks (such as 16 × 4 and
32 × 8) are supported.

There is no doubt that these new strategies have significantly
improved the coding performance, but they bring about a large
amount of the computational complexity. In hardware design,

Fig. 1. Three cases considered by the RAG-n heuristic.

the resource consumption is closely related to the computa-
tional complexity. Thus, it is desired to design a low-cost
and high-performance hardware structure for transformation
operations.

B. The RAG-n Algorithm

In some previous studies, Multiplierless Multiple Constant
Multiplication (MCM) [20] was often used to design multiplier
blocks by only adopting additions, subtractions and shifts. Due
to the low hardware cost of shift operations, how to minimize
the number of adders and subtractors is an important goal
of MCM. RAG-n is a graph-based MCM algorithm that is
dedicated to reducing the number of adders and subtractors.
It requires a precomputed table of optimal Single Constant
Multiplication (SCM) decompositions that are obtained by
exhaustive search. First, we give some relevant definitions.

Fundamentals: A multiplier block implements the parallel
multiplication by a given set of constants, which we call
fundamentals.

A-operation: It performs a single addition or subtraction
and an arbitrary number of shifts.

A-distance: The minimum number of extra A-operations
required to obtain a fundamental.

T: The target set of constants.
R: A set of original fundamentals (the ready set).
S: A set of fundamentals that can be obtained by only one

A-operation with the given initial constants.
S2: A set of fundamentals that can be obtained by two

A-operations with the given initial constants.
The target A-operation in RAG-n is Aodd, which means that

all of the targets T are first right shifted to become odd. The
RAG-n heuristic considers three different cases, graphically
illustrated in Fig. 1 and discussed thereafter.

1) Optimal case. If T ∩ S �= φ, then there is a target in the
successor set, and it is synthesized. If the entire set T is
synthesized this way, then the solution is optimal, since
it is impossible to use less than one A-operation for each
odd target. Thus, this case is referred to as optimal.

2) Heuristic case A. If T ∩ S = φ and T ∩ S2 �= φ, then
there is a target at an A-distance of 2 from R. This target
is synthesized along with the distance-1 intermediate
fundamental.

3) Heuristic case B. If no distance-1 or distance-2 targets
are available, then RAG-n synthesizes the target of least
complexity using the precomputed optimal SCM table.
In this case, three or more constants are synthesized.

If all of the coefficients can be synthesized in the optimal
part, we can ensure that the number of adders is the least.
Otherwise, the remaining coefficients are synthesized in the
heuristic part, and the results are not guaranteed to be optimal.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 12,2021 at 08:32:11 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: PIPELINED 2D TRANSFORM ARCHITECTURE SUPPORTING MIXED BLOCK SIZES FOR THE VVC STANDARD 3291

Fig. 2. Top-level module of the 2D transform (unfolded architecture).

III. PROPOSED PIPELINED 2D TRANSFORM

ARCHITECTURE

The top-level structure for the pipelined 2D transform is
illustrated in Fig. 2. It mainly consists of three modules:
1D row transform, 1D column transform and the transpose
memory. These two 1D transform modules have the same
structure, only with the different bit-width parameters. (The
bit-width parameter is equivalent to the input data bit-width.)
We assume that the bit-width parameters for the row transform
and column transform are 9 and 16, respectively, as defined
in the video coding standard. These three modules will be
discussed in detail in our following paper.

A. 1D Transform
As we know, for all of the transform types, the 1D transform

can be computed as follows:
Y = TN · X T (1)

In the expression above, X is a 1 × N matrix with a row of
the input frame, TN is the N × N integer transform coefficient
matrix, and Y is an N × 1 column matrix with the result of the
1D transform. The 4 × 4 integer transform coefficient matrices
are given below by (2) and (3) [1].

DST − V I I4x4 =

⎛
⎜⎜⎝

29 55
74 74

74 84
0 −74

84 −29
55 −84

−74 55
74 −29

⎞
⎟⎟⎠ (2)

DCT − V I I I4x4 =

⎛
⎜⎜⎝

84 74
74 0

55 29
−74 −74

55 −74
29 −74

−29 84
84 −55

⎞
⎟⎟⎠ (3)

From the above DST-VII 4×4 transform matrix (2), we can
observe a feature that the data in the fourth column can be
obtained by adding the data in the first and second columns,
except for the second row. Similar features are also found in
the 16 × 16 and 32 × 32 transform matrices. VTM4.0 has
exploited this feature to simplify the computation and reduce
the number of multiplication operations. For example, the first
output can be obtained by (4) without the calculation of
src3·84, where src0, src1, src2 and src3 are the inputs of the
1D four-point DST-VII transform module, and dst0 is the first
output.

dst0 = 29 · [src0 + src3] + 55 · [src1 + src3] + 74 · src2 (4)

Moreover, another feature could be found that the first, third
and fourth columns have the same coefficients only in different
order and signs. In addition, the transform matrices of other
sizes have such a feature. Therefore, we can design the Shift-
Addition Units (SAUs) as the multiplier blocks which are
used several times parallelly. To facilitate and unify the SAU
designs, this paper does not employ the simplification strategy

TABLE II

THE NUMBER OF ADDITIONS AND SHIFTS FOR SAU

mentioned above. The SAUs are designed by employing the
previously mentioned RAG-n algorithm, and SAU designs for
various sizes are depicted in Fig. 3. Taking size 4 as an
example, an SAU can realize four outputs (29x , 55x , 74x
and 84x) with one input x as indicated in Fig. 3 (a). It only
consumes six additions and six shifts. Table II presents the
number of additions and shifts required for the SAU designs
of various sizes. Through the RAG-n algorithm, we can reduce
the number of adders and subtractors as much as possible.

Additionally, we find that compared with the DST-VII
matrix (2), DCT-VIII one (3) has the same coefficients but in
inverse order for each row. Then, with only inversing the inputs
order and assigning the appropriate outputs signs, we can
easily benefit from DST-VII architecture in implementation of
the DCT-VIII transform type with no additional computational
complexity. However, because of the independence between
the DST-VII/DCT-VIII transform matrices for different sizes,
different structures are employed on the basis of transform
sizes. Fig. 4 presents the generic structure of 1D DST-VII and
DCT-VIII implementation for size N, where N = 4, 8, 16, 32.
An N-point transform module consists of a mux, a set of SAUs
(N SAUs) and an adder tree. To switch between DCT-VIII and
DST-VII, we use a mux to choose whether the inputs are in
a sequential order or a reversed order. Besides, the outputs
are slightly different for different transform types. We control
them by a select signal. When the select signal is equal to 0,
we adopt DST-VII, and the inputs are sequential to the mux to
calculate the outputs Y0, Y1, …, YN. When the select signal is
equal to 1, DCT-VIII is employed, and the inputs are reversed
to the mux to get the outputs Y0, −Y1, …, YN−1, −YN.
A set of SAUs are employed as the core computing units. For
an N-point transform module, N SAUs are required, and the
SAU type depends on the value of N. For example, a four-point
transform module needs four 4-point SAUs. When calculating
the outputs, we only need to select the corresponding results
from SAU outputs and use the appropriate signs in the adder
tree.

Actually, some other papers used the pixel parallelism
of 32 pixels per cycle, such as [4], [9], [10] and [11].
Therefore, we employ the same parallelism in the proposed
architecture. To meet the throughput rate of 32 samples per
cycle and support the transformations of various sizes, many
hardware resources are consumed. A 1D transform module
consists of eight 4-point transform modules, four 8-point
transform modules, two 16-point transform modules and a
32-point transform module (4×8 4-point SAUs + 8×4 8-point
SAUs + 16 × 2 16-point SAUs + 32 × 1 32-point SAUs).

B. Transpose Memory
As we know, the register array is not area efficient for

large-size transpose memory; it is also not power efficient.
Compared with the register array, it is a more cost-effective

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 12,2021 at 08:32:11 UTC from IEEE Xplore. Restrictions apply.

3292 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 30, NO. 9, SEPTEMBER 2020

Fig. 3. Shift-Addition Units (SAU) designs for various transform sizes.

Fig. 4. Generic 1D DST-VII/DCT-VIII architecture for size N (Different
SAU designs are adopted according to the value of N).

approach to implement large-size transpose memory using
SRAM. To implement the pipelined architecture, we need to
read and write data simultaneously. Therefore, we employ
the dual-port SRAM. However, the disadvantage of SRAM
is that it can only be accessed in different banks. To get data
parallelly, the data of each row or column must be stored
in different banks. By this, data collisions could be avoided
effectively.

To achieve the throughput rate of 32 samples per cycle,
the transpose memory is divided into 32 banks. Meanwhile,
this paper uses a diagonal scheme to get data parallelly. The
intermediate results of row transformation are written into
different SRAM banks and read out in a diagonal direction
for column transformation. There will be some shift operations
for realizing this diagonal strategy, and some similar schemes
were reported in [3], [6], [7] and [14]. When the 4 × 32 size

is taken as an example, the storage scheme is illustrated
in Fig. 5. When the transformation of one row (32 samples)
is done, the intermediate results are stored in one row of the
transpose memory within 32 different banks. After four clock
cycles (read/write throughput rate: 32 samples per cycle),
the intermediate results of the 4 × 32 block are all stored in
the transpose memory. To ensure that each column is in the
diagonal direction, the data of the second row, the third row
and the fourth row are move to the right by one, two and three
word units, respectively, as depicted in Fig. 5.

The depth of SRAM is set to 64, and the word width
is 16 bits. (assuming the width of an intermediate result is
16 bit, and one intermediate result is stored in one word
unit.) All sub-blocks in the 32 × 32 range can be stored
with the depth 32. To implement the pipelined architecture
based on the 32 × 32 block range, we set the depth to 64.
In each Tr operation, we do WR and RD simultaneously.
(The definitions of Tr, WR and RD are given below). By this
interlaced reading and writing scheme, the row transformation
and column transformation can be performed parallelly and
the pipelined transform architecture could be realized.

1) Tr: The row/column transformations of all sub-blocks
in the 32 × 32 block range.

2) WR: The intermediate results of the current 32 ×
32 block range are written into the transpose memory
within the address from 0 to 31 (from 32 to 63).

3) RD: The intermediate results of the last 32 × 32 block
range are read out from the transpose memory within
the address from 32 to 63 (from 0 to 31).

C. A Mixture of Different Transform Sizes in a Pipeline
To implement this pipelined architecture supporting mixed

block sizes, we consider that the maximum size of a TU is

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 12,2021 at 08:32:11 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: PIPELINED 2D TRANSFORM ARCHITECTURE SUPPORTING MIXED BLOCK SIZES FOR THE VVC STANDARD 3293

Fig. 5. Storage scheme in the case of 4×32 block (The numbers (1–32) represent that the column of the TU in which the intermediate results are. According
to the different numbers and colors, it can be easily seen that each column in the 4 × 32 TU is stored diagonally in the transpose memory).

Fig. 6. Transformations of mixed sizes in the pipelined architecture (the transform sizes are indicated in the blocks).

32 × 32 [1]. No matter how the TU is partitioned, each
sub-block will be within the 32 × 32 block range. There-
fore, we propose a 32 × 32 block-based pipelined archi-
tecture. Within this range, whether it contains a 32 ×
32 TU, four 16 × 16 TUs, or 32 4 × 8 TUs, or other
combinations, we first do row transform. When the row
transformations of all of the sub-blocks in this range are
completed, we start reading columns out from the trans-
pose memory for column transformations. Meanwhile, all
sub-blocks in the next 32 × 32 block range start row
transform.

All of the previous studies use either the folded architecture
or the unfolded architecture (1D row transform + transpose
memory + 1D column transform) as presented in Fig. 2 to do
the 2D transform [4]. There is no doubt that it is impossible
to get a pipelined 2D transform in the folded architecture.
As for the unfolded architecture, in some previous papers, such
as [4], [6], [7] and [14], the pipeline operations were realized
only when the input blocks had the same size. However, these
papers did not explain for such case that the input blocks
have different sizes (for example, the current block is 16×16,
and the next block is 32 × 32). This causes that the second
transformation either waits for data or gets a data reading
collision as illustrated in Fig. 6(b) and Fig. 6(c). A perfect
pipeline cannot be found. It is obvious that the input blocks
have different sizes in the decoding process. Therefore, this
paper proposes a mixed-sizes-oriented design. For a perfect
pipeline, all sub-blocks (which have different block sizes) in
the 32 × 32 range do not start the column transformations
until their row transformations are all completed. More delays
are introduced at the beginning, but after the initial delay,
32 transformed coefficients can be calculated each clock cycle,
and the 2D transformation operations for all sub-blocks in a
32 × 32 block range can be completed every 32 clock cycles,
as illustrated in Fig. 6(a).

For this design, the initial delays are 34 clock cycles:
32 cycles for inputting the 1,024 samples (as the throughput
rate is set to 32 samples per clock cycle, 32 cycles are

required to get all data in the 32 × 32 block range), 1 cycle
for capturing the intermediate results and 1 cycle for storing
them in the transpose memory. After 34 cycles, the column
transformations are turned on, and the results of column
transformations are output in pipeline with the throughput rate
of 32 outputs per clock cycle.

D. Unified Transform Architecture for Three
Transform Kernels

As described in [1], VVC adopted three transform kernels
(DCT-II, DCT-VIII and DST-VII). Because of the differences
between their basic functions and the differences in the trans-
form sizes (DCT-II: 2–64, DST-VII/DCT-VIII: 4–32), it is
difficult to design a unified architecture. However, the pro-
posed 1D transform architecture can be easily extended to
a unified one that contains the three transform types with
only an additional DCT-II engine. We can use the existing
architectures, such as [3], [4] and [7], as the DCT-II engine.
This unified architecture is depicted in Fig. 7, and the right
side depicts our design. Thirty-two points enter two engines
for the transformation calculation, and the outputs are selected
by the mux with a sel signal.

IV. EXPERIMENTAL RESULT

We implemented the proposed designs in Verilog HDL.
They were synthesized with Design Compiler using a TSMC
65 nm cell library at the clock frequency of 250 MHz.
A fair comparison with other studies in the literature is
quite difficult. Most studies focus on HEVC DCT-II, and
there are few ASIC-based designs for the VVC transforms.
For comparison, Table III lists the key parameters of state-
of-the-art ASIC-based works, including the HEVC-related
works ([3], [4], [7], [8]–[11]) and VVC-related literature [14].
A concept of normalized area (NA) is introduced to make a
fair comparison, and NA is defined by the following equation.

N A = Gate

MaxT hroughput
= Gate

Max Freq ∗ T p
(5)

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 12,2021 at 08:32:11 UTC from IEEE Xplore. Restrictions apply.

3294 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 30, NO. 9, SEPTEMBER 2020

TABLE III

COMPARISON OF DIFFERENT 2D TRANSFORM HARDWARE DESIGNS BASED ON ASIC

Fig. 7. Unified 1D transform architecture for VVC standard.

where MaxFreq is the maximum frequency of the design, and
Tp is the throughput within each cycle, which is equal to
the pixel parallelism. Gate is the gate count of the logical
calculation part. It can be seen from Table III that compared
with [3], [7], [8], [9] and [11], our SAU-based design has obvi-
ous advantages. We present a unified 2D transform architecture
that can realize DST-VII/DCT-VIII for various asymmetric
block sizes with the high throughput of 32 pixels per cycle.
In term of NA, our SAU-based design could save 11.4%
area than the multiplication-based one. Particularly, up to
73.1% area can be reduced compared with [11]. However,
the NA is slightly larger than those of [4] and [14]. This
is because Meher et al. [4] used Chen’s decomposition algo-
rithm [5] to get a unified 2D DCT-II transform architecture to
reduce hardware resources. However, currently, no effective

decomposition algorithms have been found for DCT-VIII and
DST-VII. Although [14] had a smaller NA, the 2D trans-
form could be achieved only up to the 8 × 8 block size.
An approximated novel truncation scheme was adopted by
Sun et al. [10], which made it possess the smallest NA with
some loss in the coding performance. Regarding the power
consumption, the SAU-based design can save energy by 7.4%,
4.9% and 9.9%, respectively, compared with [4], [9] and the
multiplication-based design.

Additionally, considering that most of the existing designs
for VVC transformation operations are based on the FPAG
platform, we summarize some advanced work in Table IV.
References [14]–[16] proposed some efficient architectures for
five transform types. The 2D transformations for 4 × 4 and
8 × 8 TUs were performed in [14]. A unified architecture
considering all asymmetric 2D block size combinations was
proposed by Kammoun et al. [15]. A deeply pipelined
high-performance architecture [16] was presented to imple-
ment the five transforms for symmetric blocks. For DCT-II,
Chen et al. [17] proposed a methodology that can efficiently
proceed 2D-DCT computation to fit internal components and
characteristics of FPGA resources. Four algorithm adaptations
and a fully parallel hardware architecture [8] were intro-
duced for an HEVC intra encoder that includes the transform
module.

The comparisons for the transpose memory designs are
given in Table V. We can see that the area is reduced by 21.9%
and 46.9%, respectively, by using SRAM, compared with that
of [3] and the register array. To get a perfect pipeline, the
transpose memory is divided into two areas (each of which
can store 32 × 32 data. Read and write operations alternate

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 12,2021 at 08:32:11 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: PIPELINED 2D TRANSFORM ARCHITECTURE SUPPORTING MIXED BLOCK SIZES FOR THE VVC STANDARD 3295

TABLE IV

DIFFERENT 2D TRANSFORM HARDWARE DESIGNS BASED ON FPGA

TABLE V

COMPARISONS OF TRANSPOSE MEMORY DESIGNS

between these two areas). This makes our area much larger
than that of [7].

V. CONCLUSION

This paper proposes a high-performance pipelined 2D trans-
form architecture for DST-VII/DCT-VIII. For a perfect
pipeline, a 32 × 32 range-based pipeline scheme is employed,
and 32 transformed coefficients can be calculated per clock
cycle after a certain delay. To reduce hardware cost, the RAG-n
algorithm is adopted to design the multiplier blocks. The
experimental results illustrate that the SAU-based design can
save the area and power consumption by up to 73.1% and
9.9%, respectively, compared with other works. When SRAM
is used, the memory area can be reduced by at least 21.9%.

This paper is aimed at DST-VII and DCT-VIII operations,
and DCT-II is currently not considered. The proposed archi-
tecture can be easily extended to a unified one only with
an additional DCT-II engine. To further reduce the hardware
cost, we will consider a reconfigurable architecture and the
approximation scheme in the future so that the three transform
types can share an architecture under the premise of ensuring
the coding performance as much as possible.

REFERENCES

[1] Working Draft 4 of Versatile Video Coding, document JVET M1001-v7,
Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC
(JTC 1/SC 29/WG 11), Jan. 2019.

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview
of the high efficiency video coding (HEVC) standard,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668,
Dec. 2012.

[3] S. Shen, W. Shen, Y. Fan, and X. Zeng, “A unified 4/8/16/32-point
integer IDCT architecture for multiple video coding standards,” in Proc.
IEEE Int. Conf. Multimedia Expo, Melbourne, VIC, Australia, Jul. 2012,
pp. 788–793.

[4] P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, and C. Yeo, “Efficient
integer DCT architectures for HEVC,” IEEE Trans. Circuits Syst. Video
Technol., vol. 24, no. 1, pp. 168–178, Jan. 2014.

[5] W.-H. Chen, C. Smith, and S. Fralick, “A fast computational algorithm
for the discrete cosine transform,” IEEE Trans. Commun., vol. 25, no. 9,
pp. 1004–1009, Sep. 1977.

[6] T. Ma, C. Liu, Y. Fan, and X. Zeng, “A fast 8 × 8 IDCT algorithm
for HEVC,” in Proc. IEEE 10th Int. Conf. ASIC, Shenzhen, China,
Oct. 2013, pp. 1–4.

[7] H. Sun, D. Zhou, J. Zhu, S. Kimura, and S. Goto, “An area-efficient
4/8/16/32-point inverse DCT architecture for UHDTV HEVC decoder,”
in Proc. IEEE Vis. Commun. Image Process. Conf., Valletta, Malta,
Dec. 2014, pp. 197–200.

[8] Y. Zhang and C. Lu, “Efficient algorithm adaptations and fully-parallel
hardware architecture of H.265/HEVC intra encoder,” IEEE Trans.
Circuits Syst. Video Technol., to be published.

[9] E. Kalali, A. C. Mert, and I. Hamzaoglu, “A computation and energy
reduction technique for HEVC discrete cosine transform,” IEEE Trans.
Consum. Electron., vol. 62, no. 2, pp. 166–174, May 2016.

[10] H. Sun, Z. Cheng, A. M. Gharehbaghi, S. Kimura, and M. Fujita,
“Approximate DCT design for video encoding based on novel truncation
scheme,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 4,
pp. 1517–1530, Apr. 2019.

[11] G. Pastuszak and A. Abramowski, “Algorithm and architecture design
of the H.265/HEVC intra encoder,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 1, pp. 210–222, Jan. 2016.

[12] A. Kammoun, S. Ben Jdidia, F. Belghith, W. Hamidouche, J. F. Nezan,
and N. Masmoudi, “An optimized hardware implementation of 4-point
adaptive multiple transform design for post-HEVC,” in Proc. 4th Int.
Conf. Adv. Technol. Signal Image Process., Sousse, Tunisia, Mar. 2018,
pp. 1–6.

[13] S. Ben Jdidia, A. Kammoun, F. Belghith, and N. Masmoudi, “Hardware
implementation of 1-D 8-point adaptive multiple transform in post-
HEVC standard,” in Proc. 18th Int. Conf. Sci. Techn. Autom. Control
Comput. Eng., Monastir, Tunisia, Dec. 2017, pp. 146–151.

[14] A. C. Mert, E. Kalali, and I. Hamzaoglu, “High performance 2D
transform hardware for future video coding,” IEEE Trans. Consum.
Electron., vol. 62, no. 2, pp. 117–125, May 2017.

[15] A. Kammoun, W. Hamidouche, F. Belghith, J.-F. Nezan, and
N. Masmoudi, “Hardware design and implementation of adaptive mul-
tiple transforms for the versatile video coding standard,” IEEE Trans.
Consum. Electron., vol. 64, no. 4, pp. 424–432, Nov. 2018.

[16] M. J. Garrido, F. Pescador, M. Chavarrías, P. J. Lobo, and C. Sanz,
“A high performance FPGA-based architecture for the future video cod-
ing adaptive multiple core transform,” IEEE Trans. Consum. Electron.,
vol. 64, no. 1, pp. 53–60, Feb. 2018.

[17] M. Chen, Y. Zhang, and C. Lu, “Efficient architecture of variable size
HEVC 2D-DCT for FPGA platforms,” AEU-Int. J. Electron. Commun.,
vol. 73, pp. 1–8, Mar. 2017.

[18] P. Sjövall, V. Viitamäki, J. Vanne, and T. D. Hämäläinen, “High-level
synthesis implementation of HEVC 2-D DCT/DST on FPGA,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., New Orleans, LA,
USA, Mar. 2017, pp. 1547–1551.

[19] Q. Shang, Y. Fan, W. Shen, S. Shen, and X. Zeng, “Single-port SRAM-
based transpose memory with diagonal data mapping for large size 2-D
DCT/IDCT,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22,
no. 11, pp. 2423–2427, Nov. 2014.

[20] Y. Voronenko and M. Püschel, “Multiplierless multiple constant multi-
plication,” ACM Trans. Algorithms, vol. 3, no. 2, p. 11, May 2007.

[21] VTM Reference Software. Accessed: Mar. 5, 2019. [Online]. Available:
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/release

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 12,2021 at 08:32:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

